Рассмотрим, почему кусок железа притягивается к магниту.
«Что такое магнит и почему он притягивает железо?» Учёные ответы на детские вопросы...
В частности, энтузиасты успешно используют магниты для поиска металлов и находят с его помощью редкие монеты царской эпохи или советских времен. При грамотном выборе места для поисковых работ удается обнаружить очень ценные и интересные находки. Хорошо притягиваются царские монеты, которые выпускались на монетном дворе Екатеринбурга. За это стоит благодарить высокое содержание железа в руде на одном из медных приисков. Кроме того, поисковикам часто попадаются монеты времен Анны Иоанновны — в их составе присутствует никель. Выгодно заказывайте поисковые магниты Двусторонний поисковый магнит F120x2 Интернет-магазин «Мир Магнитов» предлагает вам выбрать поисковый магнит с подходящим усилием отрыва, чтобы успешно решать любые поставленные задачи.
Вполне работоспособная. Не хватает лишь электронного блока управления.
К сожалению, специалисты-схемотехники предлагают лишь блоки управления классической схемы. Но эти блоки работают неправильно. И, как правило, сгорают после непродолжительной работы. Переубедить специалистов практически невозможно. В производстве данное устройство совсем не дорогое. Как уже говорилось ранее, наибольшую трудность вызывает производство катушек индуктивности. Но при массовом производстве на станках автоматах, их производство становится простым и весьма не дорогим.
Производство постоянных магнитов также уже широко практикуется. Остальные комплектующие тоже весьма просты, и их производство возможно на любом механическом заводе. Причём катушки индуктивности и постоянные магниты применяются идентичными, как на машинах малой мощности, так и на больших машинах. Разница только в количестве. Поэтому начав производство машин малой мощности, которых требуется огромное количество, нетрудно перейти к производству больших машин. Где могут применяться подобные устройства? Везде где есть потребность в электроэнергии.
Хоть на балконе вашей квартиры, хоть на даче, хоть в пустыне, хоть в тайге или тундре. Хоть на Северном и Южном полюсе. Хоть на Луне или Марсе. Даже в открытом космосе. Данное устройство абсолютно автономно. И абсолютно безвредно как для человека, так и для окружающей среды. Требования по обслуживанию также минимальны.
Необходимо лишь вовремя менять подшипники. Но если на устройство поставить магнитные подшипники, которые уже разработаны, но пока не производятся, обслуживание сведётся лишь к нажатию кнопки включения. Всё остальное возьмёт на себя автоматика. Производство данного устройства возможно наладить за самый короткий срок. Срок окупаемости минимальный, поскольку при массовом производстве себестоимость мизерная. А потребность огромная. Рынок сбыта может оцениваться триллионами долларов.
Однако, если такой магнит примаг.. Неодимовые магниты оптом купить бывает необходимо купить в трех случаях: Если вы предприниматель, производящий на их основе свою продукцию Если вы владелец магазина инструментов и скобяных т.. Какие металлы не магнитятся То, что металлические предметы притягиваются к магниту, дети знают с раннего детства. Потом не раз проводили эксперименты в школе, изучая, что такое магнит. А также вешали на холодильник магниты. Однако, дети могли также обнаружить, что не все металлы притягиваются к магниту.
Например, ложка, вроде металлическая, а не притягивается. В этой статье разберем, какие металлы не магнитятся к магниту. Что такое магнит Магнит — изделие, у которого есть свое магнитное поле, притягивающее к себе металлические предметы. Его изготавливают из железа и некоторых сплавов, а также кобальта и никеля. Различные металлы имеют разную магнитную восприимчивость, поэтому по-разному реагируют при поднесении их к магниту, бывают: Атомы любого вещества состоят из ядра и движущихся вокруг него электронов, которые являются примером простейшего магнита. Магнитные поля электронов могут усиливать друг друга или компенсировать: Орбитальные магнитные моменты связаны с движением электрона вокруг оси Спиновые магнитные моменты связаны с движением электрона вокруг своей оси Ферромагнетики Феромгнетики — вещества, которые могут намагничиваться при поднесении их к магниту.
