Часть гигантского межзвездного газопылевого облака размером в несколько световых лет начала сжиматься. Однако, в связи с расширением Вселенной также очевидно, что до Земли должны долететь и фотоны, которые излучены с меньшего расстояния, чем Т14 световых лет. Размер наблюдаемой Вселенной составляет примерно 45,7 миллиардов световых лет,а это 4,324×10^26 м.
Наблюдаемая вселенная - Observable universe
Топ-10: огромные космические объекты | Дело в том, что утверждение о том, что все что мы можем увидеть во Вселенной равно сфере в 13.7 млрд световых лет (Метагалактики) основывается на теории Большого взрыва. |
Ученые подсчитали весь свет Вселенной - Ин-Спейс | Размеры галактик измеряются десяткам – сотнями тысяч световых лет, массы составляют от 107 до 1012 масс Солнца (масса Солнца равна около 2∙1030 кг). |
15 фактов о размерах Вселенной, которые пополнят ваш багаж знаний | Расстояния между небесными телами во Вселенной очень велики, поэтому их обычно измеряют в световых годах. |
Наблюдаемая вселенная - Observable universe
Космос как минимум в 250 раз больше видимой Вселенной заявляют космологи | Смотрите видео онлайн «Сравнение размеров Вселенной 3D» на канале «Познавательный канал» в хорошем качестве и бесплатно, опубликованное 7 мая 2022 года в 18:27, длительностью 00:05:07, на видеохостинге RUTUBE. |
Наблюдаемая Вселенная | По предварительным оценкам, сейчас размер Вселенной составляет примерно 91 миллиард световых лет, и это число постоянно растет. |
Полёт через Вселенную. Размер наблюдаемой Вселенной составляет около 93 миллиарда световых лет | Астрофизики измерили весь звездный свет, рожденный за всю историю наблюдаемой Вселенной. |
Насколько велика Вселенная? - RW Space | Её размеры — примерно 14 миллиардов световых лет. |
Публикации
- Космический телескоп Уэбба открыл гигантскую Космическую лозу: Наука: Наука и техника:
- Насколько масштабна Вселенная? - physħ
- Хаббл и Джеймс Уэбб
- Содержание
Чем космос отличается от Вселенной: спорим, вы не знали
Как устроен космос? По мнению ученых, Вселенная состоит из трех субстанций: нормальной материи, темной материи и темной энергии. Нормальная материя Нормальная, или барионическая, материя представляет собой протоны, нейтроны и электроны. Из нее состоит все, что мы можем увидеть: звезды, планеты, деревья, животные и люди. Темная материя Темная материя не излучает и не поглощает свет или энергию, а потому абсолютно невидима. Ученые предполагают, что она состоит из небарионической материи — вимпов слабовзаимодействующих массивных частиц , нейтралино и нейтрино.
Несмотря на то, что темную материю невозможно увидеть, результаты наблюдений позволяют астрономам допускать ее существование. К примеру, исследования спиральных галактик показали, что в них содержится гораздо больше массы, чем можно наблюдать визуально. Если бы темной материи не существовало, эти галактики бы просто распались, потому что гравитации одной лишь нормальной материи было бы недостаточно для того, чтобы удержать все частицы вместе. Темная энергия Темная энергия — это гипотетическая форма энергии, которая противодействует гравитации: она отдаляет космические объекты друг от друга, тогда как гравитация, напротив, их притягивает. Ученые предложили концепцию темной энергии, чтобы объяснить, почему вселенная расширяется с ускорением.
Самое холодное место в космосе Пока что самым холодным местом во Вселенной считается туманность Бумеранг. Она расположена в созвездии Центавра, примерно в 5 000 световых лет от Земли. Температура здесь достигает от 20 до 40 триллионов градусов Цельсия. Кстати, 3C 273 — не только самый первый, но и самый яркий среди квазаров его видимый блеск составляет 12,9. Возраст звезды Мафусаил HD 140283, HIP 76976 составляет 16 миллиардов лет, что делает ее старейшей звездой в космосе — как ни странно, она даже старше самой Вселенной ученые пока выясняют, как такое возможно.
