Новости фрактал в природе

Чтобы доказать свое утверждение, он вводит ключевое для теории фракталов понятие фрактальной размерности.

ХАОС, ФРАКТАЛЫ И ИНФОРМАЦИЯ

Это явление мастерски продемонстрировано на примере кристаллов меди, которые разветвляются во всех направлениях, как ветви дерева. Каждая «веточка» является новой точкой роста — по мере разветвления она превращается в твердую металлическую медь. Из-за своей древовидной природы и уникального красновато-коричневого цвета кристаллы меди часто выращивают для искусства. Хотя иногда ручьи могут быть расположены по прямой линии, они быстро становятся извилистыми, поскольку приспосабливаются к помехам, таким как норы диких животных. Всего одна помеха может изменить течение реки и заставить ее изгибаться на всем протяжении.

Ширина этих ручьев также чрезвычайно шаблонна. Кривые, как установили эксперты, всегда в шесть раз больше ширины русла. Такое самоподобие характерно для фракталов и является причиной того, что реки во всем мире выглядят одинаково. Если вы внимательно посмотрите на прожилки листьев, то заметите, насколько они самоподобны.

Самые мелкие из них похожи на главную срединную жилку, а срединная жилка похожа на ствол дерева с его ветвями.

Неправильные и фрагментарные формы — облака, горы, листья — демонстрируют повтор почти однотипных фрагментов при разных масштабах наблюдения. На рисунке эти формы застыли. На самом деле они изменяются — облака движутся, пламя мерцает, лист увядает.

Выслушав мнение собеседника, Эдвард сам говорил правильный ответ. Если измерять длину по карте ломаными отрезками, то результат окажется неточным, ведь береговая линия имеет большое количество неровностей.

А что будет, если измерять максимально точно? Придется учитывать длину каждой неровности — нужно будет измерять каждый мыс, каждую бухту, скалу, длину скалистого уступа, камня на ней, песчинки, атома и так далее. Поскольку число неровностей стремится к бесконечности, измеренная длина береговой линии будет при измерении каждой новой неровности увеличиваться до бесконечности. Чем меньше мера при измерении, тем больше измеряемая длина Интересно, что, следуя подсказкам Эдварда, дети намного быстрее взрослых говорили правильное решение, в то время как у последних были проблемы с принятием такого невероятного ответа. На примере этой задачи Мандельброт предложил использовать новый подход к измерениям. Поскольку береговая линия близка к фрактальной кривой, значит, к ней можно применить характеризующий параметр — так называемую фрактальную размерность.

Что такое обычная размерность — понятно любому. Если размерность равна единице, мы получаем прямую, если два — плоскую фигуру, три — объем. Однако такое понимание размерности в математике не срабатывает с фрактальными кривыми, где этот параметр имеет дробное значение. Фрактальную размерность в математике можно условно рассматривать как «неровность». Чем выше неровность кривой, тем больше ее фрактальная размерность. Кривая, обладающая, по Мандельброту, фрактальной размерностью выше ее топологической размерности, имеет аппроксимированную протяженность, которая не зависит от количества измерений.

В настоящее время ученые находят все больше и больше областей для применения теории фракталов. С помощью фракталов можно анализировать колебания котировок на бирже, исследовать всевозможные естественные процессы, как, например, колебание численности видов, или моделировать динамику потоков. Фрактальные алгоритмы могут быть использованы для сжатия данных, например для компрессии изображений. И кстати, чтобы получить на экране своего компьютера красивый фрактал, не обязательно иметь докторскую степень. В основе инструментария этого простого графического редактора лежит все тот же принцип самоподобия. В вашем распоряжении имеется всего две простейших формы — четырехугольник и круг.

Вы можете добавлять их на холст, масштабировать чтобы масштабировать вдоль одной из осей, удерживайте клавишу Shift и вращать. Перекрываясь по принципу булевых операций сложения, эти простейшие элементы образуют новые, менее тривиальные формы. Далее эти новые формы можно добавлять в проект, а программа будет повторять генерирование этих изображений до бесконечности. На любом этапе работы над фракталом можно возвращаться к любой составляющей сложной формы и редактировать ее положение и геометрию. Увлекательное занятие, особенно если учесть, что единственный инструмент, который вам нужен для творчества, — браузер. Если вам будет непонятен принцип работы с этим рекурсивным векторным редактором, советуем вам посмотреть видео на официальном сайте проекта, на котором подробно показывается весь процесс создания фрактала.

