Новости термоядерный холодный синтез

Хорошие новости продолжают поступать в области исследований ядерного синтеза. «Отмечу недавний успех в лазерном термоядерном синтезе, где радиационное сжатие смеси дейтерия и трития позволило запустить реакцию ядерного синтеза с выделением большей энергии, чем было доставлено в образец.

Холодный синтез. Миф или лженаука?

Мы хотим за счет термоядерных технологий решить проблему с «замыканием» ядерного топливного цикла. Представляете, мы сможем нарабатывать искусственное топливо для атомных реакторов, получать в реакторе энергию, а после дожигать отработанное топливо до безопасного состояния, чего раньше никогда не было. До сих пор мы просто захоранивали ядерные отходы, накапливая их. В целом новая гибридная атомная станция будет значительно безопасней и экологичней. Отсутствие большого количества опасных отходов также позволит повысить экспортный потенциал нашей атомной промышленности.

Развивая эту технологию, мы оставим своим потомкам более чистую планету, без залежей ядерных отходов. Мы будем использовать термоядерный реактор как мощный источник нейтронов для получения ядерного топлива. При этом параметры плазмы в таком термоядерном источнике нейтронов могут быть существенно ниже, чем в чисто термоядерном энергетическом реакторе, а размеры — существенно меньше, чем у того же ИТЕРа. Следовательно, такой реактор-источник будет значительно дешевле.

Но самое главное: реализация гибридной концепции позволит существенно сократить время, требующееся для внедрения уже наработанных термоядерных технологий в коммерческий оборот. Существует еще и открытый тип реактора — зеркальные ловушки, или, образно говоря, «магнитные бутылки», имеющие на концах магнитные «пробки» или магнитные «зеркала». На концах такого реактора, возле «пробок», магнитное поле сильное, в центре — слабее. Частицы плазмы привязаны к силовым линиям магнитного поля и движутся от одной «пробки» к другой, каждый раз отражаясь от них.

Конструкция такого реактора получается более простой, а значит, дешевой и легкой в сборке. Такая зеркальная ловушка, модель будущего реактора открытого типа, есть в новосибирском Институте ядерной физики им. Она считается лучшей установкой такого типа в мире: среди них ей принадлежит рекорд по температуре -10 миллионов градусов. Но на этом новосибирцы останавливаться не намерены.

В планах — скрестить открытую ловушку с ядерным реактором, сделать технологию гибридной о подобной технологии мы писали выше. Еще одна очень интересная технология. Этот проект, который, если все пойдет по плану, может значительно улучшить имидж атомной энергетики, который несколько пострадал после аварии на Фукусиме. Никаких нейтронов, загрязняющих окружающую среду, при этом нет — только чистая энергия.

Правда, протон и бор идут на сближение еще труднее, чем дейтерий с тритием, а потому платой за явные преимущества их «союза» является гораздо более высокая температура зажигания реакции — миллиард градусов Цельсия. Это горячее, чем на Солнце! Оно разве не вредное? При строительстве энергетической станции на основе этой технологии вокруг реактора будет построена железобетонная защита, которая обеспечит полную безопасность.

Только в центре токи, текущие в плазме, такие мощные, что способны поменять знак магнитного поля реактора. При этом образуется сгусток плазмы, в котором силовые линии магнитного поля замкнуты, и в таком реакторе плазма очень хорошо удерживается.

Холодный синтез cold fusion , который также называют низкоэнергетическими ядерными реакциями Low-Energy Nuclear Reactions, LENR — это гипотетический тип ядерных превращений при температуре, близкой к комнатной, в отличие от «горячего» синтеза, который протекает в недрах звезд и при взрыве термоядерной бомбы при высоких давлениях и температурах в миллионы кельвинов. Современная физика не допускает возможности холодного термояда, так как при умеренных температурах кинетической энергии ядер недостаточно для преодоления кулоновского отталкивания из-за одинаковых зарядов, а синтез, то есть слияние легких ядер с превращением в более тяжелые, может протекать только при контакте частиц. Однако в 1989 году вышло ставшее резонансным исследование химиков Мартина Флейшмана и Стенли Понса, которые утверждали, что им удалось обнаружить выделение избыточной энергии при электролизе тяжелой воды на поверхности палладиевого электрода. Авторы заявляли, что в их экспериментах идет превращение дейтерия в тритий или гелий, но абсолютное большинство попыток повторить их эксперимент не дали результата. Научное сообщество пришло к выводу об ошибочности исходных результатов. С тех пор появлялось множество сообщений об аналогичных эффектах в разнообразных системах, в том числе живых, но они либо были признаны научным сообществом недостоверными, либо проводились без достаточной строгости для проверки наличия эффекта. Эта ситуация вынесла исследования холодного термояда за пределы науки, и этой областью теперь в основном занимаются любители, а не профессиональные ученые.

Однако потенциальные достоинства таких ядерных превращений несомненны, и в 2015 году компания Google запустила проект, в рамках которого около 30 ученых из нескольких лабораторий пытались повторить отвергнутые наукой результаты с использованием современных технологий. На инициативу было выделено 10 миллионов долларов.