Звезда расположена в созвездии Весов, и ее можно увидеть в бинокль ее видимый блеск составляет 7,2. Великая стена Геркулес — Северная Корона —- один из самых крупных объектов в космосе. Она простирается на 10 миллиардов световых лет и содержит в себе миллиарды галактик. Она находится в 10 миллиардах световых лет от нас, в направлении созвездий Геркулес и Северная Корона. Самый большой резервуар воды в космосе содержит в 140 триллионов раз больше воды, чем все океаны на нашей планете.
Картинка из проекта Hubble Ultra Deep Field может выглядеть на удивление схожей. Разница лишь в том, что точки на ночном небе — это отдельные звезды, а точки на снимках телескопа Хаббл — это галактики, каждая из которых может содержать до 100 миллиардов звезд. Когда это произойдет, будьте готовы к тому, что ни одна из звезд в галактиках не столкнется друг с другом, ведь в галактиках так много незаполненного пространства, что шансы на физическое столкновение ничтожно малы. То, что не произойдет физического контакта, лишь показывает, насколько обширно пространство даже в таком сосредоточении звезд и планет, как галактика! И это ближайшая из крупнейших галактик.
Само человечество может исчезнуть задолго до того, как этот вымышленный персонаж долетит до границ новой галактики. Большая часть научной фантастики описывает свои истории с обязательными путешествиями со скоростью, превышающей скорость света, что позволяет киногероям перемещаться между галактиками. Не будь этой возможности, путешествия ограничивались бы горсткой планет.
Те тела и объекты, которые в этот момент находятся за этой границей, в принципе, не наблюдаемы. Отбиваемый от них свет попросту не успевает добраться до наблюдателя. Это невозможно, даже если свет вышел в момент начала процесса расширения. Из-за поглощения и рассеивания в ранней Вселенной, с учетом большой плотности, фотоны не могли распространяться в свободном направлении. Поэтому наблюдатель способен зафиксировать только то излучение, которое появилось в эпоху прозрачной для излучения Вселенной. Из всего вышесказанного следует, что чем ближе в галактике находится источник, тем большим для него будет значение красного смещения. Большой взрыв Момент возникновения Вселенной называют Большим взрывом.
Данная концепция стоит на том, что изначально была точка точка сингулярности , в которой присутствовала вся энергия и все вещество. Основой характеристики принято считать большую плотность материи. Что было до этой сингулярности — неизвестно. Эти значения предельны для применения существующих идей. Они появляются благодаря соотношению гравитационной постоянной, скорости света, постоянных Больцмана и Планка и именуются как «планковские». Момент 10-36 секунды относят к модели «горячей Вселенной». В период с 1-3 по 100-120 секунд образовались ядра гелия и небольшое количество ядер остальных легких химических элементов. До одного миллиона лет температура во Вселенной начала понижаться до 3000-45000 К, началась эра рекомбинации. Прежде свободные электроны начали объединяться с легкими протонами и атомными ядрами. Начали появляться атомы гелия, водорода и малое количество атомов лития.
Стало прозрачным вещество, а излучение, которое наблюдается до сих пор, отсоединилось от него. Следующий миллиард лет существования Вселенной отметился понижением температуры от 3000-45000 К до показателя в 300 К. Этот период для Вселенной ученые назвали «Темным возрастом» из-за того, что еще не появилось никаких источников электромагнитного излучения. В этот же период неоднородности смеси первоначальных газов уплотнялись благодаря воздействию гравитационных сил. Смоделировав на компьютере эти процессы, астрономы увидели, что это необратимо приводило к появлению звезд-гигантов, превышающих массу Солнца в миллионы раз. По причине такой большой массы эти звезды нагревались до немыслимо высоких температур и эволюционировали за период десятков миллионов лет, после чего они взрывались как сверхновые.
По одним оценкам, опирающимся на процессы в местной части Вселенной, скорость расширения — от 69,8 до 73,1 километра в секунду на мегапарсек. В то же время для ранней Вселенной эта величина в ряде работ определяется лишь в 67,4 километра в секунду на парсек. Разница между скоростью расширения пространства-времени в древности и в нашу эпоху указывает на то, насколько именно ускоряется расширение Вселенной со временем. От этого зависит величина вычисляемой «темной энергии» ряд авторов современных научных работ полагают , что это не очень удачное название для совсем других механизмов. В то же время скорость расширения даже местной части Вселенной по Хоолейлане получается заметно выше, чем считалось ранее. Если другие объекты, оставшиеся от барионной акустической осцилляции близ нас, покажут сходные размеры, скорость расширения Вселенной получится нарастающей слишком быстро.