Однако эти инструменты обычно являются второстепенными и не позволяют выполнить тонкую настройку генерируемого фрактального узора. В тех случаях, когда необходимо построить математически точный фрактал, на помощь придет кроссплатформенный редактор XaoS. Эта программа дает возможность не только строить самоподобное изображение, но и выполнять с ним различные манипуляции. Например, в режиме реального времени вы можете совершить «прогулку» по фракталу, изменив его масштаб. Анимированное движение вдоль фрактала можно сохранить в виде файла XAF и затем воспроизвести в самой программе. XaoS может загружать случайный набор параметров, а также использовать различные фильтры постобработки изображения — добавлять эффект смазанного движения, сглаживать резкие переходы между точками фрактала, имитировать 3D-картинку и так далее.

Во-первых, он совсем небольшой по размеру и не требует установки. Во-вторых, в нем реализована возможность определять цветовую палитру рисунка. Также очень удобно использовать опцию случайного подбора цветовых оттенков и функцию инвертирования всех цветов на картинке. Для настройки цвета имеется функция цикличного перебора оттенков — при включении соответствующего режима программа анимирует изображение, циклично меняя на нем цвета. Fractal Zoomer может визуализировать 85 различных фрактальных функций, причем в меню программы наглядно показываются формулы. Фильтры для постобработки изображения в программе имеются, хотя и в небольшом количестве.

Каждый назначенный фильтр можно в любой момент отменить. Однако фрактальная геометрия выходит за рамки 2D-измерения. В природе можно найти как примеры плоских фрактальных форм, скажем, геометрию молнии, так и трехмерные объемные фигуры. Фрактальные поверхности могут быть трехмерными, и одна из очень наглядных иллюстраций 3D-фракталов в повседневной жизни — кочан капусты. Наверное, лучше всего фракталы можно разглядеть в сорте романеско — гибриде цветной капусты и брокколи. А еще этот фрактал можно съесть Создавать трехмерные объекты с похожей формой умеет программа Mandelbulb3D.

Чтобы получить трехмерную поверхность с использованием фрактального алгоритма, авторы данного приложения, Дениэл Уайт Daniel White и Пол Ниландер Paul Nylander , преобразовали множество Мандельброта в сферические координаты. Созданная ими программа Mandelbulb3D представляет собой самый настоящий трехмерный редактор, который моделирует фрактальные поверхности разных форм. Поскольку в природе мы часто наблюдаем фрактальные узоры, то искусственно созданный фрактальный трехмерный объект кажется невероятно реалистичным и даже «живым». Он может походить на растение, может напоминать странное животное, планету или что-нибудь другое. Этот эффект усиливается благодаря продвинутому алгоритму визуализации, который дает возможность получать реалистичные отражения, просчитывать прозрачность и тени, имитировать эффект глубины резкости и так далее. В Mandelbulb3D имеется огромное количество настроек и параметров визуализации.

Можно управлять оттенками источников света, выбирать фон и уровень детализации моделируемого объекта. Фрактальный редактор позволяет создавать анимацию.

С береговой линией, а точнее, с попыткой измерить ее длину, связана одна интересная история, которая легла в основу научной статьи Мандельброта, а также описана в его книге «Фрактальная геометрия природы». Речь идет об эксперименте, который поставил Льюис Ричардсон Lewis Fry Richardson — весьма талантливый и эксцентричный математик, физик и метеоролог. Одним из направлений его исследований была попытка найти математическое описание причин и вероятности возникновения вооруженного конфликта между двумя странами. В числе параметров, которые он учитывал, была протяженность общей границы двух враждующих стран. Когда он собирал данные для численных экспериментов, то обнаружил, что в разных источниках данные об общей границе Испании и Португалии сильно отличаются. Это натолкнуло его на следующее открытие: длина границ страны зависит от линейки, которой мы их измеряем. Чем меньше масштаб, тем длиннее получается граница.

Феномен жизни во фрактальной Вселенной

В 1982 году вышла книга Мандельброта «Фрактальная геометрия природы», в которой автор собрал и систематизировал практически всю имевшуюся на тот момент информацию о фракталах и в легкой и доступной манере изложил ее. Понятие ФРАКТАЛЫ (fractus -состоящий из фрагментов) введено в научный обиход Бенуа Мандельбротом. Термин «фрактал» введён Бенуа Мандельбротом в 1975 году и получил широкую известность с выходом в 1977 году его книги «Фрактальная геометрия природы». 97 фото | Фото и картинки - сборники.

Фрактальные закономерности в природе

Международная группа ученых обнаружила впервые нашла в природе молекулу, обладающую свойствами регулярного фрактала. Посмотрите потрясающие примеры фракталов в природе. О природе ков Виталий7 (Высоцкий В С.).

Откройте свой Мир!

