Миниатюрную атомную батарейку разработали учёные НИТУ «МИСиС». Американцы первые образцы своих атомных батареек устанавливали на спутники Transit 4A и 4B.
От смартфона до ракеты. Учёные создали "вечную" атомную батарейку
Текущие аккумуляторы нужно менять после 300 — 500 тыс. Новая батарейка Tesla Фото: electrek. Пока вышли первые протестированные образцы. Графит В 2020 году Mercedes-Benz объявил о планах по созданию органического аккумулятора. Основой технологии станет графит с электролитом на водяном растворе. Это позволит исключить использование тяжелых и токсичных металлов, а утилизировать батареи можно будет путем компостирования. Однако в Mercedes отмечают, что начало массового производства таких аккумуляторов начнется не раньше, чем через 15 лет. Углеродные волокна В 2021 году группа ученых из технологического университета Чалмерса в Швеции представила аккумулятор для автомобиля из углеродного волокна. Пластина аккумулятора из углеродного волокна Фото: Advanced Energy and Sustainability Research Батарея из углеродного волокна в виде крышки багажника Фото: Advanced Energy and Sustainability Research В будущем такие аккумуляторы из композитных материалов можно будет использовать как в автомобилях, так и в самолетах, чтобы сделать их легче и экологичнее.
Пока ведутся испытания прототипов разных форм-факторов. Без кобальта В конце 2019 года IBM представила образец аккумулятора без никеля и кобальта, из материалов, которые могут быть получены из морской воды. Он включает комбинацию катодного материала без тяжелых металлов и безопасного жидкого электролита с высокой температурой горения. Специалисты уже подсчитали, что эти материалы могут сделать аккумуляторы дешевле существующих литий-ионных и при этом будут иметь более высокие характеристики скорости зарядки и энергетической плотности, а также будут менее огнеопасными. Авторы разработки считают, что у нее есть потенциал для внедрения в отрасль электромобилей. Кроме того, тесты показали, что батарея способна прослужить достаточно долго, чтобы ее можно было использовать в интеллектуальных электросетях и новой энергетической инфраструктуре. Для будущего производства аккумуляторов IBM уже заключила коммерческое соглашение с Mercedes-Benz, поставщиком электролита Central Glass и производителем батарей Sidus. Полимеры В 2017 году стартап Ionic Materials презентовал полимерный аккумулятор, который в перспективе сможет заменить литий-ионные.
Компания заявила, что полимерные литий-металлические аккумуляторы будут безопаснее, долговечнее и экономически выгоднее, так как процесс их производства похож на производство пластиковой упаковки. Аккумулятор Ionic Materials Фото: ionicmaterials.
Это наиболее перспективный радионуклид в бета-вольтаике — средняя энергия бета-частиц 63Ni 17. Группа ученых из Института ЛаПлаз под руководством Петра Борисюка предложила оригинальную физическую систему на основе 63Ni, позволяющую провести эффективную генерацию вторичных электронов непосредственно внутри наноструктурированных пленок никеля и значительно увеличить токовый сигнал, вызванный каскадом многократных неупругих соударений бета-частиц. Эта система является относительно простой с точки зрения экспериментальной реализации и представляет собой ансамбль плотно упакованных нанокластеров никеля с градиентным распределением наночастиц по размеру, осажденных на поверхности широкополосного диэлектрика — оксида кремния. Ключевая особенность системы основана на том, что вследствие размерной зависимости энергии Ферми наличие пространственно неоднородного распределения металлических наночастиц по размерам приводит к пространственному перераспределению заряда в такой системе.
Это означает, что в электропроводящей системе соприкасающихся друг с другом металлических наночастиц, средний размер которых монотонно изменяется в выделенном направлении, в этом же направлении должна регистрироваться разность потенциалов. Таким образом, формирование нанокластерных пленок никеля-63 с градиентным распределением наночастиц по размерам открывает уникальную возможность и позволяет совместить сразу два важных процесса: во-первых, формировать покрытия с фиксированной разностью потенциалов определяется разницей размеров наночастиц в выделенном направлении ; во-вторых, осуществлять преобразование энергии бета-распада 63Ni в ток электронов без использования дополнительных сложных для реализации полупроводниковых систем. Главным вопросом, которому посвящена разработка НИЯУ МИФИ, является исследование электрофизических свойств формируемой нанокластерной пленки никеля и подбор оптимальных параметров эксперимента для создания эффективного преобразователя энергии бета-распада 63Ni в электричество. Первичные результаты, подтверждающие возможность реализации такой системы, ранее были опубликованы коллективом авторов в престижном журнале Applied Physics Letters.
