Главная» Новости» Незатухающие колебания примеры.
Гармонические колебания и их характеристики.
Примеры автоколебаний Незатухающие колебания маятника часов за счёт постоянного действия тяжести заводной гири; Колебания скрипичной струны под воздействием равномерно движущегося смычка. Приведи пример вариантов незатухающих колебаний Просмотров 43 Незатухающие колебания — это физический процесс, при котором система продолжает колебаться без потери энергии. Уравнение незатухающих колебаний Незатухающие колебания являются одним из видов колебаний, при которых отсутствует потеря энергии со временем.
Незатухающие колебания. Автоколебания
Механические колебания | теория по физике 🧲 колебания и волны | Распространенным примером незатухающих колебаний являются волны переменного тока или напряжения, качающийся маятник в вакууме и т.д. |
Незатухающие колебания. Автоколебания | Распространенным примером незатухающих колебаний являются волны переменного тока или напряжения, качающийся маятник в вакууме и т.д. |
Механические колебания | теория по физике 🧲 колебания и волны
С течением времени она может изменяться по разным законам. Определение 1 Установившиеся вынужденные колебания всегда происходят с частотой внешней силы. Частоту свободных колебаний определяют параметры системы. Однако из-за сил трения свободные колебания в определенный момент затухают, поэтому по прошествии времени в системе сохраняются лишь стационарные колебания с той частотой, которая соответствует внешней вынуждающей силе.
Рассмотрим силу сопротивления, пропорциональную скорости v движения такая зависимость характерна для большого класса сил сопротивления :.
Знак "минус" показывает, что направление силы сопротивления противоположно направлению скорости движения тела. Учитывая, что , запишем второй закон Ньютона в виде:. В новых обозначениях дифференциальное уравнение затухающих колебаний имеет вид:. Это линейное дифференциальное уравнение второго порядка.
Уравнение затухающих колебаний есть решение такого дифференциального уравнения:. В приложении 1 показано получение решения дифференциального уравнения затухающих колебаний методом замены переменных. Частота затухающих колебаний: физический смысл имеет только вещественный корень, поэтому. Период затухающих колебаний:.
Смысл, который вкладывался в понятие периода для незатухающих колебаний, не подходит для затухающих колебаний, так как колебательная система никогда не возвращается в исходное состояние из-за потерь колебательной энергии. При наличии трения колебания идут медленнее:.
Знак «-» указывает, что сила упругости всегда направлена в сторону, противоположную направлению смещения, то есть к положению равновесия. При отсутствии трения упругая сила 1. Эту частоту называют собственной. Таким образом, свободные колебания при отсутствии трения являются гармоническими, если при отклонении от положения равновесия возникает упругая сила 1.
Собственная круговая частота является основной характеристикой свободных гармонических колебаний. Эта величина зависит только от свойств колебательной системы в рассматриваемом случае - от массы тела и жесткости пружины. Амплитуда свободных колебаний определяется свойствами колебательной системы m, k и энергией, сообщенной ей в начальный момент времени. При отсутствии трения свободные колебания, близкие к гармоническим, возникают также и в других системах: математический и физический маятники теория этих вопросов не рассматривается рис.
Однако из-за сил трения свободные колебания в определенный момент затухают, поэтому по прошествии времени в системе сохраняются лишь стационарные колебания с той частотой, которая соответствует внешней вынуждающей силе. Пример 1 Разберем пример. У нас есть тело на пружине, совершающее вынужденные колебания см. Приложим внешнюю силу, обозначенную F.
Приведи пример вариантов незатухающих колебаний
Якорь притягивается, и боёк, связанный с ним, ударяет по чашечке звонка. При притягивании якоря между ним и винтом 3 образуется зазор, ток прерывается, электромагнит обесточивается, и якорь силой пружины 4 возвращается в исходное положение. Цепь электромагнита при этом снова замыкается, и боёк ещё раз ударяет по чашечке. Так периодически повторяется работа звонка, пока кнопка К нажата. Аналогично можно получить автоколебания со звуковыми частотами, возбудив незатухающие колебания камертона, если между ножками камертона поместить электромагнит 2. По катушке электромагнита проходит ток, намагничивая сердечник, который притягивает ножку камертона, поднимая её вверх. Цепь размыкается, и ножка камертона под действием силы тяжести опускается вниз. Цепь замыкается и далее всё повторяется.
