Чтобы перевести число из четвертичной, восьмеричной или шестнадцатеричной системы счисления в двоичную, нужно воспользоваться алгоритмом перевода. [spoiler]Наиболее простой способ «ручного» перевода чисел из восьмеричной системы в шестнадцатеричную состоит в том, чтобы с начала перевести число в двоичную, а затем уже в шестнадцатеричную системы счисления.
§ 13. № 3. ГДЗ Информатика 10 класс Поляков. Нужно перевести числа. Поможете?
Перевод чисел в различные системы счисления с решением. Калькулятор позволяет переводить целые числа из одной системы счисления в другую. Перевод восьмеричных и шестнадцатеричных чисел в двоичную систему счисления и обратно. Для перевода числа из восьмеричной системы счисления в двоичную необходимо каждую цифру этого числа записать трехразрядным двоичным числом (триадой). Перевод числа из восьмеричной системы счисления в другую систему (например, в десятичную или шестнадцатеричную) возможен с помощью соответствующих алгоритмов, которые работают на основе позиционной системы счисления. это восьмеричная НЕХ - это шестнадцатеричная. Перевод чисел в различные системы счисления с решением. Калькулятор позволяет переводить целые числа из одной системы счисления в другую. При переводе числа из восьмеричной системы счисления в шестнадцатеричную и обратно, необходимо выполнить промежуточный перевод чисел в двоичную систему.
Системы счисления (c/c)
При записи чисел в восьмеричной системе каждая цифра представляет собой степень числа 8. В шестнадцатеричной системе запись чисел основана на степенях числа 16. Чтобы представить числа больше 9, используются латинские буквы от A до F, где A представляет число 10, B — 11 и так далее. Восьмеричная и шестнадцатеричная системы широко используются в программировании и компьютерных науках. Восьмеричная система позволяет удобно представлять в двоичном виде большие числа, так как каждая цифра в восьмеричной системе соответствует комбинации 3-х двоичных цифр. Шестнадцатеричная система используется для удобного представления больших двоичных чисел, так как каждая цифра соответствует комбинации 4-х двоичных цифр.
При этом регистровые пары обозначаются соответственно H, B и D. Непосредственная адресация — операнд содержится в команде: для двухбайтных команд — во втором байте, для трехбайтных — во втором младший байт операнда и в третьем старший байт операнда байтах команды. Стековая адресация — адрес ячейки памяти, содержащий операнд, находится в указателе стека. Для управления процессом выполнения программы используется слово-состояние программы. Старший байт слово-состояния представляет содержимое аккумулятора, а младший — содержит флаги условий регистра признаков, определяемые результатом выполнения арифметических и логических операций рисунок 8. Команды пересылок Команды пересылок производят обмен данными между регистрами общего назначения РОН и памятью микропроцессорной системы.
Однородная система — для всех разрядов позиций числа набор допустимых символов цифр одинаков. В качестве примера возьмем упоминавшуюся ранее 10-ю систему. При записи числа в однородной 10-й системе вы можете использовать в каждом разряде исключительно одну цифру от 0 до 9, таким образом, допускается число 450 1-й разряд — 0, 2-й — 5, 3-й — 4 , а 4F5 — нет, поскольку символ F не входит в набор цифр от 0 до 9. Смешанная система — в каждом разряде позиции числа набор допустимых символов цифр может отличаться от наборов других разрядов. Яркий пример — система измерения времени. В разряде секунд и минут возможно 60 различных символов от «00» до «59» , в разряде часов — 24 разных символа от «00» до «23» , в разряде суток — 365 и т. Непозиционные системы Как только люди научились считать — возникла потребность записи чисел. В начале все было просто — зарубка или черточка на какой-нибудь поверхности соответствовала одному предмету, например, одному фрукту. Так появилась первая система счисления — единичная. Единичная система счисления Число в этой системе счисления представляет собой строку из черточек палочек , количество которых равно значению данного числа. Таким образом, урожай из 100 фиников будет равен числу, состоящему из 100 черточек. Но эта система обладает явными неудобствами — чем больше число — тем длиннее строка из палочек. Помимо этого, можно легко ошибиться при записи числа, добавив случайно лишнюю палочку или, наоборот, не дописав. Для удобства, люди стали группировать палочки по 3, 5, 10 штук. При этом, каждой группе соответствовал определенный знак или предмет. Изначально для подсчета использовались пальцы рук, поэтому первые знаки появились для групп из 5 и 10 штук единиц. Все это позволило создать более удобные системы записи чисел. Древнеегипетская десятичная система В Древнем Египте использовались специальные символы цифры для обозначения чисел 1, 10, 102, 103, 104, 105, 106, 107. Вот некоторые из них: Почему она называется десятичной? Как писалось выше — люди стали группировать символы. В данном случае, число 10 называется основанием десятичной системы счисления, а каждый символ — представление числа 10 в какой-то степени. Числа в древнеегипетской системе счисления записывались, как комбинация этих символов, каждый из которых повторялся не более девяти раз. Итоговое значение равнялось сумме элементов числа. Стоит отметить, что такой способ получения значения свойственен каждой непозиционной системе счисления. Чтобы определить значение числа необходимо изображение числа разбить на разряды справа налево. Новый разряд начинается с появления прямого клина после лежачего.
