На рисунке изображен график функции y=f(x). 10. На рисунке изображен график функции f (x) = ax+b. На рисунке изображён график функции вида f(x)=ax^2+bx+c, где числа a, b и c — целые. На рисунке изображён график функции $y=f(x)$ и касательная к нему в точке с абсциссой $x_0$. Задание №1. На рисунке изображены график функции y = f(x) и касательная к нему в точке с абсциссой x0.
На рисунке изображён график функции вида f(x)=|ax-b|, где a и b - целые числа
Пользуясь рисунком, поставьте в соответствие каждому из указанных периодов времени характеристику продаж холодильников. Анализировать следует характеристики 1—4 правая колонка , находя для каждой из них соответствие в виде временного периода левая колонка. Решение: Анализируем характеристики: Меньше всего холодильников продано в начале и в конце года. Поэтому рассмотрим периоды январь—март и октябрь—декабрь. Значит, здесь подходит все-таки последний период.
Ответ: Г—1. Длительный рост продаж наблюдался с апреля по июль. Это время охватывает полностью период апрель—июнь и захватывает начало следующего. Поэтому получаем: Б—2.
Тут тоже требуется найти сумму проданных единиц за целые периоды. Для 1-го и последнего периода она уже найдена см. К требуемым 800 холодильникам максимально приближен объем продаж в январе—марте. Поэтому имеем: А—3.
Одинаковое падение объема продаж означает, что разница между кол-вом проданных холодильников должна быть одинаковой. Падение продаж наблюдалось, начиная с конца июля. Ответ: В—4. По горизонтали указывается год, по вертикали — объем добычи угля в миллионах тонн.
Для наглядности точки соединены линиями. Пользуясь рисунком, поставьте в соответствие каждому из указанных периодов характеристику добычи угля в этот период. Анализируем по очереди приведенные в правом столбце характеристики, используя данный график. Определяем соответствие каждой из них конкретного временного периода.
Решение: Анализируем характеристики: Объем добычи меньше 190 млн т приходился на период с 2001 года по 2005 год. Затем спад добычи зафиксирован в 2009 году, но один год не составляет периода. Поэтому получаем ответ: А—1. Такая формулировка «объем… сначала уменьшался, а затем начал расти» соответствует 2 периодам — 2002—2003 гг.
Но так как первый из этих периодов уже взят в качестве ответа, то правильно здесь использовать пару Г—2. Ситуация, описанная в 3-й характеристике, наиболее точно отображена в периоде 2006—2008 гг. Именно в это время добыча сначала понемногу увеличивалась примерно с 190 млн т до 210 , а потом резко возросла до 250 млн т. Медленный рост следует искать в период, когда линия графика имеет наиболее пологий вид.
Это: 2004—2006 год, что соответствует периоду Б, то есть получаем: Б—4. На горизонтальной оси отмечено время в минутах, прошедшее с момента запуска двигателя, на вертикальной оси — температура двигателя в градусах Цельсия. Пользуясь графиком, поставьте в соответствие каждому интервалу времени характеристику температуры. Решение: Выше 600 температура была с 4-й по 7-ю минуту.
Поэтому здесь нужно взять интервал 4—6 мин. Получаем: В—1. Температура падала только после 7-й минуты. Соответственно, тут подходит интервал 7—9 мин.
Ответ: Г—2. Самый быстрый рост температуры происходил там, где график имеет наиболее «крутой» вертикальный подъем. Это имеет место только в 1-ю минуту нагревания.
Разбор прототипов задания 8 геометрический и физический смысл производной и первообразной из открытого банка задач ФИПИ от Школы Пифагора. Найдите количество точек, в которых производная функции f x равна 0. Задача 3 — 03:55 В скольких из этих точек производная функции f x положительна? Задача 4 — 05:09 Определите количество целых точек, в которых производная функции положительна. Задача 5 — 08:18 В скольких из этих точек производная функции f x положительна?
Задача 6 — 09:53 В скольких из этих точек производная функции f x отрицательна?
Поэтому выбираем ответ 4. Способ 2. Из рисунков видно, что единственная прямая, которая проходит через эту точку, это прямая в пункте 4. Ответ: 4 График какой из приведенных ниже функций изображен на рисунке? Следовательно, выбор стоит между 3 и 4 пунктами.