Электромеханические автоколебательные системы, подобные рассмотренным в технике применяются очень широко. Но есть и чисто механические колебательные устройства, например маятниковые часы. Незатухающие колебания маятника 3, показанных на рисунке часов, происходят за счёт потенциальной энергии поднятой гири 2. Колесо с косыми зубьями 1 жестко скреплено с зубчатым барабаном, через который перекинута цепь с гирей 2. К маятнику 3 приделана перекладина 4 анкер , на концах которой укреплены пластинки 5, изогнутые по окружности с центром на оси маятника 6. Анкер даёт возможность ходовому колесу повернуться только на один зуб за каждые половины периода маятника.
Анкер даёт возможность ходовому колесу повернуться только на один зуб за каждые половины периода маятника.
Пока зуб ходового колеса соприкасается с изогнутой поверхностью левой или правой пластинки 5, маятник не получает толчка, а лишь слегка тормозится из-за трения. Но в те моменты, когда зуб ходового колеса "чиркает" по торцу пластинки 5, маятник получает толчок в направлении своего движения. Таким образом, маятник совершает незатухающие колебания, так как он сам в определённых положениях даёт возможность ходовому колесу подтолкнуть себя в нужном направлении. Эти толчки и восполняют расход энергии на трение. Период колебаний почти совпадает с периодом собственных колебаний маятника, то есть зависит от его длины. Итак, при автоколебаниях система сама управляет действующей на неё силой и сама регулирует поступление энергии для создания незатухающих колебаний. Характерная черта автоколебаний состоит в том, что их амплитуда определяется свойствами самой системы, а не начальным отклонением или толчком, как у свободных колебаний.
Рулёва, к. Подписывайтесь на канал. Ставьте лайки. Пишите комментарии. Предыдущая запись: Истоки развития телефона, радиосвязи и звукозаписи. Следующая запись: Колебательный контур.
Проверить истинность утверждения 4. Для этого необходимо дать определение периоду колебаний, установить период колебаний тела и сравнить его со значением, приведенным в утверждении 4. Проверить истинность утверждения 5. Для этого необходимо дать определение частоте колебаний, установить частоту колебаний тела и сравнить его со значением, приведенным в утверждении 5. Записать ответ в виде последовательности цифр, не разделенных знаками препинания и пробелами. Решение: Проверяем истинность утверждения 1, согласно которому в момент времени 1,50 с ускорение груза максимально. Ускорение груза, колеблющегося на горизонтальной пружине, можно выразить из 2 закона Ньютона учитываем, что на тело действует сила упругости : Отсюда ускорение равно: Отношение жесткости пружины к массе груза постоянно, так как эти величины не изменяются. Следовательно, ускорение пропорционально координате колеблющегося тела. И если в момент времени 1,50 с координата тела отклонение от положения равновесия максимальна, то ускорение тоже максимально. Однако в соответствии с данными таблицы, в этот момент времени координата тела равна 0,0 см. Следовательно, утверждение 1 неверно. Проверяем истинность утверждения 2, согласно которому в момент времени 0,50 с кинетическая энергия груза максимальна. Полная механическая энергия тела равна сумме его потенциальной и кинетической энергий: Когда кинетическая энергия груза максимальна, потенциальная энергия равна 0. А потенциальная энергия тела, колеблющегося на пружине, определяется формулой: Потенциальная энергия будет равна 0 только в том случае, если в данный момент времени координата тела равна 0 оно находится в положении равновесия. Следовательно, кинетическая энергия груза в момент времени 0,50 с будет максимальна, если координата тела в это время равна 0. В соответствии с данными таблицы, это действительно так. Следовательно, утверждение 2 верно.
В электромагнитном контуре к уменьшению энергии колебаний приводят тепловые потери в проводниках, образующих систему. Когда израсходуется вся энергия, запасенная в колебательной системе, колебания прекратятся. Поэтому амплитуда затухающих колебаний уменьшается, пока не станет равной нулю. Затухающие колебания, как и собственные, в системах, разных по своей природе, можно рассматривать с единой точки зрения — общих признаков. Однако, такие характеристики, как амплитуда и период, требуют переопределения, а другие — дополнения и уточнения по сравнению с такими же признаками для собственных незатухающих колебаний. Общие признаки и понятия затухающих колебаний следующие: Дифференциальное уравнение должно быть получено с учетом убывания в процессе колебаний колебательной энергии. Уравнение колебаний — решение дифференциального уравнения. Амплитуда затухающих колебаний зависит от времени. Частота и период зависят от степени затухания колебаний. Фаза и начальная фаза имеют тот же смысл, что и для незатухающих колебаний. Механические затухающие колебания Механическая система: пружинный маятник с учетом сил трения.