При копировании материалов с сайта ссылка на источник обязательна. Уважайте труд людей, которые вам помогают. Нашли ошибку? Читайте также.
Перевод из восьмеричной системы счисления в шестнадцатеричную
Как перевести число в двоичную систему счисления Чтобы перевести число из четвертичной, восьмеричной или шестнадцатеричной системы счисления в двоичную, нужно воспользоваться алгоритмом перевода: Заменить каждую цифру на двоичный аналог, состоящий из 2 для четвертичной , 3 для восьмеричной или 4 для шестнадцатеричной цифр. Если нужно, число дополняется нулями слева. Вычеркнуть из числа незначащие нули.
Мы делим 98 на 2, в результате имеем 49 и остаток 0.
Далее продолжаем деление и делим 49 на 2, в результате имеем 24 с остатком 1. И таким же образом добираемся до 1-ки или 0-ка в делимом. Затем результат записываем справа налево.
Рисунок 1. С ней вы сталкиваетесь каждый раз, когда проверяете настройки сетевого адаптера — это МАС-адрес. Так же, когда используется IPv6.
Теперь переведем каждое число с двоичной формы. Первый — у каждого нолика и единички есть множитель 2 в n-й степени, при котором n увеличивается справа налево ровно на единичку.
Это цифры от 0 до 9. Что бы записать любое число больше 9 мы используем комбинацию из нескольких цифр. Например число 10 мы записываем из двух цифр: 1 и 0. Число 251 из трех цифр 2,5 и 1.
Получается что десятичная система счисления имеет такое название потому, что в ней используется 10 различных знаков.
Если использовать не все 10, а только два из них - это 0 и 1, то получится другая система счисления которая называется двоичная. В троичной системе счисления используются цифры от 0 до 2. В восьмеричной от 0 до 7. Когда 10 цифр не хватает, то на помошь приходят буквы английского алфавита.
Например в шестнадцатиричной системе счисления используются цифры от 0 до 9 и буквы от A до F.
Перевод чисел из одной системы счисления в другую онлайн
ДЕС: ДВ. ДЕС число Преобразует двоичное число в десятичное. Число обязательный аргумент — двоичное число, которое требуется преобразовать. При этом разрядность в качестве аргумента функции для десятичной записи не используется. Как и в случае с функцией ДЕС. ДВ при использовании ДВ. ДЕС существует ограничение на размер преобразуемых данных — не более 10 знаков в записи, в ином случае функция вернет значение ошибки.
Для ускорения работы с оперативной памятью используется кэш-память, в которую с опережением подкачиваются команды и данные из оперативной памяти, необходимые процессору для последующих операций. Генератор тактовой частоты генерирует электрические импульсы, синхронизирующие работу всех узлов компьютера. В ритме ГТЧ работает центральный процессор.
Тактовая равна количеству тактов в секунду. Такт - это промежуток времени между началом подачи текущего импульса ГТЧ и началом подачи следующего. До 3ГГц Тактовая частота отражает уровень промышленной технологии, по которой изготавливался данный процессор. Она также характеризирует и компьютер, поэтому по названию модели микропроцессора можно составить достаточно полное представление о том, к какому классу принадлежит компьютер. Поэтому часто компьютерам дают имена микропроцессоров, входящих в их состав. Ниже приведены названия наиболее массовых процессоров, выпущенных фирмой Intel и годы их создания: 8080 1974 г. Как видно, увеличение частоты — одна из основных тенденций развития микропроцессоров. На рынке массовых компьютеров лидирующее место среди производителей процессоров занимают 2 фирмы: Intel и AMD. За ними закрепилось базовое название, переходящее от модели к модели.
