Новости индекс джини по странам

Индекс Джини, равный 0%, выражает полное равенство, а индекс 100% выражает максимальное неравенство. Индекс Джини – это то же самое, что и коэффициент Джини, только переведенное в проценты. Индекс Джини: коэффициент Джини выраженный в процентах (то есть коэффициент Джини умноженный на 100%). Ниже этого уровня индекс Джини в России был только в 2005 году (0,409). Индекс Джини, количественное представление кривой Лоренца страны.

Размер богатства и имущественного неравенства по странам мира — UBS, 2023

О чьих доходах идет речь, остается неизвестным, т. Недостатки коэффициента Джини Как и все статистические показатели, Gini coefficient не может дать полноценную объективную оценку картины неравенства доходов. Коэффициент имеет следующие минусы: Распределение совокупностей по группам производится без описания этих группировок. Неизвестно, на какие именно составляющие, значения поделена совокупность. Коэффициент «подается» без этих описаний. И чем больше таких групп, тем выше его значение.

Gini coefficien «опускает» источник доходов для страны региона и т. По факту его значение может быть низким. В то же время часть граждан зарабатывает деньги тяжелым «каторжным» трудом, а часть — получает доход от собственности. Таким образом они получают 5-процентный доход, которые большинство граждан зарабатывают своим трудом. Для расчета Gini coefficien требуются определенные данные по статистике.

Но методы, применяемые для их сбора, различны. Это значительно усложняет процесс сопоставления коэффициентов, а подчас делает это невозможным. Несоответствия при применении Gini coefficien в плановой экономике, где материальные ресурсы принадлежат государству обществу , распределяются централизованно. Поскольку Джини принимает к учету лишь разницу доходов населения, а не государства общества , то именно в плановой экономике его значение может быть некорректным, более положительным. Gini coefficien и кривая Лоренца применяются только в отношении доходов граждан, выраженных в денежной форме.

А у победителей есть ответ: «Не «зачем? Посмотрите на индекс Джини». Так ли все просто? И когда ожидать, скажем, революции в США? Сначала пара фраз о самом показателе.

Его смысл улавливается с помощью графика. Одно из преимуществ индекса Джини — анонимность. Но в период предреволюционного брожения пропаганда работает на «перемывание косточек» конкретным людям: как и почему они обрели богатство, праведно ли его используют и т. Плюс срабатывает защитный принцип разделения властей на три контролирующие друг друга ветви. Реально эффективных ветвей обычно меньше.

Отсутствие доступа к образованию и здравоохранению усугубляет проблему. Страна В: На третьем месте расположена страна В. Эта страна также страдает от высокого уровня неравенства, вызванного недостатком социальных программ, несправедливым распределением ресурсов и ограниченным доступом к образованию. Страна Г: Четвертое место в рейтинге по индексу Джини занимает страна Г. Здесь проблемы с неравенством доходов связаны с национальными и социальными различиями, а также с недостаточной эффективностью системы налогообложения. Страна Д: Пятое место в рейтинге принадлежит стране Д. Низкий уровень социальной защиты, неравномерное распределение доходов и ограниченные возможности для развития приводят к высокому уровню неравенства в этой стране.

Страна Е: Шестое место в рейтинге занимает страна Е. Здесь проблемы с неравенством связаны с экономическими неравенствами между различными регионами страны, а также с недостатком социальных программ и ограниченным доступом к образованию. Страна Ж: На седьмом месте расположена страна Ж. В ней присутствуют проблемы с неравенство, вызванные общественными и политическими различиями, а также с ограниченным доступом к здравоохранению и социальной защите. Страна З: Восьмое место в рейтинге принадлежит стране З. Здесь факторы высокого уровня неравенства включают политическую нестабильность, ограниченные возможности для развития и ограниченный доступ к образованию. Страна И: Девятое место в рейтинге занимает страна И.

Высокий уровень неравенства обусловлен недостаточной защитой прав работников, низкой оплатой труда и ограниченными возможностями для социальной мобильности. Страна К: Десятое место в рейтинге принадлежит стране К. Здесь проблемы с неравенством обусловлены высокой концентрацией богатства в руках узкого круга людей, а также ограниченными возможностями для социальной защиты и развития. Топ-10 стран с самым высоким уровнем неравенства Индекс Джини, измеряющий уровень неравенства в обществе, помогает определить, насколько справедлива распределение доходов и богатства в различных странах мира.