Основные выводы
- Незатухающие колебания. Автоколебания
- Незатухающие колебания. Автоколебательные системы
- Механические колебания | теория по физике 🧲 колебания и волны
- Что такое незатухающие колебания
Механические колебания | теория по физике 🧲 колебания и волны
Мы знаем, что вынужденные колебания, при которых потери энергии восполняются работой периодической внешней силы, являются незатухающими. Но откуда взять внешнюю периодическую силу? Ведь она в свою очередь требует источника каких-то незатухающих колебаний. Незатухающие колебания создаются такими устройствами, которые сами могут поддерживать свои колебания за счет некоторого постоянного источника энергии. Такие устройства называются автоколебательными системами. На рис. Груз висит на пружине, нижний конец которой погружается при колебаниях этого пружинного маятника в чашечку со ртутью. Один полюс батареи присоединен к пружине наверху, а другой — к чашечке со ртутью. При опускании груза электрическая цепь замыкается и по пружине проходит ток. Витки пружины благодаря магнитному полю тока начинают при этом притягиваться друг к другу, пружина сжимается, и груз получает толчок кверху.
Тогда контакт разрывается, витки перестают стягиваться, груз опять опускается вниз, и весь процесс повторяется снова. Таким образом, колебание пружинного маятника, которое само по себе затухало бы, поддерживается периодическими толчками, обусловленными самим колебанием маятника. При каждом толчке батарея отдает порцию энергии, часть которой идет на подъем груза.
Устройства, которые сами могут поддерживать свои колебания, называются автоколебательными системами. Рассмотрим, например, как возникают автоколебания груза на пружине. Вся эта система подсоединяется к источнику постоянного напряжения батарее так, что при опускании груза электрическая цепь замыкается, и по пружине проходит ток. Так как ток в соседних витках течёт в одну сторону, то витки катушки притягиваются друг к другу, пружина сжимается и груз получает толчок кверху. Электрическая цепь разрывается, витки пружины перестают притягиваться друг к другу, и груз под действием силы тяжести опускается вниз. Далее всё повторяется. Таким образом, колебания пружинного маятника, которые в отсутствие источника затухали бы, в рассмотренном примере поддерживаются толчками, обусловленными самим колебанием маятника. При каждом толчке батарея отдаёт порцию энергии, часть которой идёт на подъём груза. А в самой батарее энергия появляется за счёт химической реакции. Система сама управляет действующей на неё силой и сама регулирует поступление энергии от источника. Колебания не затухают потому, что за каждый период батарея отдаёт столько энергии, сколько расходуется системой за то же время на трение и другие потери. Период таких колебаний практически совпадает с периодом собственных колебаний груза на пружине, то есть определяется жёсткостью пружины и массой груза. Подобным же образом поддерживаются незатухающие колебания молоточка в электрическом звонке, питающимся от сети через понижающий трансформатор. Здесь периодические толчки создаются электромагнитом, притягивающим якорёк, укреплённый на молоточке.
Характеристики затухающих колебаний Затуханием колебаний называется постепенное уменьшение амплитуды колебаний с течением времени, обусловленное потерей энергии колебательной системой. Собственные колебания без затухания — это идеализация. Причины затухания могут быть разные. В механической системе к затуханию колебаний приводит наличие трения. В электромагнитном контуре к уменьшению энергии колебаний приводят тепловые потери в проводниках, образующих систему. Когда израсходуется вся энергия, запасенная в колебательной системе, колебания прекратятся. Поэтому амплитуда затухающих колебаний уменьшается, пока не станет равной нулю. Затухающие колебания, как и собственные, в системах, разных по своей природе, можно рассматривать с единой точки зрения — общих признаков. Однако, такие характеристики, как амплитуда и период, требуют переопределения, а другие — дополнения и уточнения по сравнению с такими же признаками для собственных незатухающих колебаний. Общие признаки и понятия затухающих колебаний следующие: Дифференциальное уравнение должно быть получено с учетом убывания в процессе колебаний колебательной энергии. Уравнение колебаний — решение дифференциального уравнения.