Разрядность процессора определяется разрядностью регистров, в которые помещаются обрабатываемые данные. Например, если регистр имеет разрядность 2 байта, то разрядность процессора равна 16 2x8 ; если 4 байта, то 32; если 8 байтов, то 64. Для пользователей процессор интересен прежде всего своей системой команд и скоростью их выполнения. Система команд процессора представляет собой набор отдельных операций, которые может выполнить процессор данного типа. Разные модели микропроцессоров выполняют одни и те же операции за разное число тактов. Чем выше модель микропроцессора, тем, как правило, меньше тактов требуется для выполнения одних и тех же операций. Для математических вычислений к основному микропроцессору добавляют математический сопроцессор. Начиная с модели 80486DX процессор и сопроцессор выполняют на одном кристалле. Устройства памяти ЭВМ Памятью компьютера называется совокупность устройств для хранения программ, вводимой информации, промежуточных результатов и выходных данных.
Классификация памяти представлен на рисунке: Внутренняя память предназначена для хранения относительно небольших объемов информации при ее обработке микропроцессором. Внешняя память предназначена для длительного хранения больших объемов информации независимо от того включен или выключен компьютер. Энергозависимой называется память, которая стирается при выключении компьютера. Энергонезависимой называется память, которая не стирается при выключении компьютера. К энергонезависимой внутренней памяти относится постоянное запоминающее устройство ПЗУ. Содержимое ПЗУ устанавливается на заводе-изготовителе и в дальнейшем не меняется. Эта память составлена из микросхем, как правило, небольшого объема. Обычно в ПЗУ записываются программы, обеспечивающие минимальный базовый набор функций управления устройствами компьютера. При включении компьютера первоначально управление передается программе из ПЗУ, которая тестирует компоненты компьютера и запускает программу-загрузчик операционной системы.
К энергозависимой внутренней памяти относятся оперативное запоминающее устройство ОЗУ , видеопамять и кэш - память. В оперативном запоминающем устройстве в двоичном виде запоминается обрабатываемая информация, программа ее обработки, промежуточные данные и результаты работы. ОЗУ обеспечивает режимы записи, считывания и хранения информации, причём в любой момент времени возможен доступ к любой произвольно выбранной ячейке памяти. Доступ к этой информации в ОЗУ осуществляется очень быстро. Эта память составлена из сложных электронных микросхем и расположена внутри корпуса компьютера. Часть оперативной памяти отводится для хранения изображений, получаемых на экране монитора, и называется видеопамять. Чем больше видеопамять, тем более сложные и качественные картинки может выводить компьютер. Высокоскоростная кэш-память служит для увеличения скорости выполнения операций компьютером и используется при обмене данными между микропроцессором и RAM. Кэш-память является промежуточным запоминающим устройством буфером.
Существует два вида кэш-памяти: внутренняя, размещаемая внутри процессора и внешняя, размещаемая на материнской плате. Внешняя память может быть с произвольным доступом и последовательным доступом. Устройства памяти с произвольным доступом позволяют получить доступ к произвольному блоку данных примерно за одно и то же время доступа. Выделяют следующие основные типы устройств памяти с произвольным доступом: 1. Накопители на жёстких магнитных дисках винчестеры, НЖМД - несъемные жесткие магнитные диски. Ёмкость современных винчестеров от сотен мегабайт до нескольких сотен гигабайт. На современных компьютерах это основной вид внешней памяти. Накопители на гибких магнитных дисках флоппи-дисководы, НГМД — устройства для записи и считывания информации с небольших съемных магнитных дисков дискет , упакованные в пластиковый конверт гибкий - у 5,25 дюймовых дискет и жесткий у 3,5 дюймовых. Максимальная ёмкость 5,25 дюймовой дискеты - 1,2Мбайт; 3,5 дюймовой дискеты - 1,44Мбайт.