Почему так происходит? Вокруг каждого ядра атома такого вещества вращается непарное количество электронов. Магнитные поля этих электронов не скомпенсированы. Это такие вещества как, железо, никель, гадолиний, кобальт, диспрозий, гольмий, тербий. Ферромагнетики притягиваются к магниту и сами легко намагничиваются. Парамагнетики У паромагнетиков все магнитные моменты каждого атома скомпенсированы.
Если такое вещество поднести к магниту, то все магнитные поля будут выстроены в одном направлении. У него появится собственное магнитное поле с отрицательным и положительным полюсом. Такое вещество притянется к магниту и может и само намагнититься и притягивать металлические предметы Диамагнетики У диамагнетиков скомпенсированы только спиновые моменты. Если поднести такое вещество к магниту, то к орбитальному магнитному моменту добавится движение электронов под воздействием внешнего магнитного поля. Это создаст дополнительный ток, магнитное поле которого будет направлено против внешнего магнитного поля, поэтому диамагнетики будут отталкиваться от магнита. Поэтому, если говорить научным языком, о том, какие металлы не магнитятся к магниту , то это диамагнетики, в их список входят литий и бериллий.
Подведем итог: металлы, которые не магнитятся Итак, хорошо магнитятся ферромагнетики, это кобальт, железо, никель, а также шесть лантаноидов. Различные сплавы железа также хорошо притягиваются. Если говорить в общем, то сплавы черных металлов хорошо притягиваются, а сплавы цветных металлов — не притягиваются. Когда магнит притягивает к себе металлические предметы, это кажется волшебством, но в действительности «волшебные» свойства магнитов связаны всего лишь с особой организацией их электронной структуры. Поскольку электрон, вращающийся вокруг атома, создает магнитное поле, все атомы являются маленькими магнитами; однако в большинстве веществ неупорядоченные магнитные эффекты атомов уравновешивают друг друга. Магнитная цепочка Касание конца магнита к металлическим скрепкам приводит к возникновению у каждой скрепки северного и южного полюса.
Эти полюса ориентируются в том же направлении, что и у магнита. Каждая скрепка стала магнитом. Бесчисленные маленькие магнитики Некоторые металлы имеют кристаллическую структуру, образованную атомами, сгруппированными в магнитные домены. Магнитные полюса доменов обычно имеют различное направление красные стрелки и не оказывают суммарного магнитного воздействия.
Существует два вида силы сцепления: на отрыв и на сдвиг. Какая из двух характеристик важнее, зависит от задач, которые магнит выполняет. Сила сцепления на отрыв — это усилие, которое необходимо приложить, чтобы оторвать магнитный материал от поверхности. В характеристиках изделия указана его сила притяжения в идеальных условиях, при которых он полностью прилегает к гладкому ровному стальному листу толщиной не менее 20 мм и отрывается от него под прямым углом. Поскольку на практике условия далеки от идеальных, то и удерживающая сила в реале будет ниже заявленной. Сила сцепления на сдвиг применима, когда магнит перемещается вдоль поверхности изделия.
Если нагрузка выше заявленной характеристики, то предмет будет съезжать по вертикальной поверхности. Например, магнит прямоугольник 20х10х4 мм выдерживает нагрузку на отрыв 4 кг, но при использовании на сдвиг его предельная нагрузка будет равняться 1,8 кг. Для многих применений сила на сдвиг является основной характеристикой неодимового магнита. Сцепная сила зависит от многих факторов. Например, на шероховатой поверхности она несколько ниже, чем на гладкой и ровной поверхности.