Радиоактивный элемент наносится с двух сторон так называемого планарного p-n-перехода, что позволяет упростить технологию изготовления элемента, а также контролировать обратный ток, который «крадёт» мощность. Микроканальная структура обеспечивает увеличение эффективной площади преобразования бета-излучения в 14 раз. Изделие способно работать до двадцати лет.
Или же он может питать датчик температуры где-нибудь в Арктике или других труднодоступных местах с суровыми условиями. Единственная проблема технологии — слишком высокая себестоимость. При этом они втрое уменьшили размеры и одновременно увеличили энергоемкость в 10 раз.
В Красноярском крае разработана атомная батарейка, работающая 50 лет
В Китае изобрели атомную батарейку BV100, которая может работать до 50 лет без подзарядки. Betavolt планирует выпустить версию ядерной батарейки на 1 ватт к 2025 году. Китайский стартап Betavolt представил ядерную батарейку BV100, которая может генерировать электроэнергию в течение 50 лет без необходимости зарядки и обслуживания. "Росатом" изготовил первую опытную партию компактных ядерных батареек.
Ученые создали атомную батарейку. Она может работать 20 лет
Telegram: Contact @rosatomru | Причём батарейка может быть применена в нескольких функциональных режимах: в качестве аварийного источника питания и датчика температуры в устройствах. |
Почему ядерные батарейки так и не стали популярны? История почти забытой технологии | Ядерная батарейка на основе радиоизотопного термо электрического генератора РИТЭГ изобретен и применяется в космосе и в МО более 50 лет. |
Неоружейный плутоний: российские ученые создали уникальную ядерную батарейку | Петр Борисюк занимается разработкой атомной батарейки, способной работать без подзарядки порядка 80 лет. |
Ядерная батарейка: в России создали источник питания, работающий 50 лет
Ученые российской атомной отрасли вплотную приблизились к созданию так называемого бета-вольтаического источника питания на основе радиоактивного изотопа никель-63. Срок службы такой батарейки составляет не менее 50 лет, стоимость – около 4000 долларов. Российские ученые НИТУ «МИСиС» разработали атомную батарейку с рекордным сроком службы. По их заверениям, энергоэффективность атомных батареек настолько высока, что их можно ставить в пару с литиевыми аккумуляторами. В 1975 г. был впервые имплантирован кардиостимулятор РЭКС-А1, где источником питания служила плутониевая атомная батарейка.
В России создали атомную батарейку со сроком службы до 20 лет
Ученые из Научно-исследовательского института неорганических материалов имени академика Бочвара ВНИИНМ создали источники питания для аэрокосмической отрасли, работающие на тритии. Существует американский аналог изотопного источника питания, но российские ученые принципиально использовали только российские комплектующие. Но удельная активность потока бета-частиц в российских батареях выше», — рассказал начальник отдела разработки технологий и оборудования для изотопной продукции ВНИИНМ Александр Аникин.
Они не применяются с 1972 года, а их носителей к 2020-му году осталось менее десятка.
Проблема таких устройств в очень низкой эффективности — термопары обеспечивают преобразование лишь считаных единиц процентов тепла в электричество. Есть проекты повышения этого показателя вкупе с удешевлением РИТЭГов: либо за счет добавления фотоэлектрических преобразователей как в солнечных панелях, только для инфракрасного излучения , либо за счет использования двигателей Стирлинга. Использовать продукты распада напрямую для выработки электричества тоже можно, особенно если они имеют заряд альфа- и бета-частицы.
Способов много, но проблемы все те же: низкая удельная мощность готового устройства из-за необходимости в экранировании, а также из-за низкой эффективности методов преобразования физика процессов накладывает фундаментальные ограничения. Способов, кстати говоря, так много, что в формате простого ответа на ваш вопрос даже перечислить было бы сложно. Повысить эффективность таких устройств обещают метаматериалы, но прирост эффективности все равно вряд ли превысит десятки процентов.
Что же касается высокой стоимости радиоизотопных источников электричества, то она обусловлена сложностями с выбором делящегося материала. Ведь для этого нужны такие вещества, которые при собственной достаточно высокой активности в процессе распада не будут давать чрезмерно активных продуктов и нейтронов, иначе потребуется еще более мощное экранирование.
В Горно Химическом Комбинате ГХК завершен очередной этап на пути к созданию бета-вольтаического источника питания на изотопе Ni63, а именно произведена конверсия обогащенного рабочего газа в форму пригодную для нанесения на полупроводниковый преобразователь. Принцип Работы Ведущую позицию реализации проекта "Росатома" по созданию малогабаритного атомного источника питания на базе никель-63 занимает Электрохимический завод города Зеленогорска Красноярского края. Со слов Сергея Зырянова, руководителя изотопного отдела это единственное в мире предприятие, занимающееся изготовления радиоизотопа в промышленных масштабах. Для производства идеи данных атомных батареек будет использоваться радиоизотоп Никель-63.