В настоящее время 5,25 дюймовые дискеты морально устарели и не используются. CD-ROM диски получили распространение вслед за аудио-компакт дисками. Это пластиковые диски с напылением тонкого слоя светоотражающего материала, на поверхности которых информация записана с помощью лазерного луча. Лазерные диски являются наиболее популярными съемными носителями информации. При размерах 12 см в диаметре их ёмкость достигает 700 Мб. В настоящее время все более популярным становится формат компакт-дисков DVD-ROM, позволяющий при тех же размерах носителя разместить информацию объемом 4,3 Гб. Кроме того, доступными массовому покупателю стали устройства записи на компакт диски. Устройства памяти с последовательным доступом позволяют осуществлять доступ к данным последовательно, то есть для того, чтобы считать нужный блок памяти, необходимо считать все предшествующие блоки. Среди устройств памяти с последовательным доступом выделяют: 1.
Накопители на магнитных лентах НМЛ — устройства считывания данных с магнитной ленты. Такие накопители достаточно медленные, хотя и большой ёмкости. Современные устройства для работы с магнитными лентами — стримеры — имеют увеличенную скорость записи 4 - 5Мбайт в сек. Существуют также, устройства позволяющие записывать цифровую информацию на видеокассеты, что позволяет хранить на 1 кассете 2 Гбайта информации. Магнитные ленты обычно используются для создания архивов данных для долговременного хранения информации. Перфокарты — карточки из плотной бумаги и перфоленты — катушки с бумажной лентой, на которых информация кодируется путем пробивания перфорирования отверстий. Для считывания данных применяются устройства последовательного доступа.
ДВ вернет ошибку. Перевод числа из двоичной в десятичную систему в Excel Для осуществления обратного перевода можно воспользоваться функцией ДВ.
ДЕС: ДВ. ДЕС число Преобразует двоичное число в десятичное. Число обязательный аргумент — двоичное число, которое требуется преобразовать. При этом разрядность в качестве аргумента функции для десятичной записи не используется. Как и в случае с функцией ДЕС.
Присваиваем значение R2 и Q2 остатку и коэффициенту, полученному на этом шаге. Шаг 3: Повторяйте последовательность до тех пор, пока не получите значение коэффициента Qn , равное 0. Шаг 4: Восьмеричное число будет выглядеть так. R3 R2 R1 Пример: Рассмотрим десятичное число 2181.
Преобразование может быть выполнено с помощью описанных ниже шагов: Шаг 1: Запишите вес 8, связанный с каждой цифрой восьмеричного числа. Шаг 2: Теперь умножьте каждую цифру с весом, ассоциируемым с этим местом или индексом цифры. Шаг 3: Добавьте все числа, полученные после умножения на предыдущем шаге. Шаг 4: Число, полученное на последнем шаге, является десятичным эквивалентом восьмеричного числа. Пример: Рассмотрим октябрьское число 1265.
Правила перевода чисел из восьмеричной системы в шестнадцатеричную
- Перевод чисел в Python
- Правило записи
- Перевод из восьмеричной системы счисления в шестнадцатеричную
- Перевод напрямую из восьмеричной системы счисления в шестнадцатеричную, и обратно
Правила перевода из одной системы счисления в любую другую
Используя таблицы тетрад и триад, перевести: а из двоичной в восьмеричную и шестнадцатеричную: 11111001; 1010111; 010101111 б из восьмеричной и шестнадцатеричной в двоичную: АВ1216; 666568; 45458; 545416.
Пример перевода: число 15 в десятичной системе равно F в шестнадцатеричной системе. Системы счисления простым языком Системы счисления - это способы записи чисел, которые мы используем в повседневной жизни.
Подумайте о них как о разных языках для цифр. Как и в языках, где у нас есть разные слова для обозначения одного и того же предмета, в разных системах счисления одно и то же число может выглядеть по-разному. Каждая система счисления имеет своё «основание», которое определяет количество используемых символов.
Например, в десятичной системе, которой мы пользуемся каждый день, основание равно 10, потому что у нас есть 10 разных цифр от 0 до 9. Системы счисления нужны нам для разных задач: от счета денег и измерения времени до программирования компьютеров и шифрования информации. Кроме десятичной, существуют и другие системы, например, двоичная, которую любят компьютеры, восьмеричная и шестнадцатеричная, часто используемые в программировании.
Различные системы счисления позволяют нам более эффективно решать определенные задачи, такие как обработка данных в компьютере или представление больших чисел более компактно. Десятичная система Base 10 Это система, которую мы используем каждый день. Она основана на 10 цифрах от 0 до 9.