Всё не так, как кажется
- Что еще почитать
- Космический телескоп Уэбба открыл гигантскую Космическую лозу: Наука: Наука и техника:
- Насколько велика Вселенная? Можно ли вообще ответить на этот вопрос? -
- Наблюдаемая вселенная - Observable universe
Наблюдаемая Вселенная
Но имейте в виду, что Вселенная также постоянно расширяется с нарастающей скоростью. За то время, которое свет потратил на нас, ее край сдвинулся. К счастью, ученые знают, насколько далеко он продвинулся: 46,5 миллиардов световых лет, основываясь на расчетах расширения Вселенной после Большого взрыва. Некоторые ученые использовали это число, чтобы попытаться вычислить, что находится за пределами того, что мы можем видеть. Исходя из предположения, что Вселенная имеет изогнутую форму, астрономы могут взглянуть на закономерности, которые мы видим в наблюдаемой Вселенной, и использовать модели, чтобы оценить, насколько дальше расширяется остальная часть Вселенной. Одно исследование показало, что реальная Вселенная может быть как минимум в 250 раз больше 46,5 миллиардов световых лет, которые мы можем реально увидеть. Но у Кинни есть и другие идеи: «Нет никаких доказательств того, что Вселенная конечна», — сказал он, — «она вполне может продолжаться бесконечно».
Нет уверенности в том, является ли Вселенная конечной или бесконечной, но ученые согласны с тем, что она «действительно огромна», сказал Галлахер. К сожалению, маленькая часть, которую мы можем видеть сейчас, — это самое большее, что мы когда-либо сможем наблюдать. Поскольку Вселенная расширяется с возрастающей скоростью, внешние края нашей наблюдаемой Вселенной фактически движутся наружу быстрее, чем скорость света. Это означает, что края нашей Вселенной удаляются от нас быстрее, чем их свет достигает нас.
Вместо этого они «кажутся» удаляющимися друг от друга, потому что пространство между ними расширяется или становится больше.
Телескоп Хаббл смог определить скорость расширения Вселенной, наблюдая за переменными звездами-цефеидами. Это значение называется «постоянной Хаббла». Это число важно, потому что говорят, что оно «устанавливает масштаб Вселенной» с точки зрения размера и возраста. Хаббл обнаружил, что Вселенная расширяется со скоростью 68 километров в секунду на мегапарсек. Один мегапарсек равен 3,26 миллиона световых лет.
Расширение Вселенной открыл Эдвин Хаббл в 1929 году. Он заметил, что галактики удаляются от нас. И не только это, но и самые дальние из них также двигаются быстрее всех. Открытие Хаббла было подтверждено современными данными. Самые ранние галактики, которые наблюдали астрономы, были видны примерно 13 миллиардов лет назад.
Однако Вселенная расширилась с тех пор, как свет покинул эти галактики. Это означает, что эти галактики сейчас расположены на расстоянии более 13 миллиардов световых лет. Разница в возрасте этих галактик и их реальном расстоянии в настоящее время является доказательством того, что Вселенная действительно расширяется. Какой формы Вселенная? Знание формы Вселенной очень помогает определить, насколько она велика.
Тем не менее определение точной формы Вселенной остается проблемой, поскольку у нас нет технологий для межзвездных или межгалактических путешествий. Хотя некоторые теории предполагают бесконечную Вселенную, мы знаем, что она имеет конечный возраст. Следовательно, мы можем наблюдать только ее конечный объем. Вселенная имеет три возможные формы согласно общей теории относительности Альберта Эйнштейна : плоская, открытая или закрытая. Плоская Вселенная: имеет нулевую кривизну — плоскую как лист бумаги; Открытая Вселенная: имеет отрицательную кривизну — в виде седла; Замкнутая Вселенная: имеет положительную кривизну — сферическая форма.