Глава 34. Магнетизм. Опыт и теория
3 разных типа магнитов и их применение | тем хуже притягиваются. |
ПОЧЕМУ МАГНИТ ПРИТЯГИВАЕТ ЖЕЛЕЗО | Особенность железа в том, что в магнитном поле внешние электроны его атомов ориентируются определенным образом. |
Почему магнит притягивает железо? | Объясни мне, как ребенку!
Электроны, движущиеся вокруг атомного ядра, несут отрицательный заряд. Направленное перемещение зарядов с одного места на другое называется электрическим током. Электрический ток формирует около себя магнитное поле. Силовые линии магнитного поля Это поле своими силовыми линиями, как петлей, охватывает путь электрического тока, подобно арке, которая стоит над дорогой.
Например, когда включают настольную лампу и по медным проводам течет ток, то есть электроны в проводе перескакивают от атома к атому и вокруг провода создается слабое магнитное поле. В линиях высоковольтных передач ток намного сильнее, чем в настольной лампе, поэтому вокруг проводов таких линий формируется очень сильное магнитное поле. Таким образом, электричество и магнетизм — это две стороны одной и той же медали — электромагнетизма.
Магнит и магнитное поле: почему притягивается только металл? Любой магнит, который мы видим в своей жизни, имеет некоторые необычные черты. Самое главное свойство — это притяжение к металлическим или стальным предметам.
Вторая черта — наличие полюсов. Чтобы их проверить, достаточно начать приближать один магнит к другому. Притяжение произойдет между разными полюсами южный и северный.
Одноименные полюса при этом отталкиваются. Немного о магнитном поле Читайте также: Советы бывалых: морской узел для буксировки и новое применение лопаты Магнитное поле появляется благодаря электронам, они двигаются вокруг атома, неся отрицательный заряд. Постоянное перемещение производит электрический ток.
Движение тока производит магнитное поле, сила которого напрямую зависит от силы тока. Учитывая всю информацию выше, получаем полную связь между электричеством и магнетизмом, которые представляют такое понятие, как электромагнетизм. Однако магнитное поле получается не только движением электронов вокруг ядра, в большей степени его формирует движение атомов вокруг своей оси.
Некоторые материалы имеют магнитное поле, где атомы двигаются без определенного порядка, подавляя друг друга. Если говорить о металлических предметах, то здесь атомы упорядочены в группы, которые ориентируются в одну сторону. Благодаря возможности воздействовать на атомы, ориентируя их в одном направлении, и сложить магнитные поля, железные предметы могут намагничиваться.
Они держат 600 кг, не намокают, не тянутся. Можно далеко закинуть, и руки не режут. Другой конец обязательно надо прикрепить к ограждению, парапету моста, ближайшему дереву, кусту. Некоторые берут с собой колышки, типа, к которым бабки в деревне коз привязывают. На крайний случай — закрепляют на ноге. Иначе магнит может улететь и с концами… А он несколько тысяч стоит. Плюс шнур рублей 500.
Владимир выдал мне прорезиненные толстые перчатки. Техника безопасности! Иначе можно легко порезать руки ржавыми находками. И начинается «рыбалка». Раскручиваю на берегу конец веревки с магнитом, забрасываю, жду немного, чтобы он лег на дно, и медленно тащу назад. Вспомнился вдруг пушкинский Балда. Как стал он на берегу веревку крутить, да конец ее в море мочить.
Чтобы веревкой море морщить, и бесовское племя корчить. Бесы-то задолжали попу оброк. Интересно, какой оброк вытащим мы с Порываевым? На пятом забросе тропаревский чертенок прицепил мне к магниту странную монетку. Иду к Владимиру, он в монетах дока, известный кладоискатель. По берегам обычно немало гастарбайтеров бродит. Рыбу ловят на пропитание…» Вскоре еще одна монетка прицепилась.
Наша, пятирублевая. Порываеву бесы подкинули два рубля. И то добыча. Магнит с тремя сомами и пятью рублями. Только сталь, железо, чугун. Так что серьезных кладов не жди. Лишь копейки, рубли ельцинского периода, да современные российские.