За время меньшее 100 триллионных долей секунды шарик принял на себя 2,05 МДж энергии и выдал поток нейтронов, порождённых синтезом, унесших с собой 3 МДж энергии — в полтора раза больше, чем было потрачено. В результате был преодолён порог «зажигания», как называют его учёные — когда энергия, произведённая синтезом, превысила энергию запустивших реакцию лазеров.

О первых успехах учёные отчитались в 2014-м, однако производимая тогда реакцией энергия была крохотной — примерно столько потребляет 60-ваттная лампочка за пять минут. На коммерциализацию и широкое распространение данной технологии могут уйти десятилетия — так сказала Кимберли Будил, директор Ливерморской национальной лаборатории.

Американский прорыв свершился в момент, когда мир столкнулся с высокими ценами на энергию и необходимостью скорейшего отказа от ископаемого топлива, чтобы не допустить опасного скачка средних мировых температур.

В соответствии с Законом о снижении инфляции администрация Байдена вложит в новые субсидии на низкоуглеродную энергетику почти 370 миллиардов долларов — это поможет сократить выбросы и выиграть глобальную гонку за чистые технологии следующего поколения. Если все пройдет хорошо, этот проект позволит получать самую "зеленую" энергию. Французские читатели тронуты верностью россиян.

Проект начинался при Горбачеве, когда Запад "был еще цивилизованным". От дальнейших комментариев в ведомстве отказались. Лаборатория подтвердила успешный эксперимент в Национальном комплексе лазерных термоядерных реакций, но подчеркнула, что анализ результатов продолжается.

Однако точная выработка все еще определяется, и мы не можем подтвердить, что на сегодняшний момент она превышает пороговое значение, — говорится в сообщении. Два осведомленных источника сообщили, что выход энергии превысил ожидаемый, повредив часть диагностического оборудования и затруднив анализ.

В Ливерморе совершили прорыв в получении термоядерной энергии

Она способна решить все энергетические проблемы на ближайшие несколько столетий вперёд. Во-первых, после появления термоядерной энергии исчезнет проблема радиационной опасности объектов. Проще говоря, никакого "второго Чернобыля" или "Фукусимы" и близко произойти не сможет. Во-вторых, развитие термоядерного синтеза позволит ликвидировать энергетический голод человечества. Стремительный рост населения спровоцировал и дефицит энергии. Сейчас, по прогнозам специалистов, потребность человечества в электроэнергии оценивается в 10 ТВт — почти в пять раз больше, чем наука и промышленность могут предложить. В-третьих, термоядерный синтез почти сразу станет причиной освоения... Дело в том, что, несмотря на достаточное количество дейтерия и трития, идеальным топливом для термоядерных реакторов будущего является гелий-3 — самый лёгкий изотоп гелия. Его практически нет в чистом виде на Земле — для его наработки специальным образом обрабатывают тритий, а процесс этот стоит так дорого, что промышленное производство гелия-3 крайне невыгодно и потому лишено смысла. Идеальным местом добычи гелия-3 является именно Луна. В лунном грунте гелий-3 лежит в чистом виде, и его даже не нужно обрабатывать: достаточно просто собирать в капсулы специальным комбайном — и можно сразу отправлять на Землю ракетной экспресс-доставкой.

Считается, что две тонны гелия-3, разогретые в токамаке или стеллараторе модернизированный термоядерный реактор , могут дать столько же энергии, сколько 30 млн тонн нефти, сжигаемой в печах ТЭС. Если верить специалистам в области энергетики, лунных запасов гелия-3, необходимого для термоядерного синтеза, будет достаточно для обогрева и освещения Земли в течение следующих шести-семи тысяч лет. Правда, есть одна проблема. Некоторые физики считают применение гелия-3 в термоядерных реакторах неграмотным и настаивают на том, что все доводы в пользу этого элемента — обычная глупость. К китайскому опыту в этом направлении стоит приглядеться чуть внимательнее, поскольку физики из Поднебесной тестировали свой импульсный термоядерный реактор и повторяли опыты советских физиков.

Точнее, генератор Росси. Афёра с генератором Росси делает из Обамы полного дурака! Итальянец Андре Росси изобрел фантастический прибор.

Керамическая трубка диаметром 2 см и длиной 20 см. Внутри — полграмма никелевого порошка, водород под давлением и секретный катализатор. Подключаешь трубку к электросети для разогрева и вскоре она сама начинает вырабатывать «чрезвычайно дешевую, экологически чистую, практически неисчерпаемую энергию. Разорятся страны и целые регионы - поставщики углеводородов. Сам изобретатель перебрался из Италии в США. И организовал встречу Вона с лидером Китая Си Цзиньпином. А мы-то думали, что Обама на саммите только антиникотиновую жвачку жевал! Стороны пришли к решению о создании специальной зоны в китайском Баодине для промышленного выпуска этих генераторов по лицензии США.