Фрактал – это геометрическая фигура, в которой один и тот же мотив повторяется в последовательно уменьшающемся масштабе. Фракталы — еще одна интересная математическая форма, которую каждый видели в природе. Несмотря на то, что фрактальные фигуры были замечены в природе и сконструированы математиками уже довольно давно, впервые научно обосновать существование фракталов смог Бенуа Мандельброт лишь в 1970-х годах. А разнообразие видов фракталов в природе значительно больше того, что могут дать результаты компьютерных вычислений. нечто невероятное – Самые лучшие и интересные новости по теме: Геометрия, идеально, красота на развлекательном портале Эволюция знает, как порадовать любителей фракталов и симметрии – 88 фотографий Образец, Флора, Композиция, Закономерности В Природе, Настенные Росписи, Макросъемки, Листья.

Феномен жизни во фрактальной Вселенной

Фракталы, впервые названные математиком Бенуа Мандельбротом в 1975 году, представляют собой специальные математические наборы чисел, которые демонстрируют сходство во всем диапазоне масштабов, то есть они выглядят одинаково независимо от того, насколько они велики или малы. Еще одна характеристика фракталов заключается в том, что они демонстрируют большую сложность, обусловленную простотой - некоторые из самых сложных и красивых фракталов можно создать с помощью уравнения, состоящего всего из нескольких членов. Подробнее об этом позже. В природе Множество Мандельброта Одна из вещей, которые привлекли меня к фракталам, это их повсеместное распространение в природе.

Не проявляется ли здесь фрактальная сущность мира?

Сейчас, конечно, существует огромный разрыв между общей теорией относительности, которая объясняет возникновение нашей Вселенной и ее устройством, и фрактальной математикой. Но кто знает? Возможно, это все когда-то будет приведено к «общему знаменателю», и мы посмотрим на окружающий нас космос совсем другими глазами. К практическим делам Подобных примеров можно приводить много.

Но давайте вернемся к более прозаическим вещам. Вот, например, экономика. Казалось бы, причем здесь фракталы. Оказывается, очень даже причем.

Пример тому — фондовые рынки. Практика показывает, что экономические процессы носят зачастую хаотичный, непредсказуемый характер. Существовавшие до сегодняшнего дня математические модели, которые пытались эти процессы описывать, не учитывали одного очень важного фактора — способность рынка к самоорганизации. Вот тут на помощь и приходит теория фракталов, которые имеют свойства «самоорганизации», воспроизводя себя на уровне разных масштабов.

Конечно, фрактал является чисто математическим объектом. И в природе, да и в экономике, их не существует. Но есть понятие фрактальных явлений. Они являются фракталами только в статистическом смысле.

Тем не менее симбиоз фрактальной математики и статистики позволяет получить достаточно точные и адекватные прогнозы. Особенно эффективным этот подход оказывается при анализе фондовых рынков. И это не «придумки» математиков. Экспертные данные показывают, что многие участники фондовых рынков тратят немалые деньги на оплату специалистов в области фрактальной математики.

Что же дает теория фракталов? Она постулирует общую, глобальную зависимость ценообразования от того, что было в прошлом. Конечно, локально процесс ценообразования случаен. Но случайные скачки и падения цен, которые могут происходить сиюминутно, имеют особенность собираться в кластеры.

Которые воспроизводятся на больших масштабах времени. Поэтому, анализируя то, что было когда-то, мы можем прогнозировать, как долго продлиться та или иная тенденция развития рынка рост или падение. Таким образом, в глобальном масштабе тот или иной рынок «воспроизводит» сам себя. Допуская случайные флуктуации, вызванные массой внешних факторов, в каждый конкретный момент времени.

Но глобальные тенденции сохраняются. Вот вам и фракталы! Чем мы дальше уменьшаем масштаб, тем структура фрактала становится все более сложной. Но они воспроизводят себя, так же как это делает фондовый рынок.

Заключение Почему мир устроен по фрактальному принципу? Ответ, возможно, состоит в том, что фракталы, как математическая модель, обладают свойством самоорганизации и самоподобия. При этом каждая их форма см. Не так ли и наш мир устроен?

А вот общество. Появляется какая-нибудь идея. Сначала довольно абстрактная. А потом «проникает в массы».

Да как-то трансформируется. Но в целом сохраняется. И превращается на уровне большинства людей в целеуказание жизненного пути.

Об открытии сообщается в статье, опубликованной в журнале Nature. Молекулярным фракталом оказался микробный фермент — цитратсинтазу цианобактерии, которая спонтанно собирается в структуру, известную как треугольник Серпинского. Эта структура представляет собой треугольный узор, который состоит из меньших треугольников. До сих пор ученые не встречали подобные формы, которые сохраняли бы свое самоподобие в больших масштабах.

Пожаловаться Фракталы в природе. Наша природа удивительна и у нее есть свои закономерности, которые ученые постоянно изучают. Одним из таких исследований является изучение фракталов в природе.

Похожие новости:

Оцените статью
Добавить комментарий