Так называется обычная сталь, покрытая тончайшим слоем никеля, мельхиора, латуни. Хотя бывают случаи… В Брянской области знакомый кладоискатель попал на заброшенный хутор. Опустил магнит в колодец. Чувствует, что-то мощное прицепилось. Тянет, тянет — отвалился груз. Поднял только сковородку. А к ней изнутри «прикипел» серебряный советский полтинник 20-х годов.
На следующий год приехал с насосом, выкачал колодец. На дне крынка с несколькими сотнями серебряных полтинников. Типичный «нэпманский клад», весьма распространенный у нас. Сковородку неведомый хуторянин в сталинские времена вместо крышки смолой приклеил к крынке с сокровищем. В надежде использовать в будущем. Но не смог. Возможно, раскулачили бедолагу, отправили в лагеря.
В качестве него будем использовать противовес из двух яблок, штурка и деревянной перемычки. В статике конструкция стабильна, а вот если у магнита есть сила — тогда яблоко придет в движение. При подведении магнита к яблоку мы конструкция пришла в движение. Но вместо того, чтобы приблизиться, магнит начал отталкивать яблоко.
И в этом есть главный плюс магнитно-резонансной томографии: нет гамма-лучевого воздействия на обследуемого человека нет. Вопрос: Какова роль магнита в данной диагностике?
Аппарат для проведения МР-томографии представляет собой большой магнит. Магнит является самой дорогой частью МР томографа, создающей сильное устойчивое магнитное поле. Тело человека находится в его полости, которая защищена пластиковым корпусом. При этом такое изучение тканей не приводит к наступлению патологических состояний. Вопрос: Имеются ли противопоказания такого метода диагностики? К абсолютным противопоказаниям этого метода диагностики относят: наличие несъемных электронных устройств; присутствие в организме металлических инородных тел; наличие внутричерепных аневризм, клипированных ферромагнитным материалом; наличие татуировок на теле с содержанием металлических соединений Приложение 4.
Если роль магнита для улучшения качества воды под сомнением, то необходимость его для диагностики некоторых заболеваний несомненна. Магнитотерапия в домашних условиях Мы решили пронаблюдать влияние магнитной повязки на голову и магнитного наколенника в домашних условиях в течение нескольких дней. Эти предметы предназначены для снятия болевого синдрома и воспалительных процессов, так как при их применении активизируется поступление кислорода к тканям, а также для лечения заболеваний сосудов, суставов, путем воздействия постоянного магнитного поля на биологически активные зоны человека. Эксперимент проводили на моем отце, страдающем от постоянных головных болей и спортивных травм коленей. Опыт 1. Магнитная повязка для головы.
Повязка изготовлена из мягкой эластичной ткани и содержит 4 постоянных магнита, расположенных на одном уровне северным полюсом к телу, создающих магнитное поле силой 800 Гаусс. Боль притуплялась примерно в течение часа. Повязку можно носить до появления положительного эффекта, но не более 6 часов подряд. Общая продолжительность использования повязки зависит от тяжести заболевания и индивидуальной переносимости. Теперь папа старается обходиться без лекарств и, даже если нет головных болей, он ежедневно надевает повязку перед сном. Опыт 2.
Магнитный наколенник. Наколенник изготовлен из мягкой эластичной ткани черного или синего цвета Наколенник содержит 16 постоянных магнитов силой до 1000 Гаусс, расположенных равномерно по обе стороны от коленного сустава. В течение дня папа носит обычный наколенник, на ночь до утра надевает магнитный. Боль успокаивается через продолжительное количество времени в состоянии покоя. Носить наколенник можно длительное время, до появления положительного эффекта. Длительность ношения наколенника зависит от индивидуальной переносимости.