В ближайшие годы в Китае начнется массовое производство генераторов Росси. Спрашивается, и зачем ему тогда будут нужны российские нефть и газ? Этим шагом Обама отрезает у России рынки сбыта углеводородов. Разве что нефть будет нужна для переработки пластмасс и смазочных материалов, но не для получения бензина и топочного мазута… На мировой арене президент США Барак Обама стал самым большим победителем. Благодаря этому изобретению он может включить и выключить свет для всего мира. Это, как вы понимаете, не желтая пресса, а серьезное американское агентство. Однако настораживает ряд обстоятельств. Ни в одном другом новостном источнике, освещавшем тот саммит, информация про генератор Росси не появилась.

Многочисленные хайтековские порталы и издания в США, Европе, Японии, охочие до всего нового, не перепечатали и не прокомментировали эту новость. Как правило, в случае, если источник подтвержден, и у них есть собственная информация, такие перепечатки обязательно имеют место. Тем более, про изобретение, которое кардинально меняет судьбу планеты. Более того, само агентство снабдило нашумевшую статью о пекинском саммите на своем сайте предупреждающей надписью «notverifiedbyCNN». Не проверено CNN. Автор — не штатный сотрудник агентства, а журналист со стороны, Джо Ши, несколько лет уже пишущий в американских СМИ о холодном ядерном синтезе. Это уже добавили в Рунете. Понятно, что появление сенсации с пекинского саммита о наличии дешевого источника энергии порождает в умах инвесторов и спекулянтов стремление как можно скорее «сбросить» свои нефтяные активы, не дожидаясь, когда энергии станет много и почти даром.

Характерно, что весной, когда была начата атака на «черное золото» через манипуляции с «бумажной нефтью», американская компания Локхид и американские же ученые из университета в Сиэтле заявили, что они — привет Росси!

Каждый год более подробно становятся проблемы эти ясны. Да потому, что за этим ИТЭРом находятся люди, которые всю жизнь бубнили об этом, а толку никакого». Тем временем реализовать подобные проекты — причем значительно дешевле — пытается и частный бизнес. Согласно данным Ассоциации индустрии синтеза FIA , 33 частных компании привлекли в этом секторе в 2022 году 2,8 млрд долларов частных инвестиций. Альтернативные проекты строятся не на принципе так называемого токамака, как в случае ИТЭР, и не на принципе лазерного сжатия, который отрабатывает калифорнийская Национальная лаборатория Лоуренса Ливермора. Есть идеи так называемых стеллараторов, которые позволяют длительное содержание плазмы без необходимости постоянного внешнего влияния, комбинированных систем магнитно-инерционного сжатия, где оба принципа совмещаются. И некоторые другие. Но все это иллюзии, уверен директор АНО «Атоминфо-центр» Александр Уваров: Александр Уваров директор АНО «Атоминфо-центр» «В термоядерной энергетике давно была шутка, что термоядерная энергетика была, есть и будет светлым будущим нашей энергетики.

Волны, действительно, возникают. Как правило, это совпадает с какими-то кризисными явлениями.

Газом дейтерием насыщают стержень, изготовленный из смеси оксидов палладия и циркония, подобно тому, как губку смачивают водой. При этом начинается реакция, при которой образуются ядра гелия и большое количество тепла. Реально стержень нагревается до 70 градусов по Цельсию, и вероятным источником тепла называют ядерную реакцию, которую ученые пытались ранее получить. Даже когда насыщение газом стержня прекращается, температура стержня остается на уровне 50 градусов, что экспериментаторы объясняют происходившими перед этим ядерными взаимодействиями. Как утверждает Акито Такахаши из университета Осаки, опыт легко повторяется в других лабораториях.

Считаю, что надо повторить опыт с бОльшим количеством материала, чтобы проверить, какое количество энергии может быть произведено с помощью такого метода. Эти исследования могут перевернуть всю систему производства энергии, потому что тепло можно будет производить без больших энергозатрат и в неограниченных количествах, извлекая его из ядер атомов, где его находится бесчисленное количество. Успехов любознательным и упорным японцам. Если Вы в кружку воды нальете серной кислоты, то там тоже термояд начинается?! КАк известно, обязательным условием термоядерной реакции является появление нейтронов , правда и это не гарантирует наличия термояда, но хотя бы что-то, и которые даже не искались. Эти эксперименты говорят только о толстом кошельке экспериментаторов и склонности японцев к специфической японской мистике.. Я повторял этот опыт в домашних условиях по подсказке на сайте macmep.

Там же есть раскладка полученного газа по составу по данным НАСА. Это условие определяет критерий Лоусона. И потом на рис. Может к сварочнику? При чем тут телевизор? При том, что вы есть то, во что вы верите! А верите вы в то, что говорят вам по телевизору, в институте и в школе, а затем повторяете.

А кто там говорит, что говорит и почему говорит так, а не иначе? Вот увидев, как машина едет на воде плохо едет, дергается, работает не стабильно, но едет , задаешься вопросом, почему об этом говорят только аматоры и любители? Дешевле, гораздо дешевле финансировать выпуски крупных тиражей спецлитературы определенной тематики, и поддерживать существующую дебило-систему образования, где неудачники преподаватели посмотрите внимательно на своих преподавателей будут втюхивать заказную лапшу и ставить двойки, за инакомыслие.