Задача 5 — 08:18 В скольких из этих точек производная функции f x положительна? Задача 6 — 09:53 В скольких из этих точек производная функции f x отрицательна? Определите количество целых точек, в которых производная функции отрицательна. Задача 8 — 12:55 Сколько из этих точек лежит на промежутках возрастания функции f x? Задача 9 — 14:15 Сколько из этих точек лежит на промежутках убывания функции f x? Задача 10 — 15:40 Найдите количество точек экстремума функции f x , принадлежащих отрезку [-17;-4].
Редактирование задачи
Найдите количество точек, в которых производная функции f x равна 0. Задача 3 — 03:55 В скольких из этих точек производная функции f x положительна? Задача 4 — 05:09 Определите количество целых точек, в которых производная функции положительна. Задача 5 — 08:18 В скольких из этих точек производная функции f x положительна?
Задача 6 — 09:53 В скольких из этих точек производная функции f x отрицательна? Определите количество целых точек, в которых производная функции отрицательна.
Поэтому нам остается только посчитать количество таких «вершин» и «впадин». На рисунке они отмечены красными точками. Всего их 5 штук. В скольких из этих точек производная функции отрицательна? График функции Производная отрицательна тогда, когда функция убывает график идет вниз. Найдите количество точек экстремума функции.
График функции Экстремумы - это точки минимума и максимума функции «вершины» и «впадины». На рисунке я их отметил красными точками.
На рисунке выделены такие точки, где график производной меняет знак с минуса на плюс — в этих точках будет минимум. Красными линиями выделены границы исследования графика, указанные в условии задачи — [-8; 5]. Как видим, точек минимума функции всего две.
Графиком функции является парабола. Это, действительно, она и есть, потому что квадратный корень является обратной функцией для квадратичной функции. Задания на соответствие графика и формулы функции. Задания на соответствие графика и формулы функции легче и быстрее решаются с использованием свойств изученных функций, о которых было написано выше. Если график функции в задании изображен на клеточках, и указан масштаб координатных осей, то возможен второй способ решения, который я условно называю "по единичке". Сравниваем отметки на графиках с вычислениями по формулам и делаем выводы. К сожалению, этот способ работает не всегда. Поэтому способ "по единичке" я рекомендую для проверки ответа или выбора из двух сомнительных вариантов.
ЕГЭ профильный уровень. №11 Парабола. Задача 31
Решение задачи 7. Вариант 340. 30.01.2021 31.01.2021 admin 0 Комментариев. На рисунке изображен график функции f(x)=5-|x+1|-|x-2|Пользуясь рисунком вычислите F(3) – F(‐1), где F(x) – некоторая первообразная f(x). по графику функции, изображенному на рисунке. Решение: Графиком данной функции является гипербола. № 23 На рисунке изображены графики функций вида y=ax2 +bx+c. Решение задачи 7. Вариант 340. 30.01.2021 31.01.2021 admin 0 Комментариев. На рисунке изображен график функции f(x)=5-|x+1|-|x-2|Пользуясь рисунком вычислите F(3) – F(‐1), где F(x) – некоторая первообразная f(x). На рисунке изображён график функции f(x)=kx+b.
Графики функций. Подготовка к ГИА
Как видим, точек минимума функции всего две. Ответ: 2.
Решение: Так как на картинке изображена производная, то ясно, что точки минимума и максимума функции могут быть только в точках-нулях производной. При этом максимум понимается так — если график производной при переходе через ось Ox меняет знак с минуса на плюс, то у функции в точке перехода графика производной будет минимум, если наоборот — то максимум. На рисунке выделены такие точки, где график производной меняет знак с минуса на плюс — в этих точках будет минимум.
Найдите a. Найдите f 15. Найдите ab.
На рисунке изображен график функции f x , определенной на интервале -5;5. Найдите количество точек, в которых производная функции f x равна 0. В скольких из этих точек производная функции f x положительна? В скольких из этих точек производная функции f x отрицательна? На оси абсцисс отмечены восемь точек: x1, x2, x3, x4, x5, x6, x7, x8.