В то время как большая часть населения страны работает на шахтах в Южной Африке, остальная часть населения занимается сельским хозяйством. Лесото является восьмой страной с самым неравным распределением доходов среди граждан с индексом Джини 54, 2. Белиз Белиз - независимая центральноамериканская нация. Белиз с населением всего 387 890 человек является одной из наименее населенных стран Центральной Америки. Благодаря живописному прибрежному региону в Белизе, жизненно важным источником дохода страны является туризм. Страна также экспортирует сельскохозяйственную продукцию, а также нефть и нефть.

Основная проблема страны - незаконный оборот наркотиков и финансовые преступления, такие как отмывание денег. В результате незаконных операций в Белизе, это одна из стран в черном списке США. Белиз имеет наиболее неравное распределение ресурсов, занимая девятое место в списке стран с неравным распределением доходов. Индекс Джини составляет 53, 3. Свазиленд Свазиленд является независимым государством в южном регионе Африки. Он считается развивающейся нацией. Свазиленд зависит от сельского хозяйства, большая часть населения работает на фермах. В стране также процветающий производственный сектор. В последние годы в стране наблюдается замедление экономического роста из-за продолжительной засухи, плохого сельскохозяйственного производства и чрезмерных государственных расходов. Свазиленд входит в число стран с наиболее неравным распределением доходов.

В списке стран с неравным распределением доходов Свазиленд занимает десятое место. Индекс Джини составляет 51, 5.

Как оценивается социальное неравенство

Итак, зная место своей страны по индексу Джини, можно понять, насколько эффективными оказываются меры для снижения неравенства и социальной справедливости в вашей стране. Это может стать отправной точкой для дальнейших размышлений и действий по изменению ситуации. Вопрос-ответ Какой индекс джини отражает? Индекс Джини отражает уровень неравенства доходов в стране. Чем ближе значение индекса к 1, тем выше неравенство в распределении доходов в стране. Какой рейтинг по индексу Джини ожидается в 2023 году? Прогнозы рейтинга стран по индексу Джини на 2023 год еще не опубликованы, так как рейтинг обычно рассчитывается на основе данных за предыдущие годы. Придется подождать соответствующего исследования или анализа экспертов, чтобы узнать ожидаемый рейтинг в 2023 году. Какие страны считаются с наиболее высоким уровнем неравенства по индексу Джини?

Это ни хорошо, ни плохо. Это просто факт. Но если вы знаете об этом, то это очень хорошо. Если нет, то это плохо. Почему же богатые становятся все богаче, а бедные — все беднее? Все очень просто.

Богатые используют деньги как инструмент для того, чтобы стать еще богаче. У бедных нет денег, и большинство из них тонет в трясине кредитов, что делает их еще беднее. Для этого, конечно, нужен пример. Предположим, что есть пять человек: Вася Пупкин капитал 20 рублей. Иван Иванов капитал 2 тысячи рублей. Средняков капитал 20 000 рублей.

Игорь Альфаинвестор капитал 2 000 000 рублей. Вагит Алекперов капитал 200 000 000 рублей. Прошел год. Вася и Иван, не имея средств к существованию, обеспечивали себя мелкой подработкой, мелким воровством и потребительскими кредитами. В результате Вася оказался должен банку 100 000 рублей, а Иван — 20 000 рублей. Средняков работал и продолжает работать.

Его зарплата была увеличена на величину инфляции, и в конце месяца его капитал составляет 22 000 рублей. С учетом инфляции он сохранил прежний уровень благосостояния, в отличие от Васи и Вани, которые взяли кредиты. Игорь и Вагит инвестировали свой капитал в акции и ETF. Оба получили хороший доход. Игорь получил больше в процентах от капитала. Этот пример показывает, как трудно бедным не становиться беднее и как легко богатым становиться богаче.