Пусть в колебательном контуре конденсатор устроен так, что можно изменять его емкость, например сближая или раздвигая пластины, и пусть в контуре уже существуют колебания небольшой амплитуды. В тот момент, когда заряд на пластинах конденсатора максимален, раздвинем мгновенно пластины, немного уменьшив тем самым его емкость. При этом придется совершить некоторую работу, которая пойдет на увеличение электростатической энергии. В момент, когда ток в контуре максимален, а конденсатор полностью разряжен, сблизим пластины до прежнего расстояния. При этом никакой работы не совершается, и электромагнитная энергия контура остается прежней. Еще через четверть периода колебаний, когда заряд снова достигнет максимального значения в противоположной полярности , опять раздвинем пластины, добавив тем самым еще порцию энергии, и т. Таким образом, периодически изменяя емкость конденсатора в нужные моменты времени, можно добиться раскачки электромагнитных колебаний, если добавляемая за период энергия превосходит потери в контуре за то же время. Такой способ возбуждения колебательной системы называется параметрическим возбуждением контура или параметрическим резонансом. В отличие от вынужденных колебаний под действием периодической вынуждающей силы, когда резонанс происходит при совпадении частоты вынуждающей силы с собственной частотой, параметрический резонанс возможен при частоте изменения параметра, вдвое превышающей собственную: Параметрическая раскачка колебаний может также происходить, когда параметр изменяется не только дважды за период собственных колебаний, но и когда он изменяется один раз за период, два раза за три периода, один раз за два периода, и т. Порог параметрического резонанса. Параметрический резонанс представляет собой пороговый эффект, так как он наступает только тогда, когда поступление энергии превосходит потери, т. В линейной колебательной системе при превышении порога происходит неограниченное нарастание амплитуды колебаний. Связано это с тем, что при параметрическом резонансе и потери, и поступление энергии пропорциональны квадрату амплитуды. Этим параметрический резонанс в линейной системе отличается от вынужденных колебаний при силовом воздействии, где поступление энергии пропорционально первой степени амплитуды, а потери — по-прежнему квадрату амплитуды, что приводит, как мы видели, к конечной амплитуде установившихся вынужденных колебаний. При параметрическом резонансе рост амплитуды ограничен только нелинейными свойствами колебательной системы. Параметрический резонанс и вынужденные колебания. При непосредственном силовом воздействии энергия возбужденных колебаний возникает за счет работы внешней силы, совершаемой при движении системы. При параметрическом воздействии увеличение запаса энергии колебаний происходит обязательно с превращением энергии одного вида в другой. Так, например, механическая работа, производимая при изменении емкости конденсатора в моменты раздвижения его пластин, приводит к изменению запаса электростатической энергии и, следовательно, общего запаса энергии колебаний в контуре. Заметим, что параметрическое возбуждение колебаний возможно лишь при изменении одного из энергоемких параметров, С или с которыми связана энергия электрического и магнитного поля. Очевидно, что изменение диссипативного параметра не может вызвать раскачки колебаний. В заключение отметим еще раз основные различия вынужденных колебаний и параметрического резонанса.
Вынужденные колебания. Резонанс. Автоколебания
Однако незатухающие колебания возможны не только при периодическом внешнем воздействии, но и в некоторых других случаях — в так называемых автоколебательных и параметрических системах. Колебания бывают незатухающими и затухающими. Рассмотрим динамику собственных незатухающих колебаний пружинного маятника. Смысл, который вкладывался в понятие периода для незатухающих колебаний, не подходит для затухающих колебаний, так как колебательная система никогда не возвращается в исходное состояние из-за потерь колебательной энергии.
Гармонические колебания и их характеристики.
Примеры незатухающих колебаний Незатухающие колебания широко применяются в различных областях науки и техники. Другим примером незатухающих колебаний является электромагнитные колебания, которые возникают в радиочастотных колебательных контурах. Примеры незатухающих колебаний в природе 1. Плазменные колебания: В плазме, которая является четвертым состоянием вещества, происходят незатухающие колебания. Примером незатухающих колебаний может служить колебание маятника с нулевым затуханием.
Механические колебания
- Понятие резонанса
- Характеристики затухающих колебаний
- Приведи пример вариантов незатухающих колебаний
- Причины колебаний в разных системах
- Вынужденные колебания. Резонанс. Автоколебания
Динамика колебательного движения
- Основные сведения о затухающих колебаниях в физике
- Ответы : Примеры затухающих и незатухающих колебаний
- Затухающие и незатухающие колебания: разница и сравнение
- Затухающие и незатухающие колебания: разница и сравнение
§ 30. Незатухающие колебания. Автоколебательные системы
незатухающие колебания, так как амплитуда и, следовательно, полная энергия колебаний не менялись. незатухающие колебания, так как амплитуда и, следовательно, полная энергия колебаний не менялись. Примеры незатухающих колебаний Незатухающие колебания встречаются в различных системах и процессах. Смысл, который вкладывался в понятие периода для незатухающих колебаний, не подходит для затухающих колебаний, так как колебательная система никогда не возвращается в исходное состояние из-за потерь колебательной энергии. Примеры незатухающих колебаний Незатухающие колебания широко применяются в различных областях науки и техники. Другим примером незатухающих колебаний является электромагнитные колебания, которые возникают в радиочастотных колебательных контурах.