Российские физики рассказали о приручении термоядерного синтеза

В природе термоядерные реакции постоянно происходят на Солнце, но там плазму удерживает огромная гравитация звезды. Экспериментальная установка для термоядерных реакций в городе Хэфэй работала на протяжении 17 минут. Ученым удалось разогреть плазму до 70 миллионов градусов по Цельсию, что выше температуры Солнце примерно в пять раз. Токамак представляет собой устройство, которое может генерировать сильное магнитное поле.

Внутри «термоса» соберут реактор Криостат уже собирают. Тут, например, вы можете видеть окошко, через которое в реактор будут забрасывать частицы для нагрева плазмы Производство всего этого оборудования разделено между странами-участницами. Например, над частью бланкетов работают в России, над корпусом криостата — в Индии, над сегментами вакуумной камеры — в Европе и Корее. Но это отнюдь не быстрый процесс.

К тому же права на ошибку у конструкторов нет. Команда ITER сперва моделирует нагрузки и требования к элементам конструкции, их испытывают на стендах например, под воздействием плазменных пушек, как дивертор , улучшают и дорабатывают, собирают прототипы и опять тестируют перед тем, как выдать финальный элемент. Первый корпус тороидальной катушки. Первый из 18 гигантских магнитов. Одну половину сделали в Японии, другую — в Корее 18 гигантских магнитов D-образной формы, расставленные по кругу так, чтобы образовать непроницаемую магнитную стену. Внутри каждого из них заключены 134 витка сверхпроводящего кабеля Каждая такая катушка весит примерно 310 тонн Но одно дело собрать. И совсем другое — все это обслуживать.

Из-за высокого уровня радиации доступ к реактору заказан. Для его обслуживания разработано целое семейство роботизированных систем. Часть будет менять бланкеты и кассеты дивертора весом под 10 тонн , часть — управляться удаленно для устранения аварий, часть — базироваться в карманах вакуумной камеры с HD-камерами и лазерными сканерами для быстрой инспекции. И все это необходимо делать в вакууме, в узком пространстве, с высокой точностью и в четком взаимодействии со всеми системами. Задачка посложнее ремонта МКС. Причем это только часть оборудования самого реактора. Добавьте сюда здание криокомбината, где будут вырабатывать жидкий азот и гелий, здание выпрямителей магнитной системы с трансформаторами, трубопроводы системы охлаждения диаметром по 2 метра , систему сброса тепла с 10 вентиляторными градирнями и многое-многое другое.

На все это и идут миллиарды. Токамак ITER станет первым термоядерным реактором, который будет вырабатывать больше энергии, чем необходимо для нагрева самой плазмы. К тому же он сможет поддерживать ее в стабильном состоянии намного дольше ныне существующих установок. Ученые утверждают, что именно для этого и нужен столь масштабный проект. С помощью такого реактора специалисты собираются преодолеть разрыв между нынешними небольшими экспериментальными установками и термоядерными электростанциями будущего. Например, рекорд по термоядерной мощности был установлен в 1997 году на токамаке в Британии — 16 МВт при затраченных 24 МВт, тогда как ITER конструировали с прицелом на 500 МВт термоядерной мощности от 50 МВт вводимой тепловой энергии. На токамаке будут испытаны технологии нагрева, контроля, диагностики, криогеники и дистанционного обслуживания, то есть все методики, необходимые для промышленного образца термоядерного реактора.

Объемов мирового производства трития будет недостаточно для электростанций будущего. А потому на ITER отработают также технологию размножающегося бланкета, содержащего литий. Из него под действием термоядерных нейтронов и будут синтезировать тритий. Однако не стоит забывать, что это пускай и дорогой, но эксперимент. Токамак не будет оборудован турбинами или другими системами конвертации тепла в электричество. То есть коммерческого выхлопа в виде непосредственной генерации энергии не будет. Потому что это только усложнило бы проект с инженерной точки зрения и сделало бы его еще более дорогим.

Этот метод был назван управляемым термоядерным синтезом с инерционным удержанием, и спустя множество десятилетий работы его удалось воплотить в лабораторных условиях. Хольраум с топливом Чтобы выполнить термоядерное зажигание, капсулу с топливом поместили в хольраум — крошечную камеру, стенки которой превращают лазерное излучение в рентгеновские лучи. Эти лучи сжимают топливо до тех пор, пока оно не взорвётся, создавая плазму с крайне высокими температурой и давлением. Визуализация облучения топлива лазерными лучами, которые преобразуются в рентгеновские для запуска синтеза В рамках многолетних исследований в LLNL была построена серия все более мощных лазерных систем, что привело к созданию NIF — крупнейшей и самой мощной лазерной системы в мире. NIF имеет размер спортивного стадиона и использует мощные лазерные лучи для создания температур и давлений, подобных тем, которые возникают в ядрах звезд и планет-гигантов. Конечно, до момента, когда термоядерная энергетика станет обыденностью, пройдёт ещё немало времени, и для этого потребуется провести ещё массу исследований.