Срок её службы — пятьдесят лет. Ближайшую перспективу применения атомных батареек создатели видят в медицине. Например, в производстве кардиостимуляторов.
Сделано в России
В России создали прототип атомной батареи, которая может работать без подзарядки 80 лет. Российская ядерная батарейка в отличие от традиционных источников питания получает электрическую энергию в результате естественного распада радиоактивных изотопов. Миниатюрную атомную батарейку разработали учёные НИТУ «МИСиС». «Сердце ядерной батарейки — вакуумная капсула с радиоактивным изотопом. Благодаря энергии ядерного распада она нагревается до 1500°C и начинает светиться.
Батарейка для Севморпути будет работать на плутонии-238
Испытания батарейки показали, что радиационный фон остается в норме, а сама она не выделяет углекислый газ. При этом ее стержень «фонит» до 28 тыс. Разные форм-факторы атомных батереек Фото: ndb. Их конструкция работает на никелевом бета-гальваническом элементе, который служит около 20 лет. Эти элементы можно размещать на одежде и использовать их энергию для зарядки мобильных устройств. Термохимические ячейки Фото: misis.
Эти панели можно будет устанавливать в окнах домов и офисов. Они будут аккумулировать энергию солнечного света в течение дня. А в 2020 году Tesla презентовала собственный инвертор солнечной энергии, который дополнит линейку домашних солнечных батарей компании. Он будет преобразовывать солнечную энергию в энергию постоянного тока, а затем — в энергию переменного тока для бытового потребления. В зависимости от числа трекеров точки максимальной мощности, оно сможет выдавать от 3,8 кВт до 7,6 кВт мощности.
Инвертор Tesla Фото: electrek. Система объединит солнечные тепловые коллекторы с параболическими зеркалами фокусируют лучи в одной точке , подземное хранилище тепла в осадочных породах образуются при низких температурах и давлении и электрогенерирующее оборудование на пару в виде трубок и турбины. При нагревании солнцем вода в трубках будет испаряться, а пар будет входить в турбину и одновременно закачиваться под землю, разогревая осадочную породу. Ночью вода под землей будет испаряться уже под воздействием разогретой породы. Получаемый пар используют для выработки электроэнергии.
Эту жидкость поместят в баки с теплоизоляцией и низким давлением. Нагревание вернет воздух в газообразное состояние, а газ приведет в действие турбины генераторов, которые будут вырабатывать электричество. Схема работы CRYOBattery В мае 2021 года международная группа ученых представила новые ультратонкие металлические электроды из золота, которые можно будет применять для разработки прозрачных солнечных панелей.
Такие источники энергии могут работать без подзарядки в течение нескольких лет. Об этом пишет издание Applied Physics Letters. Российские физики разработали определённую систему. В её основе лежит бета-распад никеля-63.
Новая батарейка преобразует энергию радиоактивного распада в электрическую и может использоваться для питания микроэлектронной аппаратуры. Она относится к так называемым бетавольтаическим элементам. Такой элемент питания состоит из двух частей: полупроводников — преобразователей энергии и радиоактивного элемента-излучателя. Исследователи разработали особую конструкцию микроканальную 3D-структуру атомной батареи, в которой расположение радиоактивного элемента изотопа никеля предотвращает потерю мощности, вызываемую обратным током. Эффективная площадь преобразования бета-излучения в электрическую энергию в сравнении с аналогами увеличилась в 14 раз, что в результате дало общее увеличение тока. В числе прочих преимуществ разработчики отмечают упрощение технологии изготовления атомной батареи, что вдвое удешевляет её производство.
Внутрь корпуса помещен радиоактивный сердечник, изготовленный из переработанных ядерных отходов, — углерода-14. Этот изотоп применяется в ядерной медицине, с его помощью диагностируют заболевания желудочно-кишечного тракта. Ядерные реакторы, использующие воду в активной зоне, также являются источником углерода-14. Дальше процитируем пресс-релиз: "Радиоизотопы выделяют большое количество тепла. Благодаря неупругому рассеянию, возникающему из-за присутствия монокристаллического алмаза, конструкция предотвращает самопоглощение тепла радиоизотопом и обеспечивает быстрое преобразование в электроэнергию". Фото: Nano Diamond Battery Тесты, проведенные в Ливерморской национальной лаборатории имени Лоуренса и Кавендишской лаборатории Кембриджского университета, подтвердили, что атомная батарейка безопасна для человека и окружающей среды: радиационный фон вокруг нее остается в норме. А алмазная оболочка выполняет дополнительную функцию — защищает устройство от возможных повреждений. По их заверениям, энергоэффективность атомных батареек настолько высока, что их можно ставить в пару с литиевыми аккумуляторами — и Nano Diamond Battery будет не только питать устройство, но еще и подзаряжать аккумулятор.