Ее форма также скажет нам, является ли она конечной или бесконечной. То есть, рухнет ли она в конце концов или будет продолжать расширяться вечно. Астрономы используют космический микроволновый фон CMB — cosmic microwave background , чтобы лучше понять форму Вселенной.
Все галактики расположены далеко друг от друга, и дистанция между ними продолжает меняться с увеличивающейся скоростью.
Но со временем в дело вступила гравитация, и расширение замедлилось. Однако недавние исследования показывают, что теперь расширение снова ускоряется из-за таинственной тёмной энергии, которая составляет большую часть энергетического содержания Вселенной, но о её природе сейчас мало что известно. Итак, у нас есть: сингулярность — Большой взрыв — расширение Вселенной. Существует также гипотеза космической инфляции: она говорит, что никакой сингулярности не было, а Большому взрыву предшествовало другое, особое состояние Вселенной — инфляционное.
Но об этом как-нибудь в другой раз. Границы Вселенной Сегодня мы видим Вселенную в том виде, в котором она существует спустя 13,8 миллиарда лет после Большого взрыва. И вот теперь как раз стоит поговорить о границах. Однако стоит отметить, что понятие «границ Вселенной» может быть не совсем корректным, поскольку само пространство и время на самом деле могут быть не такими, как мы привыкли их понимать.
И размер вселенной из-за непостоянства её пространства-времени зависит от того, какое определение расстояния принять. Сопутствующее расстояние до самого удалённого наблюдаемого объекта составляет около 14 миллиардов парсеков эквивалентно 46 миллиардам световых лет во всех направлениях. Художественное изображение Наблюдаемой Вселенной в логарифмическом масштабе. В центре Солнечная система, внутренние и внешние планеты, пояс Койпера, облако Оорта, Альфа Центавра, рукав Персея, галактика Млечный Путь, галактика Андромеды, соседние и дальние галактики, крупномасштабная структура Вселенной и реликтовое излучение.
Важно отметить, что свет от самых дальних наблюдаемых объектов вскоре после Большого взрыва, дошёл до нас всего за 13,8 миллиарда световых лет, что значительно меньше, чем сопутствующее расстояние до этих объектов, равное 46 миллиардам световых лет, опять же из-за расширения Вселенной.
Также учёные объяснили, почему данная галактика выглядит именно так. Всё дело в гравитационном взаимодействии спиральной галактики NGC 6872 с соседней дисковой галактикой IC4970, масса которой в пять раз меньше своего «большого» соседа.
Обычно подобные гравитационные взаимодействия приводят к галактическому слиянию, когда большая галактика «пожирает» менее крупного соседа, но в данном случае привычный сценарий был нарушен.
Космос как минимум в 250 раз больше видимой Вселенной заявляют космологи
Какого размера космос (вселенная)? Размер вселенной. 156 миллиардов световых лет. Однако, учитывая непрерывное расширение пространства, сопутствующий диаметр Вселенной растягивается до внушительных 93 миллиардов световых лет. Хотя размер всей Вселенной неизвестен, можно измерить размер наблюдаемой ее части — примерно 93 миллиарда световых лет в диаметре. На ней изображены более 256 тысяч галактик, которые зародились в промежутке от 13,3 млрд до 500 млн световых лет после большого взрыва.
Каковы размеры нашей Вселенной?
Узнайте размеры Вселенной: как измерить пространство, описание процесса расширения, использование красного смещения, движение света, роль инфляции. Тем не менее, даже если Вселенная безгранична, размер наблюдаемой Вселенной всегда конечен, и это связано не только с ограниченной возможностью техники наблюдений. Парадокса в этом нет: хотя Большой Взрыв произошел около 13 млрд лет назад, Вселенная все это время расширяется, накопив действительно впечатляющие размеры. Как работают расстояния во Вселенной?
Космос как минимум в 250 раз больше видимой Вселенной заявляют космологи
Сегодня этот край определяется как 15 миллиардов световых лет, но это ещё не значит, что Вселенная там и заканчивается. Она имеет размер около 13 миллионов световых лет. По современным космологическим представлениям Вселенная имеет конечные размеры, при этом пространство в ней может быть замкнуто таким образом, что свет, пробежав её всю — возвращается к точке старта, наподобие луча, обегающего комнату, полную зеркал.