Каждая позиция в числе имеет значение, увеличивающееся в 10 раз с каждым шагом влево. Например, в числе 345, 5 - это единицы, 4 - десятки, а 3 - сотни. Двоичная или бинарная система Base 2 Двоичная система использует только две цифры: 0 и 1.
Каждая позиция в числе увеличивает своё значение в 2 раза с каждым шагом влево. Эта система широко используется в компьютерных технологиях. Восьмеричная система Base 8 Восьмеричная система использует цифры от 0 до 7.
Каждая позиция в числе увеличивается в 8 раз с каждым шагом влево. Эта система иногда используется в программировании. Шестнадцатеричная система Base 16 Шестнадцатеричная система использует 16 символов: цифры от 0 до 9 и буквы от A до F.
Каждая позиция увеличивается в 16 раз с каждым шагом влево. Эта система часто применяется в информатике и программировании. История возникновения систем счисления История систем счисления уходит корнями в глубокую древность.
Самые ранние системы счисления были созданы для удовлетворения базовых потребностей в счете и измерении. Например, древние люди использовали примитивные методы, такие как камешки или зарубки на палках, для подсчета предметов. Одной из первых разработанных систем счисления считается вавилонская, возникшая около 2000 года до н.
Она была позиционной и использовала основание 60, что до сих пор отражается в нашем измерении времени 60 секунд в минуте, 60 минут в часе. Древние египтяне разработали свою систему счисления примерно в 3000 году до н. Эта система была десятичной, но непозиционной, что означает использование отдельных иероглифов для обозначения единиц, десятков, сотен и так далее.
Двоичная система, которая лежит в основе современных компьютерных технологий, была впервые полноценно описана в работах Готфрида Лейбница в 17-м веке, хотя подобные идеи возникали и ранее. Лейбниц понимал важность двоичной системы для развития математики и науки. Восьмеричная и шестнадцатеричная системы, хотя и использовались в различных культурах на протяжении истории, получили широкое распространение в эпоху развития компьютерных технологий, поскольку они представляют собой компактную форму двоичного кода, удобную для человеческого восприятия.
Таким образом, различные системы счисления развивались в разных культурах в ответ на практические потребности и математические исследования, формируя основу для наших современных числовых представлений и вычислительных технологий. Современное использование систем счисления и их значение Системы счисления остаются неотъемлемой частью нашей жизни и технологий. Они используются в самых разных областях, от информатики до повседневной жизни, и каждая система имеет свои уникальные применения и преимущества.
Это делает двоичную систему идеальной для обработки и хранения данных в цифровом виде. Например, в компьютерном программировании двоичный код используется для представления всех команд и данных.
Есть позиционные, когда значение каждой цифры числа определяется ее позицией в записи числа, такими являются десятичная, двоичная, восьмеричная, шестнадцатеричная и другие. Есть и непозиционные, когда значение цифры в числе не зависит от ее места в записи числа, такой является римская система счислений. Основание системы счисления — это количество цифр, которые используются в данной системе счисления для записи чисел. Двоичная система счисления — позиционная система счисления с основанием 2.
Данная система счислений используется практически во всех вычислительных электронных устройствах.
Подсчет убитых животных, количество врагов или соседей — причин становилось все больше. Сначала люди использовали только понятия «один», «много».
После стали использовать понятие «пара», чтобы обозначить два предмета, это намного облегчило жизнь. Постепенно перешли к использованию подручных средств — пальцев на руках и ногах, зарубок на коре дерева, кости животного или узелков на канате. Именно такие примитивные «счетные машины» позволили через тысячи лет узнать, что предки умели не просто считать, но даже умудрялись фиксировать результаты подсчета.
Кроме зарубок и узелков появилась потребность в символах, выражающих большее количество чего-либо, чем «один». Тогда были придуманы первые знаки для выражения больших значений. Так, египтяне, использовали знаки для цифр 1, 5, 10.
Число 324 в их системе выглядело так: А описание чисел при помощи специальных знаков и является системой счисления.