Даже ничего не делая, получая мизерные проценты на многомиллиардный капитал, вы все равно станете богаче за определенный период времени, чем человек с миллионом, создавший сверхприбыльную компанию и работающий как белка в колесе. В этом примере есть еще одна показательная фигура — Средняков. Это человек, живущий от зарплаты до зарплаты. Он не становится беднее, но и не становится богаче. Хотя он находится в ситуации, когда ему гораздо легче, чем Васе или Ивану, начать инвестировать, стремиться к жизни, в которой «деньги делают деньги, которые делают деньги, которые делают деньги, которые делают деньги, которые делают деньги, которые делают деньги, которые делают деньги…. С другой стороны, ему легче, чем Игорю или, тем более, Вагиту, оказаться в той ситуации, в которой оказались Вася и Иван.

Что бы человек ни делал, он все равно «увязает» в своем финансовом положении. А для среднего класса, живущего от зарплаты до зарплаты, их намерения играют ключевую роль. Почему и как бороться с неравенством Широко распространено мнение, что высокий уровень неравенства препятствует «подъему общества», тормозит экономическое развитие и угрожает социальной стабильности хотя это не доказано. Однако неоспоримым является тот факт, что экономическое неравенство порождает недовольство среди беднейших слоев общества. Очевидно, что правительства должны обратиться к этим группам и принять меры по борьбе с неравенством. Наиболее эффективными мерами являются: бесплатное медицинское обслуживание и образование; пособия для малообеспеченных групп населения; развитие инфраструктуры в селах дороги, электрификация, газификация и т.

Нужно ли нам бороться с неравенством?

Неравенство подрывает принципы справедливости и равенства возможностей, поэтому государственная политика должна направляться на создание более справедливого и инклюзивного общества для всех граждан. Вопрос-ответ Какой индекс используется для определения неравенства в странах? Для определения неравенства в странах используется индекс джини. В каком году составлен рейтинг самых неравных стран в мире? Рейтинг самых неравных стран в мире составлен на основе данных за 2023 год.

Какие страны входят в топ-10 самых неравных? В топ-10 самых неравных стран входят такие государства, как Бразилия, Южная Африка, Ботсвана, Лесото и другие. Индекс джини рассчитывается на основе соотношения доходов населения. Чем ближе индекс к единице, тем больше неравенство в стране.

А для этого нужно точно знать, как рассчитать коэффициент Джини и как использовать кривую Лоренца для формирования этих статистических показателей. Делается это следующим образом: Строится прямая Лоренца на основе собранных статистических данных. Затем рассчитывается коэффициент. Он берется, как отношение площади образованной фигуры к площади треугольника, отображающей прямую равенства. Фактически ищут 2 площади. Если они будут идентичны, то коэффициент Джини будет равен нулю и означать полное равенство между всеми группами населения. Если же площади будут максимально отличаться, то коэффициент неравенства составит 1. Это свидетельство полного дисбаланса между бедными и богатыми в обществе.

Список стран по равенству доходов - List of countries by income equality

В России используется метод деления на 20-процентные группы [2]. В данной статье приведены показатели коэффициента и индекса Джини — показателя, характеризующего дифференциацию населения России по доходам. Применение коэффициента Джини в России началось в 1990-х годах — в это время, как и позднее период экономического роста в 2000-е годы , он демонстрировал низкую эгалитарность равенство российского общества [2].

Коэффициент позволяет также определить процент роста или падения ВВП, темпы роста долгов граждан перед банками, возрастание поляризации в политике или уровня нищеты. Индекс не учитывает доходы от продажи услуг или продуктов собственного производства или выращивания, а также источники прибыли. Половина населения может получать заработную плату, находясь на официальной должности, а другая часть — от сданного жилья в аренду, процентов со счетов в банке и прочего. Индекс Джини не применяется для анализа государств, где действует плановая экономика, поскольку уровень дохода в таких странах априори не имеет большого разрыва между трудящимися, так как регулируется государством. Также этот коэффициент не является мерилом уровнем экономического развития и богатства страны.

Наоборот, беднейшие страны планеты могут иметь самый высокий индекс Джини! Иногда и бедные, и богатые страны могут иметь одинаковый показатель. В каждой стране, которая попала под исследование, индекс выведен в разные годы: к примеру, в Китае расчет проводился в 2016 году, а в России — в 2012.