Вселенная: что это такое, описание, строение, происхождение, фото и видео
Однако ученые выдвигают больше гипотез и теорий, чем реальных доказательств. Ученые пытаются найти границы Вселенной с помощью волновых исследований космоса. Ведь если он бесконечен, то в нем должны быть самые разные по длине волны. Правда, где они — никто не знает. А пока границей принято считать космологический горизонт, объекты на котором находятся в бесконечном красном смещении. По поводу формы тоже идет масса споров. Одни считают, что это бублик, другие — сфера. Источник: un-sci. Там содержатся молекулы водорода или межзвездное вещество, молекулы кислорода, электромагнитное излучение и космические лучи. Долгое время считалось, что там абсолютная тишина, что тоже не совсем верно. Конечно, если там закричать, то никто ничего не услышит.
Но зато звук издают черные дыры: их распространяющиеся волны сверхнизкой частоты были открыты в 2003 году. Кстати, ученые также предполагают, что существуют «Белые дыры», но это пока так и остается теорией.
Представьте, что некоторые из этих объектов находятся так далеко, что их свету потребовались миллионы или даже миллиарды лет, чтобы добраться до нас. Теперь представьте, что свету некоторых объектов необходимо столько времени, чтобы совершить это путешествие, что за все миллиарды лет существования Вселенной он все еще не достиг Земли. А что за ней? Мы действительно не знаем», — сказала Кинни. Но, рассчитав размер этого маленькой части, ученые могут предположить, что находится за ее пределами. Ученые знают, что Вселенной 13,8 миллиарда лет. Это означает, что объект, свет которого потратил 13,8 миллиардов лет, должен быть самым дальним объектом, который мы можем видеть. У вас может возникнуть соблазн думать, что это дает нам простой ответ для размера вселенной: 13,8 миллиардов световых лет.
Но имейте в виду, что Вселенная также постоянно расширяется с нарастающей скоростью. За то время, которое свет потратил на нас, ее край сдвинулся. К счастью, ученые знают, насколько далеко он продвинулся: 46,5 миллиардов световых лет, основываясь на расчетах расширения Вселенной после Большого взрыва.
Рисунки из работ слева направо [12, 9] Такой разброс размеров Вселенной, очевидно, должен привести к различным итоговым параметрам Вселенной.
Исследуем некоторые группы этих сценариев инфляционного расширения Вселенной. В дальнейших расчетах удобно использовать в качестве основных единиц измерения световой год расстояния и год время вместо традиционных мегапарсека и секунды, поскольку в приведённые ниже уравнения мы будем подставлять числовые значения и возраста Вселенной в годах , и размера Вселенной в световых годах и постоянную Хаббла километры, секунды, мегапарсеки. Для сопоставимости единиц измерения разных величин сразу же переведём значение постоянной Хаббла в новые единицы измерения. Длительность года равна приблизительно 30 млн.
Таким образом, используя приблизительные значения величин, найдём значение постоянной Хаббла в этих новых единицах измерения:.
В результате удалось получить весьма впечатляющий снимок далёкой галактики, который до запуска «Джеймса Уэбба» казался невозможным, ведь спиральная галактика NGC 6872 находится на расстоянии в 212 миллионов световых лет от Земли.
Также учёные объяснили, почему данная галактика выглядит именно так. Всё дело в гравитационном взаимодействии спиральной галактики NGC 6872 с соседней дисковой галактикой IC4970, масса которой в пять раз меньше своего «большого» соседа. Обычно подобные гравитационные взаимодействия приводят к галактическому слиянию, когда большая галактика «пожирает» менее крупного соседа, но в данном случае привычный сценарий был нарушен.
Вселенная. Что мы знаем о ней? Часть 3, Размеры. Продолжение
Видимая Вселенная | 4 миллиарда световых лет. |
Ученые НАСА обнаружили доказательства возможной жизни на планете в 120 световых лет от Земли | Однако, в связи с расширением Вселенной также очевидно, что до Земли должны долететь и фотоны, которые излучены с меньшего расстояния, чем Т14 световых лет. |
Пузырь в миллиард световых лет поставил под вопрос скорость расширения Вселенной | И размер вселенной из-за непостоянства её пространства-времени зависит от того, какое определение расстояния принять. |
Интересные факты об устройстве Вселенной
Если говорить о тех объектах, которые мы можем наблюдать, то они занимают область радиусом 46 млрд световых лет. Размер наблюдаемой Вселенной составляет примерно 45,7 миллиардов световых лет,а это 4,324×10^26 м. Размер наблюдаемой Вселенной составляет около 46,5 млрд световых лет в любом направлении от Земли (или 93 млрд световых лет в диаметре).