Кстати, Мартин Флейшман и Стэнли Понс признавали приоритет группы Бориса Дерягина в получении реакций холодного ядерного синтеза, полученных при раскалывании дейтерированного льда в 1986 году. Но обо всём по порядку. Для начала попробуем разобраться, почему же «группе Google» не удалось запустить холодный ядерный синтез при использовании трёх, казалось бы, классических способов, которые были неоднократно воспроизведены за прошедшие 30 лет и основные условия воспроизводимости результатов для которых были давно установлены. За разъяснением причин этого мы обратились к известному российскому исследователю холодного ядерного синтеза ведущему технологу Института геологии и минералогии СО РАН имени академика В. Соболева, доктору геолого-минералогических наук, член-корреспонденту РАЕН Виталию Алексеевичу Киркинскому о результатах собственных многолетних исследований В. Этот метод можно использовать, если интенсивность ядерных реакций — высокая, на несколько порядков выше, чем при обнаружении продуктов синтеза. Достижение такой интенсивности — значительно более сложная задача.

Мартин Флейшман и Стэнли Понс и большинство их последователей при калориметрических измерениях не всегда получали положительные результаты. Выход избыточной энергии происходил спорадически и зависел, в частности, от используемого палладия, поставляемого разными фирмами. Как было выяснено позже, положительное влияние на выход тепла оказывает присутствие некоторых примесей, например бора, и ряд других факторов. Даже при благоприятных условиях при работе с катодами малой площади интегральный коэффициент преобразования энергии был мал, что требовало высокой точности измерений. В ряде экспериментов, проведенных квалифицированными электрохимиками, в растворах на основе тяжелой воды наблюдались всплески нейтронного излучения и выделение избыточной энергии мощностью до нескольких ватт, в то время как в совершенно аналогичных условиях при использовании растворов с обычной водой никакого дополнительного тепловыделения не происходило. Ни в одном из проверочных опытов в статье в Nature не определялся гелий и его изотопный состав — непосредственный продукт ядерного синтеза. Было надежно подтверждено выделение избыточного тепла и его корреляция с выходом трития и гелия.

О холодном синтезе... афёра, но для чего?

в направлении коммерческого применения холодного синтеза, самые сенсационные новости об этой технологии пришли из Америки. Реакции термоядерного синтеза позволяют получать энергию без радиоактивных отходов и оставления углеродного следа. Холо́дный я́дерный си́нтез — предполагаемая возможность осуществления ядерной реакции синтеза в химических (атомно-молекулярных). Холодный термоядерный синтез признали официально. Если учёным действительно удалось провести реакцию ядерного синтеза с указанными выше условиями, это сулит революцию в энергетике.

Холодный ядерный синтез — научная сенсация или фарс?

Новый атомный проект России – холодный ядерный синтез? объяснения поддерживали в новостях то, что называлось "холодным термоядерным синтезом" или "путаницей термоядерного синтеза".[32. Успешное осуществление реакций холодного термоядерного синтеза повлечет за собой переворот в энергетике и геополитические изменения в мире, но все притязания на успешную реализацию этих реакций пока представляли собой или ошибки экспериментов, или аферы. В термоядерном синтезе ядра разгоняются до высоких скоростей (в токамаках и в Солнце — из-за высокой температуры). Термоядерный синтез заработал, квантовые точки, клей для клеток, уранил из отходов | техно-новости. Реакции термоядерного синтеза возможны в случае экстремального нагрева атомов вплоть до 100 миллионов градусов по Цельсию, что приводит к их слиянию с побочным выделением большого количества энергии. объяснения поддерживали в новостях то, что называлось "холодным термоядерным синтезом" или "путаницей термоядерного синтеза".[32.

Украина. Генератор Росси. Термоядерный, холодный синтез. Теория, технология.

С создания компактной термоядерной бомбы в 1953 г. и до 90-х СССР был лидером в этой гонке, а США выступали в роли догоняющего. Новости о горячем синтезе теперь разрешено публиковать, потому что идет коммерциализация холодного синтеза. Однако, при всей невероятности и даже сомнительности холодного термоядерного синтеза, нельзя прятать голову в песок. О том, что значит переход к термоядерному синтезу для всего человечества, и что еще Россия готова сделать для того, чтобы новый реактор заработал как можно скорее? Представлены новые данные в пользу реальности холодного термоядерного синтеза – следы возникновения высокоэнергичных нейтронов при электролизе тяжёлой воды.

Что не так с «японским ученым» и его холодным термоядом

Эта бомбардировка приводит к радиации. А потому обслуживание реактора необходимо проводить удаленно. Забегая вперед, скажем, что после запуска непосредственным обслуживанием токамака ITER будут заниматься роботы. К тому же радиоактивный тритий может быть опасен при попадании в организм. Правда, достаточно будет позаботиться о его правильном хранении и создать барьеры безопасности на всех возможных путях его распространения в случае аварии. К тому же период полураспада трития — 12 лет. Когда необходимый минимальный фундамент теории заложен, можно перейти и к герою статьи.