The Gini coefficients of high- and low-income countries may be the same. In addition, the Gini coefficient may overestimate income disparity and be erroneous because of restrictions such as valid GDP and income statistics. To be fair, the Gini coefficient climbed to a record high of 65. The World Bank has compiled a list of the top 10 countries with the largest Gini coefficients percent : South Africa — 2014 — 63.

На основе индекса прожиточного минимума.

Росстат полагает, что бедность тем ниже в стране, чем ниже прожиточный минимум. Однако в этом есть только теоретическая логика. В то же время коэффициент Джини ведь растет, показывая реальное положение дел. В расчетах федеральных ведомств немало ошибок. Дело не в сознательном занижении инфляции, попытках «не увидеть» реальный рост цен или понизить показатели коэффициента Джини. Дело в большей степени состоит в проблемной выборке для статистической оценки. Так, например, индекс прожиточного минимума высчитывает Минтруд, который не учитывает полное изменение стоимости услуг по всей стране, что на выходе дает более красивую картину по прожиточному минимуму, а значит, население кажется менее бедным, чем есть на самом деле. В обзоре ВШЭ сказано, что Росстат тоже не безгрешен.

Он определяет инфляцию и прожиточный минимум на основе цен в городах и не учитывает стоимость товаров в несетевых магазинах в сельской местности. То же касается и услуг. Десятка богатых к десятке бедных Для определения неравенства используется еще так называемый децильный коэффициент. Этот показатель в России менялся за последнее десятилетие примерно в общей парадигме коэффициента Джини и тоже наглядно показывал разницу в доходах бедных и богатых. По данным Росстата, за последние десять лет наиболее низким децильный коэффициент оказался в 2017 году 15,3 , а самым высоким — в 2008-2010 годах 16,6. По другим оценкам, в истории современной России он в реальности мог достигать и 17. Нормально это или нет? В предвоенной царской России начала XX века, например, по расчетам профессора факультета социологии Санкт-Петербургского государственного университета Бориса Миронова, децильный коэффициент равнялся всего лишь 6,5.

Доверять Джини или нет: вот в чем вопрос

GINI INDEX The Gini index is also known as Gini coefficient. It is used to measure the inequality between the inhabitants of a region, by comparing their incomes. Согласно индексу Джини, который измеряет уровень неравенства распределения богатств в стране, страна занимает пятое место по уровню неравенства в мире. GINI — индекс Джини. >100k — доля взрослых (в процентах), состояние которых не менее $100 тыс. страна. Согласно индексу Джини, который измеряет степень доходового неравенства в стране, Бразилия занимает одно из первых мест в списке стран с самым высоким уровнем неравенства. Собрали рейтинг стран по качеству жизни, основанный на данных сайта Numbeo. Если говорить о другой стороне спектра, то самый большой Индекс Джини в странах Африки.

Gini Coefficient

Ниже этого уровня индекс Джини в России был только в 2005 году (0,409). Gini index measures the extent to which the distribution of income (or, in some cases, consumption expenditure) among individuals or households within an economy deviates from a perfectly equal distribution. A Lorenz curve plots the cumulative percentages of total income received against. World Development Indicators (WDI) is the primary World Bank collection of development indicators, compiled from officially recognized international sources. It presents the most current and accurate global development data available, and includes national, regional and global estimates. [Note: Even.

Gini Ranking 2023

If the Gini coefficient, also known as the GINI index or Gini ratio, is high, the difference between the wealthiest and poorest individuals in a nation. Коэффициент Джини (индекс концентрации доходов, индекс неравенства). В 2023 году был определен рейтинг стран по индексу джини, который отображает наиболее неравные страны в мире. всех стран мира представлены в таблицах по основным регионам мира а также флаги стран, изменения показателя на один период, дата и т.д. The average for 2020 based on 53 countries was 35.03 index points. The highest value was in Colombia: 53.5 index points and the lowest value was in Slovenia: 24 index points. The indicator is available from 1963 to 2022. Below is a chart for all countries where data are available.