Насколько велика Вселенная? Можно ли вообще ответить на этот вопрос?
Часть гигантского межзвездного газопылевого облака размером в несколько световых лет начала сжиматься. Однако точные размеры видимой части Вселенной установить очень трудно из-за ее постоянно ускоряющегося расширения. 156 миллиардов световых лет. Вселенная уже не та: Что телескоп James Webb увидел в далёком прошлом.
Размер Вселенной
- Космический телескоп Уэбба открыл гигантскую Космическую лозу: Наука: Наука и техника:
- Что именно запечатлел в космосе James Webb
- Где край у Вселенной? Астроном отвечает на наивные вопросы о космосе | Аргументы и Факты
- Содержание
- Как далеко можно видеть в космосе? • AB-NEWS
Что во Вселенной больше всего?
До Большого взрыва Вселенная проходила период космической инфляции. Инфляция заставляет пространство расширяться экспоненциально, что может очень быстро привести к тому, что искривлённое или не гладкое пространство станет выглядеть плоским. Если Вселенная искривлена, радиус её кривизны, по меньшей мере, в сотни раз больше того, что мы можем наблюдать. В нашей части Вселенной инфляция действительно подошла к концу. Но три вопроса, на которые мы не знаем ответов, чрезвычайно сильно влияют на реальный размер Вселенной, и то, является ли она бесконечной: Насколько велик участок Вселенной после инфляции, породивший наш Большой взрыв? Верна ли идея вечной инфляции, по которой Вселенная бесконечно расширяется, по крайней мере, в некоторых регионах? Как долго длилась инфляция, пока не остановилась и не породила горячий Большой взрыв?
Возможно, что та часть Вселенной, где шла инфляция, смогла вырасти до размера, не сильно превышающего то, что мы можем наблюдать. Возможно, что в любой момент появится свидетельство наличия «края», на котором закончилась инфляция. Но также возможно, что Вселенная в гуголы раз больше наблюдаемого. Не ответив на эти вопросы, мы не получим ответа на главный. Огромное количество отдельных регионов, в которых произошёл Большой взрыв, разделяется пространством, постоянно растущим в результате вечной инфляции. Но мы не имеем понятия, как проверить, измерить или получить доступ к тому, что лежит за пределами нашей наблюдаемой Вселенной.
За пределами того, что мы можем видеть, скорее всего, находится ещё больше Вселенной, такой же, как и наша, с теми же законами физики, с теми же космическими структурами и такими же шансами на сложную жизнь. Также у «пузыря», в котором закончилась инфляция, должен быть конечный размер, при том, что экспоненциально большое число таких пузырей содержится в более крупном, расширяющемся пространстве-времени. Но даже если вся эта Вселенная, или Мультивселенная, может быть невероятно большой, она может и не быть бесконечной. На самом деле, если только инфляция не продолжалась бесконечно долго, или Вселенная не родилась бесконечно большой, она должна быть конечной. Как ни велика наблюдаемая нами часть Вселенной, как ни далеко мы можем заглянуть, всё это составляет лишь малую долю того, что должно существовать там, за пределами. Самая большая проблема состоит в том, что у нас не хватает информации для определённого ответа на вопрос.
Мы знаем только, как получить доступ к информации, доступной внутри нашей наблюдаемой Вселенной: эти 46 млрд световых лет во всех направлениях. Ответ на самый большой вопрос, о конечности или бесконечности Вселенной, может быть спрятан в самой Вселенной, но мы не можем познать достаточно большую её часть, чтобы знать наверняка. И пока мы не разберёмся с этим, или не придумаем хитроумную схему расширения границ возможностей физики, у нас будут оставаться одни только вероятности.