Перевод чисел в различные системы счисления с решением
Шаг 3: Замените каждую группу из 4 двоичных цифр на соответствующую шестнадцатеричную цифру или букву. Для каждой группы в нашем примере получаем следующие шестнадцатеричные цифры или буквы: 3E1. Шаг 4: Объедините все группы шестнадцатеричных цифр или букв в одно число. Объединяя все группы из предыдущего шага, получаем итоговое число в шестнадцатеричной системе: 3E1.
Таким образом, число 371 в восьмеричной системе счисления равно числу 3E1 в шестнадцатеричной системе счисления. Что такое восьмеричная и шестнадцатеричная системы счисления Восьмеричная и шестнадцатеричная системы счисления являются альтернативными способами представления чисел.
Число в восьмеричной системе записывается как последовательность цифр последнего результата деления и остатков от деления в обратном порядке. Число перевести в восьмеричную систему счисления. Для перевода десятичного числа в шестнадцатеричную систему его необходимо последовательно делить на 16 до тех пор, пока не останется остаток, меньший или равный 15.
Число в шестнадцатеричной системе записывается как последовательность цифр последнего результата деления и остатков от деления в обратном порядке. Число перевести в шестнадцатеричную систему счисления.
Используется в цифровой электронике. Используется в областях связных с цифровыми устройствами, так как восьмеричные числа легко переводятся в двоичные и обратно. Используется повсеместно.
Строится она очень просто. Сначала записывается в столбик восемь нолей и 8 единиц. Затем в два раза меньше единиц и нолей с повтором. Затем ещё в два раза меньше. И так до тех пор, пока не получим столбик со значениями 1 0 1 0 1 0...
Перевод чисел из восьмеричной системы счисления в шестнадцатеричную
Разложить число по степеням основания для перевода двоичного числа в десятичную систему счисления. [spoiler]Наиболее простой способ «ручного» перевода чисел из восьмеричной системы в шестнадцатеричную состоит в том, чтобы с начала перевести число в двоичную, а затем уже в шестнадцатеричную системы счисления. При переводе числа из восьмеричной системы счисления в шестнадцатеричную и обратно, необходимо выполнить промежуточный перевод чисел в двоичную систему. Новости. Будет ли как-то улучшаться система проверки и организации итоговых сочинений? Обычно при переводе чисел из шестнадцатеричной в восьмеричную систему счисления вначале шестнадцатеричное число переводят в двоичное, затем разбивают его на триады, начиная с младшего бита. Перевод из восьмеричной в шестнадцатеричную систему счисления.
You are here
- О восьмеричной системе
- Как переводить числа между двоичной, восьмеричной и шестнадцатеричной системами счисления
- Перевод чисел из двоичной системы счисления в восьмеричную, шестнадцатеричную и обратно
- 3. Прямой перевод между двоичной, восьмеричной и шестнадцатеричной системами счисления
Информатика. 8 класс
Системы счисления | Hexlet Guides | это восьмеричная НЕХ - это шестнадцатеричная. |
Перевод из шестнадцатиричной в восьмеричную систему счисления | Преобразование чисел в разные системы счисления online. Двоичная, восьмеричная, десятичная и шестнадцатеричная. |
Система счисления онлайн | Перевод восьмеричного или шестнадцатеричного числа в двоичную форму. |
Системы счисления | Перевод чисел из одной системы счисления в другую является важной темой в математике и информатике. Существует несколько систем счисления, таких как двоичная, десятичная, восьмеричная и шестнадцатеричная. |
Восьмеричные числа 7350, 7351, 7352, 7353, 7354, 7355, 7356, 7357 в шестнадцатеричной! | Перевести единицы: десятичное в восьмеричное. |
Калькулятор
При переводе числа из восьмеричной системы счисления в шестнадцатеричную и обратно, необходимо выполнить промежуточный перевод чисел в двоичную систему. Калькулятор перевода систем счисления поможет вам перевести любое число из одной системы счисления в другие (десятичная, двоичная, шестнадцатеричная, восьмеричная)! В программировании помимо двоичной системы часто используются восьмеричная и шестнадцатеричная системы. Преобразование шестнадцатеричного числа в восьмеричный. Так как основа этой числовой системы сама по себе имеет некоторую силу двойки, то очень легко и удобно перевести восьмеричное число в двоичную или шестнадцатеричную систему счисления, которая используется в компьютерах для выполнения всей работы. Урок по теме Прямой перевод между двоичной, восьмеричной и шестнадцатеричной системами счисления.