До этого холодная война достигла своего пика: сверхдержавы бойкотировали Олимпиады, наращивали ядерный потенциал и на какие-либо переговоры идти не собирались. Этот саммит двух стран на нейтральной территории примечателен и другим важным обстоятельством. Спустя год между американскими, советскими, европейскими и японскими учеными было достигнуто соглашение по проекту, началась проработка концептуального дизайна крупного термоядерного комплекса ITER. Проработка инженерных деталей затянулась, США то выходили, то возвращались в проект, к нему со временем присоединились Китай, Южная Корея и Индия. Участники разделяли обязанности по финансированию и непосредственным работам, а в 2010 году наконец стартовала подготовка котлована под фундамент будущего комплекса. Его решили строить на юге Франции возле города Экс-ан-Прованс.

Так что же такое ITER? Это огромный научный эксперимент и амбициозный энергетический проект по строительству самого большого токамака в мире. Сооружение должно доказать возможность коммерческого использования термоядерного реактора, а также решить возникающие физические и технологические проблемы на этом пути. Из чего состоит реактор ITER? Токамак — это тороидальная вакуумная камера с магнитными катушками и криостатом массой в 23 тыс. Как уже понятно из определения, у нас есть камера.

Глубокая вакуумная камера. В случае с ITER это будет 850 кубометров свободного объема камеры, в котором на старте будет всего 0,1 грамма смеси дейтерия и трития. Вакуумная камера, где и обитает плазма. Инжектор нейтрального луча и радиочастотный нагрев плазмы до 150 млн градусов. Сверхпроводящие магниты, которые обуздают плазму. Бланкеты, защищающие камеру и магниты от бомбардировки нейтронами и нагрева.

Дивертор, который отводит тепло и продукты термоядерной реакции. Инструменты диагностики для изучения физики плазмы. Включают манометры и нейтронные камеры. Криостат — огромный термос с глубоким вакуумом, который защищает от нагрева магниты и вакуумную камеру А вот так выглядит «маленькая» вакуумная камера с моделями работников внутри. Она 11,4 метра в высоту, а вместе с бланкетами и дивертором будет весить 8,5 тыс. Внутри них циркулирует вода.

Вырывающиеся из плазмы свободные нейтроны попадают в эти бланкеты и тормозятся водой.

В этом плане УТС гораздо безопаснее классической атомной энергетики, где реакция как раз является цепной и угрожает загрязнением обширных площадей. Чем еще хорош термоядерный синтез Высокая энергоэффективность и относительная безопасность — далеко не все плюсы. Есть как минимум еще четыре : Отсутствие эмиссии парниковых газов. Возможность размещения станции вблизи населенных пунктов из-за отсутствия выделяемых в окружающую среду вредных веществ.

Практически неограниченные запасы топлива. Например, изотоп водорода дейтерий легко получается из обычной воды, да и требуется его немного. К тому же термоядерный синтез лишен всех недостатков классической атомной энергетики. Так, первое теоретическое обоснование в своих работах дал Лаврентьев 1950 , чуть позже с аналогичными трудами выступил Спицер из США 1951. Первый токамак , ТМП, был сконструирован в 1958 году в Курчатовском институте.

По расчетам, его мощность будет в 30 раз выше аналогичного показателя у JET. ИТЭР был согласован в 1992 году, строительство началось в 2010-ом. Экспериментальный реактор выполнен, как и JET, по типу «токамак».

Ученые предпринимают множество попыток получить результат, но безуспешно. Вообще, когда физики говорят про так называемый холодный синтез, они вспоминают опыт Мартина Флейшмана и Стенли Понса, проведенный в 1989 году, когда ученым удалось запустить реакцию синтеза при комнатной температуре в обыкновенной кружке. Позже эти же ученые не смогли повторить этот опыт и полученные ранее результаты были объявлены ошибочными. Технически все происходило следующим образом. Газом дейтерием насыщают стержень, изготовленный из смеси оксидов палладия и циркония, подобно тому, как губку смачивают водой. При этом начинается реакция, при которой образуются ядра гелия и большое количество тепла. Реально стержень нагревается до 70 градусов по Цельсию, и вероятным источником тепла называют ядерную реакцию, которую ученые пытались ранее получить. Даже когда насыщение газом стержня прекращается, температура стержня остается на уровне 50 градусов, что экспериментаторы объясняют происходившими перед этим ядерными взаимодействиями. Как утверждает Акито Такахаши из университета Осаки, опыт легко повторяется в других лабораториях. Считаю, что надо повторить опыт с бОльшим количеством материала, чтобы проверить, какое количество энергии может быть произведено с помощью такого метода. Эти исследования могут перевернуть всю систему производства энергии, потому что тепло можно будет производить без больших энергозатрат и в неограниченных количествах, извлекая его из ядер атомов, где его находится бесчисленное количество. Успехов любознательным и упорным японцам. Если Вы в кружку воды нальете серной кислоты, то там тоже термояд начинается?! КАк известно, обязательным условием термоядерной реакции является появление нейтронов , правда и это не гарантирует наличия термояда, но хотя бы что-то, и которые даже не искались. Эти эксперименты говорят только о толстом кошельке экспериментаторов и склонности японцев к специфической японской мистике.. Я повторял этот опыт в домашних условиях по подсказке на сайте macmep. Там же есть раскладка полученного газа по составу по данным НАСА. Это условие определяет критерий Лоусона. И потом на рис. Может к сварочнику? При чем тут телевизор? При том, что вы есть то, во что вы верите!