Если бы Вселенная была наполнена лишь тёмной энергией, никакой свет до нас бы вообще не дошёл, поскольку расширение было бы экспоненциальным и по прошествии такого времени мы бы просто ничего не увидели. Но ни один из этих примеров не соответствует реальной Вселенной, в которой перемешаны эти энергии и эта смесь меняется со временем.
На ранних стадиях Вселенной в первые несколько тысяч лет доминировало излучение, преимущественно в виде фотонов и нейтрино. Потом случился фазовый переход и материя нормальная и тёмная стала преобладающей компонентой на миллиарды лет. И совсем недавно, уже после формирования Солнечной системы и Земли, тёмная энергия стала доминантой. Поскольку тёмная энергия не была и не будет единственным источником энергии Вселенной, мы никогда не окажемся в ситуации, в которой свет до нас не дойдёт. Но её достаточно, чтобы раздвинуть границы Вселенной дальше, чем в варианте с одной только материей: до 46,1 миллиарда световых лет.
Это контринтуитивно, но нужно помнить: 13,8 миллиарда лет назад вся наблюдаемая Вселенная была меньше, чем наша сегодняшняя Солнечная система! Расширение Вселенной началось очень быстро и со временем замедлялось. Оно продолжает замедляться, но оно асимптотически стремится не к нулю, а к конечной, хотя и большой, величине. Это означает, что свет от очень удалённого объекта, унесённого расширением Вселенной больше, чем на 40 млрд световых лет от нас, может дойти до нас сегодня, совершив по Вселенной путешествие, сравнимое со всей историей её существования. И когда он дойдёт до нас, мы увидим свет, испущенный в то время, когда Вселенная была чрезвычайно молода.
Разница лишь в спектральном красном смещении, которое позволяет нам определить возраст и удалённость этого объекта. Вот почему во Вселенной возрастом в 13,8 миллиарда лет наиболее удалённые из видимых объектов находятся на расстоянии в 46 миллиардов световых лет от нас!
Рассчитано, что расширение Вселенной началось 13,8 млрд лет назад. Учитывая, что скорость света является максимально возможной, можно ожидать, что радиус Вселенной не превышает 13,8 млрд св. Однако на самом деле всё несколько сложнее. Скорость расширения Вселенной не постоянна, сегодня она увеличивается. При этом ограничение скорости света на него не действует, так как это ограничение лишь говорит о том, что сигналы о разных событиях не могут распространяться быстрее света, а в принципе сверхсветовые скорости в физике возможны. В итоге считается, что вся наблюдаемая нами Вселенная представляет собой сферу с центром в Земле и радиусом 46 млрд св.
Все вместе эти галактики и их системы образуют крупномасштабную структуру Вселенной рис. Наиболее далёкие галактики, доступные современным телескопам, находились в момент излучения на расстояниях более 10 млрд световых лет от нас, а сейчас, вследствие расширения Вселенной , они могут быть в несколько раз дальше. Скопление галактик Abell 1689. Фото: космический телескоп «Хаббл». При этом нет оснований считать, что наблюдаемая Вселенная представляет собой обособленную систему или она чем-либо физически выделена из окружающего её мира. Область, доступная наблюдениям, может быть лишь малой возможно, бесконечно малой частью всей существующей Вселенной. Тем не менее, даже если Вселенная безгранична, размер наблюдаемой Вселенной всегда конечен, и это связано не только с ограниченной возможностью техники наблюдений. В теории расширяющейся Вселенной радиус наблюдаемой части Вселенной ограничен горизонтом частицы , который связан с максимально возможным временем распространения света от далёких источников к наблюдателю.
Топ-10: огромные космические объекты
Никогда не замечали, как звучание гудка поезда изменяется в зависимости от расстояния, усиливаясь при приближении и становясь тише при отдалении? Свет работает примерно так же. Посмотрите на спектрограмму выше, видите черные линии? Они указывают на границы поглощения цвета химическими элементами, находящимися внутри и вокруг источника света. Чем больше сдвинуты линии к красной части спектра — тем дальше объект находится от нас. На основе подобных спектрограмм ученые также определяют то, насколько быстро объект двигается от нас. Так мы плавно и подобрались к нашему ответу. Большая часть света, подвергшаяся красному смещению, принадлежит галактикам, возраст которых около 13,8 миллиарда лет. Сколько лет Вселенной? Если после прочтенного вы пришли к выводу, что радиус наблюдаемой нами Вселенной составляет всего 13,8 миллиарда световых лет, то вы не учли одной важной детали.