ЕГЭ профильный уровень. №11 Парабола. Задача 31
Подготовка к ОГЭ (ГИА) | по графику функции, изображенному на рисунке. Решение: Графиком данной функции является гипербола. |
Исследование графиков функции при помощи производной | Задачи 11 ОГЭ графики функций. |
Редактирование задачи
ЕГЭ 2024 по математике профильного уровня За это задание ты можешь получить 1 балл. На решение дается около 5 минут. Уровень сложности: повышенный. Средний процент выполнения: 86. В какой из этих точек значение производной наибольшее?
Задача 6 — 09:53 В скольких из этих точек производная функции f x отрицательна? Определите количество целых точек, в которых производная функции отрицательна.
Задача 8 — 12:55 Сколько из этих точек лежит на промежутках возрастания функции f x? Задача 9 — 14:15 Сколько из этих точек лежит на промежутках убывания функции f x? Задача 10 — 15:40 Найдите количество точек экстремума функции f x , принадлежащих отрезку [-17;-4]. Задача 11 — 17:20 Найдите точку экстремума функции f x , принадлежащую отрезку [1;6]. Найдите точку минимума функции f x.
Способ 2. Из рисунков видно, что единственная прямая, которая проходит через эту точку, это прямая в пункте 4. Ответ: 4 График какой из приведенных ниже функций изображен на рисунке? Следовательно, выбор стоит между 3 и 4 пунктами.
Так же, как на данном рисунке.
Задания на соответствие графика и формулы функции легче и быстрее решаются с использованием свойств изученных функций, о которых было написано выше. Если график функции в задании изображен на клеточках, и указан масштаб координатных осей, то возможен второй способ решения, который я условно называю "по единичке". Сравниваем отметки на графиках с вычислениями по формулам и делаем выводы.
К сожалению, этот способ работает не всегда. Поэтому способ "по единичке" я рекомендую для проверки ответа или выбора из двух сомнительных вариантов. Задачи, в которых приведены графики функций разных типов, я считаю самыми лёгкими в этом задании. Давайте рассмотрим несколько примеров, и вы в этом убедитесь.
Задача 1.
Задание №306
Example На рисунке изображен график y=f(x) — производной функции y=f′(x), определенной на интервале f(x). Найдите промежутки убывания функции (−12;2). В ответе укажите длину наибольшего из них. На рисунке изображён график некоторой функции y = f(x). На рисунке изображён график некоторой функции y = f(x).
7. Анализ функций
На рисунках изображены графики функций вида. по графику функции, изображенному на рисунке. Решение: Графиком данной функции является гипербола. Какие из следующих утверждений о данной функции неверны? Дана функция у = ах2 + bх + с. На каком рисунке изображен график этой функции, если известно, что а > 0 и квадратный трехчлен ах2 + bх + с имеет два положительных корня? Решение задачи 7. Вариант 340. 30.01.2021 31.01.2021 admin 0 Комментариев. На рисунке изображен график функции f(x)=5-|x+1|-|x-2|Пользуясь рисунком вычислите F(3) – F(‐1), где F(x) – некоторая первообразная f(x). На рисунке изображен график f x cos AX-B.
Подготовка к ОГЭ (ГИА)
На рисунке изображены графики функций вида у = kх + b. Установите соответствие между знаками коэффициентов kи b и графиками. На рисунке изображен график некоторой функции y = f(x). Пользуясь рисунком, вычислите F9-F3, где F(x) одна из первообразных функции f(x). Таким образом, мы нашли формулу функции, чей график изображен на рисунке. Задача 18 – 35:25 На рисунке изображены график функции y=f(x) и касательная к нему в точке с абсциссой x_0.
Графики функций. Подготовка к ГИА
На рисунке изображен график функции y=f(x). Задать свой вопрос *более 50 000 пользователей получили ответ на «Решим всё». Задача 4717 На рисунке изображен график функции y. 3. На рисунках изображены графики функций вида = 2 + +. Установите соответствие между знаками коэффициентов a и c и. № 23 На рисунке изображены графики функций вида y=ax2 +bx+c.