То есть на выходе оказалось более чем в полтора раза больше энергии, чем было затрачено. Термоядерный синтез — это реакция, при которой два лёгких атомных ядра объединяются в одно более тяжелое, при этом генерируя большой объём энергии. То же самое происходит внутри звёзд. Американские учёные ещё в 60-е годы прошлого века предположили, что для запуска реакции синтеза можно использовать лазеры, с помощью которых получится создать огромное давление и температуру, необходимые для запуска реакции. Этот метод был назван управляемым термоядерным синтезом с инерционным удержанием, и спустя множество десятилетий работы его удалось воплотить в лабораторных условиях. Хольраум с топливом Чтобы выполнить термоядерное зажигание, капсулу с топливом поместили в хольраум — крошечную камеру, стенки которой превращают лазерное излучение в рентгеновские лучи.

Что такое Холодный ядерный синтез?

Большинство статей на сайтах принадлежат одному автору, украинскому журналисту. Лейтмотив - генератор Росси покончит вот-вот с нефтью и газом, развалит экономику России. И многие поверили, судя по откликам, перепостам! Однако я бы поостереглась назвать тему холодного ядерного синтеза и даже генератора Росси чистой воды блефом. Холодным он называется потому, что предусматривает выделение огромной энергии при низких температурах. Однако, как показывает история науки, сами по себе теории — лишь человеческие суждения, которые делаются исходя из ограниченного набора различного рода экспериментов и сведений об окружающем мире. Объем сведений увеличивается. Проводятся новые эксперименты.

И очень часто оказывается, что уже открытые физические законы являются не всеобщими, а относятся к какой-то ограниченной сфере. Так, например, получилось с Ньютоном и его механикой. Квантовая механика, которую открыли в ХХ веке, не отменила законов Ньютона, но ограничила их действия. Так что не надо быть великим физиком, чтобы обладать здравым смыслом. А здравый смысл подсказывает, что наше сегодняшнее физическое, химическое и любое другое знание ограничено. То, что не соответствует современным канонам, не означает, что этого не может быть в принципе. История науки и технологий полна примеров, когда что-то изобреталось и действовало, а уж потом под некую экспериментальную установку подводилась теория.

Постепенно она встраивалась в здание науки и становилась истиной. В случае генератора Росси есть много аргументов «против». И связаны они отнюдь не с физикой, а с весьма своеобразной репутацией самого автора открытия. Росси не раз уже был уличен в недобросовестности и деловом мошенничестве. Однако жизнь - сложная штука. Не все гении праведники, а таланты - образцы добродетели. Есть несколько обстоятельств, не вписывающихся в концепцию чистого блефа, применительно к генератору Росси, реализующему принципы холодного ядерного синтеза.

В октябре опубликовано заключение ученых о работе генератора Росси: необъяснимые эффекты, связанные с получением дешевой энергии, реально присутствуют. Важно, что документ подписали люди, безупречные с точки зрения научной и человеческой репутации. В их числе председатель комитета по энергетике Шведской королевской академии наук Свен Кулландер и президент шведского Общества ученых-скептиков Ханно Эссен. Это Общество — аналог знаменитой Комиссии по борьбе с лженаукой Российской Академии наук. Так что эта подпись дорогого стоит. Но и это еще не все.