Индекс революций

Список стран по равенству доходов - List of countries by income equality - Википедия Согласно индексу Джини, который измеряет уровень неравенства распределения богатств в стране, страна занимает пятое место по уровню неравенства в мире.
Algeria - GINI index (World Bank estimate) Индекс Джини • Отражает степень неравномерности распределения статей в журнале.

Коэффициент Джини (распределение дохода)

Для её построения необходимо иметь частотное распределение единиц исследуемой совокупности и взаимосвязанное с ним частотное распределение изучаемого признака. Так, например, в практике статистики при изучении дифференциации населения по доходам выделяют пять групп по степени их увеличения: первая — с наименьшими доходами, пятая — с наибольшими. Кривая Лоренца строится в прямоугольной системе координат. На оси абсцисс откладываются накопленные частоты объёма совокупности, а на оси ординат — накопленные частоты объёма признака.

For each of the 160 countries tracked in the GGEI, there is a measurement of both progress tracking and target verification that will offer stakeholders in the green economy a new way to understand how policies, investment, and activism can best ensure a real and just transition.

Continue reading below for much more detail on these changes, as well as a wide range of videos, data files, and other links to learn more about this new GGEI. You can learn more about this novel measurement approach in Chapter 3. The GGEI was the first green economy index, launched in 2010, and today is the most widely referenced product of its kind internationally, utilized by policymakers, international organizations, ESG investors, and companies to evaluate and understand linkages between country green economy performance and their own commercial or organizational agendas. Like many indices, the GGEI is used to benchmark performance, inform ESG investment strategy, communicate areas that need improvement, and educate diverse stakeholders how they too can promote progress.

The GGEI is also useful as the foundation for creating customized sustainability measurement frameworks for a diverse range of stakeholders. Learn more here about subscribing to the GGEI or leveraging our model to create bespoke sustainability frameworks. Is this change an improvement or a decline in performance? We also calculate its distance from globally accepted targets associated with emission reductions, SDGs and other environmental, social and governance goals.

For example, what are the efficiency improvements in sectors like buildings, transport and energy and how does this rate compare to what is required to keep on track to limit warming to 1,5 degrees Celsius? These two measurement components — the change in performance over time and the distance from global targets — offer new insight to market actors prioritizing ESG-aligned investment and commercial opportunities. The rate of change indicates green market momentum.

Алгебраическое представление. Как рассчитать эту метрику?

Она не равна своему родственнику из экономики. Известно, что коэффициент можно вычислить по следующей формуле: Прекрасно видно, что из графического представления метрик связь уловить невозможно, поэтому докажем равенство алгебраически. У меня получилось сделать это двумя способами — параметрически интегралами и непараметрически через статистику Вилкоксона-Манна-Уитни. Второй способ значительно проще и без многоэтажных дробей с двойными интегралами, поэтому детально остановимся именно на нем. Для дальнейшего рассмотрения доказательств определимся с терминологией: кумулятивная доля истинных классов — это не что иное, как True Positive Rate.

Кумулятивная доля объектов — это в свою очередь количество объектов в отранжированном ряду при масштабировании на интервал — соответственно доля объектов. Введём следующие обозначения: Параметрический метод При построении графика Lift Curve по оси мы откладывали долю объектов их количество предварительно отсортированных по убыванию. Таким образом, параметрическое уравнение для Коэффициента Джини будет выглядеть следующим образом: Подставив выражение 4 в выражение 1 для обеих моделей и преобразовав его, мы увидим, что в одну из частей можно будет подставить выражение 3 , что в итоге даст нам красивую формулу нормализованного Джини 2 Непараметрический метод При доказательстве я опирался на элементарные постулаты Теории Вероятностей. Известно, что численно значение AUC ROC равно статистике Вилкоксона-Манна-Уитни: Доказательство этой формулы можно, например, найти здесь Пусть модель прогнозирует возможных значений из множества , где и — какое-то вероятностное распределение, элементы которого принимают значения на интервале. Пусть множество значений, которые принимают объекты и.