Все дело в том, что на протяжении этих 13,8 миллиарда лет после Большого взрыва Вселенная продолжала расширяться. Другими словами, это означает, что реальный размер нашей Вселенной гораздо больше, чем указано в наших изначальных измерениях. Поэтому для того, чтобы узнать реальный размер Вселенной, необходимо принять во внимание еще один показатель, а именно то, насколько быстро Вселенная расширялась со времен Большого взрыва. Физики говорят, что наконец смогли вывести нужные цифры и уверены в том, что радиус видимой Вселенной в настоящий момент составляет около 46,5 миллиарда световых лет. Правда, стоит также отметить, что эти подсчеты основаны лишь на том, что мы сами можем видеть. Точнее способны разглядеть в глубине космоса. Эти подсчеты не отвечают на вопрос истинного размера Вселенной. Кроме того, ученых заставляет задуматься некоторое несоответствие, согласно которому более удаленные от нас галактики в нашей Вселенной слишком хорошо сформированы, чтобы можно было считать, что они появились сразу после Большого взрыва. Для такого уровня развития потребовалось гораздо больше времени.
Увидеть более отдаленные области не позволяет как раз то самое ограничение скорости света. Оценить же размеры всей Вселенной, а не только ее наблюдаемой части, не представляется возможным. Лишь самые общие соображения позволяют предполагать, что она всё же конечна. Многие ученые полагают, что вся Вселенная не должна иметь границ и она напоминает поверхность Земли.
Действительно, земная поверхность имеет ограниченную площадь, но границы у нее нет, так как она на самом деле является не плоской, а сферической поверхность. Если трехмерное пространство Вселенной обладает таким же свойством, то диаметр нашего мира должен быть не менее 23 трлн св.
Однако, их можно перевести в километры, чтобы представить себе необъятность Вселенной. В современной науке принято считать, что наша Вселенная появилась 13,79 млрд лет назад после Большого взрыва. Логично было бы предположить, что Вселенной 13,79 млрд лет, значит, ее радиус составляет 13,79 млрд световых лет, а диаметр составляет 27,58 млрд световых лет. Если перевести на земные единицы измерения, то один световой год равен 9 461 000 000 000 километров. Эти доводы и расчеты были бы верными, если бы Вселенная расширялась равномерно. Однако, еще в 1998 году при наблюдении за изменениями яркости световых звезд стало понятно, что наша Вселенная расширяется с постоянным ускорением.
За то время, которое свет потратил на нас, ее край сдвинулся. К счастью, ученые знают, насколько далеко он продвинулся: 46,5 миллиардов световых лет, основываясь на расчетах расширения Вселенной после Большого взрыва. Некоторые ученые использовали это число, чтобы попытаться вычислить, что находится за пределами того, что мы можем видеть. Исходя из предположения, что Вселенная имеет изогнутую форму, астрономы могут взглянуть на закономерности, которые мы видим в наблюдаемой Вселенной, и использовать модели, чтобы оценить, насколько дальше расширяется остальная часть Вселенной. Одно исследование показало, что реальная Вселенная может быть как минимум в 250 раз больше 46,5 миллиардов световых лет, которые мы можем реально увидеть. Но у Кинни есть и другие идеи: «Нет никаких доказательств того, что Вселенная конечна», — сказал он, — «она вполне может продолжаться бесконечно». Нет уверенности в том, является ли Вселенная конечной или бесконечной, но ученые согласны с тем, что она «действительно огромна», сказал Галлахер. К сожалению, маленькая часть, которую мы можем видеть сейчас, — это самое большее, что мы когда-либо сможем наблюдать. Поскольку Вселенная расширяется с возрастающей скоростью, внешние края нашей наблюдаемой Вселенной фактически движутся наружу быстрее, чем скорость света. Это означает, что края нашей Вселенной удаляются от нас быстрее, чем их свет достигает нас. Сообщение Насколько велика Вселенная?