В их числе председатель комитета по энергетике Шведской королевской академии наук Свен Кулландер и президент шведского Общества ученых-скептиков Ханно Эссен. Это Общество — аналог знаменитой Комиссии по борьбе с лженаукой Российской Академии наук. Так что эта подпись дорогого стоит. Но и это еще не все. Нобелевский лауреат по физике Брайан Джозефсон, профессор Кембриджа, написал: «Что бы ни было в чёрном ящике, но если он эффективно работает - этого достаточно, понимание и теоретическая база могут появиться позже». Так что даже в случае, если генератор Росси и другие подобные приборы, о которых время от времени объявляется в печати, действительно работают, до использования холодного термоядерного синтеза в повседневной жизни и бизнесе предстоит сделать еще чрезвычайно много. В любых смыслах - начиная от времени, заканчивая ресурсами. Так что завтра-послезавтра никакой дешевой энергии, заменяющей нефть и газ, не будет. Есть еще два обстоятельства, затрудняющие промышленное применение подобных нетрадиционных источников энергии. С одной стороны - мощнейшее лобби нефтяных и иных энергетических компаний по всему миру. Не секрет, что транснациональные нефтяные корпорации влияют на политику многих стран мира. Второе обстоятельство: с 50-х годов США и СССР вбухали многие миллиарды рублей и долларов в так называемый «традиционный термоядерный синтез». Построены гигантские ускорители. Израсходовано немереное количество денег на эксперименты. Состоялись научные карьеры. Получены нобелевские и иные премии и т. Официальный термояд стал одним из главных коммерческих двигателей современной физики. Однако прошло уже почти 70 лет, а ни одной действующей полноценной термоядерной установки, пригодной для получения энергии, до сих пор не создано. Не говоря уже об установках для промышленного применения. Это не значит, что такие установки не могут быть созданы вообще. Никому не дано знать будущее. Но само по себе появление дешевого холодного термояда сегодня рушит не только научные теории, но и вполне конкретный бизнес серьезных структур и карьеры многих авторитетных ученых. А это штука посильнее, чем поиск научной истины. Чтобы мир поверил в холодный термояд, не хватит заключения отдельных ученых, какой бы безупречной репутацией они ни обладали. Только когда реально появится чемоданчик, дающий энергии столько же, сколько средняя ГЭС, придется смириться с немыслимым. Однако, при всей невероятности и даже сомнительности холодного термоядерного синтеза, нельзя прятать голову в песок. Отрицание чего-либо, исходя из принципа невыгодности чего-то для кого-то, может дорого обойтись и отдельным ученым и корпорациям и даже целым странам. В этой связи хочу рассказать о великом советском ядерщике, военном конструкторе и физике Иване Степановиче Филимоненко.

Разумеется, никакое вещество не способно выдержать подобного жара, поэтому основная задача, над которой сегодня бьются ученые — удержание плазмы как можно дальше от стенок реактора, чтобы они не расплавились. Насколько это опасно Эксперты Курчатовского института замечают , что термоядерный синтез не является цепной реакцией. То есть при нарушениях в работе установки процесс попросту остановится. Максимум, какая опасность поджидает обслуживающий персонал и окружающих — расплавление токамака установки удержания плазмы с помощью мощных магнитов. В этом плане УТС гораздо безопаснее классической атомной энергетики, где реакция как раз является цепной и угрожает загрязнением обширных площадей. Чем еще хорош термоядерный синтез Высокая энергоэффективность и относительная безопасность — далеко не все плюсы. Есть как минимум еще четыре : Отсутствие эмиссии парниковых газов. Возможность размещения станции вблизи населенных пунктов из-за отсутствия выделяемых в окружающую среду вредных веществ. Практически неограниченные запасы топлива. Например, изотоп водорода дейтерий легко получается из обычной воды, да и требуется его немного. К тому же термоядерный синтез лишен всех недостатков классической атомной энергетики. Так, первое теоретическое обоснование в своих работах дал Лаврентьев 1950 , чуть позже с аналогичными трудами выступил Спицер из США 1951.

Американские учёные ещё в 60-е годы прошлого века предположили, что для запуска реакции синтеза можно использовать лазеры, с помощью которых получится создать огромное давление и температуру, необходимые для запуска реакции. Этот метод был назван управляемым термоядерным синтезом с инерционным удержанием, и спустя множество десятилетий работы его удалось воплотить в лабораторных условиях. Хольраум с топливом Чтобы выполнить термоядерное зажигание, капсулу с топливом поместили в хольраум — крошечную камеру, стенки которой превращают лазерное излучение в рентгеновские лучи. Эти лучи сжимают топливо до тех пор, пока оно не взорвётся, создавая плазму с крайне высокими температурой и давлением. Визуализация облучения топлива лазерными лучами, которые преобразуются в рентгеновские для запуска синтеза В рамках многолетних исследований в LLNL была построена серия все более мощных лазерных систем, что привело к созданию NIF — крупнейшей и самой мощной лазерной системы в мире. NIF имеет размер спортивного стадиона и использует мощные лазерные лучи для создания температур и давлений, подобных тем, которые возникают в ядрах звезд и планет-гигантов.

Холодный синтез: самое известное физическое мошенничество

Термоядерная мощь: насколько люди близки к созданию неисчерпаемого источника энергии Управляемый термоядерный синтез — голубая мечта физиков и энергетических компаний, которую они лелеют не одно десятилетие.
Российский ученый раскрыл секреты искусственного солнца, которое зажгли в Китае Цель ИТЭР — доказать возможность использования термоядерного синтеза в качестве экологически чистого, безопасного и практически неисчерпаемого источника энергии.
Холодный синтез: миф и реальность Почему научные группы, финансируемые Google и фондами США и Канады, не смогли получить реакции холодного ядерного синтеза ни одним из известных способов.
Проект Google не смог обнаружить холодный ядерный синтез За одну реакцию термоядерного синтеза длительностью 5 секунд было получено 69 МДж энергии.
Учёным удалось получить полезную энергию в термоядерной реакции / Хабр Авторам во всех случаях не удалось найти каких-либо свидетельств протекания холодной термоядерной реакции, но они осторожны в формулировках и не утверждают, что полностью исключили их возможность.

Похожие новости:

Оцените статью
Добавить комментарий