Очевидно, что множества и могут пересекаться. Обозначим как вероятность того, что объект примет значение , и как вероятность того, что объект примет значение. Тогда и Имея априорную вероятность для каждого объекта выборки, можем записать формулу, определяющую вероятность того, что объект примет значение : Пример того, как могут выглядеть функции распределения для двух классов в задаче кредитного скоринга: На рисунке также показана статистика Колмогорова-Смирнова, которая также применяется для оценки моделей. Запишем формулу Вилкоксона в вероятностном виде и преобразуем её: Аналогичную формулу можем выписать для площади под Lift Curve помним, что она состоит из суммы двух площадей, одна из которых всегда равна 0. Практическое применение Как упоминалось в начале статьи, коэффициент Джини применяется для оценки моделей во многих сферах, в том числе в задачах банковского кредитования, страхования и целевом маркетинге.

И этому есть вполне разумное объяснение. Эта статья не ставит перед собой целью подробно остановиться на практическом применении статистики в той или иной области. На эту тему написаны многие книги, мы лишь кратко пробежимся по этой теме. Кредитный скоринг По всему миру банки ежедневно получают тысячи заявок на выдачу кредита. Разумеется, необходимо как-то оценивать риски того, что клиент может просто-напросто не вернуть кредит, поэтому разрабатываются предиктивные модели, оценивающие по признаковому пространству вероятность того, что клиент не выплатит кредит, и эти модели в первую очередь надо как-то оценивать и, если модель удачная, то выбирать оптимальный порог threshold вероятности.

Выбор оптимального порога определяется политикой банка. Задача анализа при подборе порога — минимизировать риск упущенной выгоды, связанной с отказом в выдаче кредита. Но чтобы выбирать порог, надо иметь качественную модель. Основные метрики качества в банковской сфере: Страхование В этой области всё аналогично банковской сфере, с той лишь разницей, что нам необходимо разделить клиентов на тех, кто подаст страховое требование и на тех, кто этого не сделает. Рассмотрим практический пример из этой области, в котором будет хорошо видна одна особенность Lift Curve — при сильно несбалансированных классах в целевой переменной кривая почти идеально совпадает с ROC-кривой.

Это было очень странное и в то же время невероятно познавательное соревнование. И с рекордным количеством участников — 5169. Porto Seguro — бразильская компания, специализирующаяся в области автострахования. Датасет состоял из 595207 строк в трейне, 892816 строк в тесте и 53 анонимизированных признаков. Напишем простенький бейзлайн, благо это делается в пару строк, и построим графики.

Коэффициент Джини победившей модели — 0.

With this edition, we retooled the methodological approach. For each of the 160 countries tracked in the GGEI, there is a measurement of both progress tracking and target verification that will offer stakeholders in the green economy a new way to understand how policies, investment, and activism can best ensure a real and just transition. Continue reading below for much more detail on these changes, as well as a wide range of videos, data files, and other links to learn more about this new GGEI. You can learn more about this novel measurement approach in Chapter 3.

The GGEI was the first green economy index, launched in 2010, and today is the most widely referenced product of its kind internationally, utilized by policymakers, international organizations, ESG investors, and companies to evaluate and understand linkages between country green economy performance and their own commercial or organizational agendas. Like many indices, the GGEI is used to benchmark performance, inform ESG investment strategy, communicate areas that need improvement, and educate diverse stakeholders how they too can promote progress. The GGEI is also useful as the foundation for creating customized sustainability measurement frameworks for a diverse range of stakeholders. Learn more here about subscribing to the GGEI or leveraging our model to create bespoke sustainability frameworks. Is this change an improvement or a decline in performance?

We also calculate its distance from globally accepted targets associated with emission reductions, SDGs and other environmental, social and governance goals. For example, what are the efficiency improvements in sectors like buildings, transport and energy and how does this rate compare to what is required to keep on track to limit warming to 1,5 degrees Celsius? These two measurement components — the change in performance over time and the distance from global targets — offer new insight to market actors prioritizing ESG-aligned investment and commercial opportunities.

Присоединяйтесь!

  • Related research and writing
  • Коэффициент Джини
  • Что такое коэффициент / индекс Джини?
  • По индексу Джини Россия на 54-м месте в мире

Похожие новости:

Оцените статью
Добавить комментарий