Итак, результативность применения магнита для снятия болевого синдрома и временного облегчения доказана Приложение 5. Эксперименты с магнитом Эксперимент 1. Делаем электромагнит! Для создания электромагнита понадобится тонкая медная проволока, две батарейки, бокс для батареек, бумага на неё будем наматывать медную проволоку , стальной стержень. Он необходим для усиления магнитного поля катушки. Мы обернули бумагой стальной стержень и намотали проволоку.
Медная проволока должна наматываться ровно, без пробелов. Зачистили концы проволоки. Вставили батарейки в бокс для батареек, соединили провода. Стержень не притягивает скрепки, он не магнитен. Как только мы включили питание, катушка стала притягивать скрепки. Мы поднесли к магниту компас и увидели, что стрелка компаса указывает на магнит.
К одному полюсу магнита она притягивается одним концом, а к другому — противоположным. При отключении батареек магнитные свойства катушки исчезают.
Почему у магнита два полюса?
Если роль магнита для улучшения качества воды под сомнением, то необходимость его для диагностики некоторых заболеваний несомненна. Магнитотерапия в домашних условиях Мы решили пронаблюдать влияние магнитной повязки на голову и магнитного наколенника в домашних условиях в течение нескольких дней. Эти предметы предназначены для снятия болевого синдрома и воспалительных процессов, так как при их применении активизируется поступление кислорода к тканям, а также для лечения заболеваний сосудов, суставов, путем воздействия постоянного магнитного поля на биологически активные зоны человека. Эксперимент проводили на моем отце, страдающем от постоянных головных болей и спортивных травм коленей.
Опыт 1. Магнитная повязка для головы. Повязка изготовлена из мягкой эластичной ткани и содержит 4 постоянных магнита, расположенных на одном уровне северным полюсом к телу, создающих магнитное поле силой 800 Гаусс.
Боль притуплялась примерно в течение часа. Повязку можно носить до появления положительного эффекта, но не более 6 часов подряд. Общая продолжительность использования повязки зависит от тяжести заболевания и индивидуальной переносимости.
Теперь папа старается обходиться без лекарств и, даже если нет головных болей, он ежедневно надевает повязку перед сном. Опыт 2. Магнитный наколенник.
Наколенник изготовлен из мягкой эластичной ткани черного или синего цвета Наколенник содержит 16 постоянных магнитов силой до 1000 Гаусс, расположенных равномерно по обе стороны от коленного сустава. В течение дня папа носит обычный наколенник, на ночь до утра надевает магнитный. Боль успокаивается через продолжительное количество времени в состоянии покоя.
Носить наколенник можно длительное время, до появления положительного эффекта. Длительность ношения наколенника зависит от индивидуальной переносимости. Итак, результативность применения магнита для снятия болевого синдрома и временного облегчения доказана Приложение 5.
Эксперименты с магнитом Эксперимент 1. Делаем электромагнит! Для создания электромагнита понадобится тонкая медная проволока, две батарейки, бокс для батареек, бумага на неё будем наматывать медную проволоку , стальной стержень.
Он необходим для усиления магнитного поля катушки. Мы обернули бумагой стальной стержень и намотали проволоку. Медная проволока должна наматываться ровно, без пробелов.
Зачистили концы проволоки. Вставили батарейки в бокс для батареек, соединили провода. Стержень не притягивает скрепки, он не магнитен.
Как только мы включили питание, катушка стала притягивать скрепки. Мы поднесли к магниту компас и увидели, что стрелка компаса указывает на магнит. К одному полюсу магнита она притягивается одним концом, а к другому — противоположным.
При отключении батареек магнитные свойства катушки исчезают. Правда, после нашего эксперимента железный сердечник немного намагнитился и превратился в слабый магнит. Этот магнит не постоянный, а временный.
Он работает только то время, пока по обмотке ток течет. Поэтому его назвали электромагнитом. Электромагнит сильнее и легче постоянного магнита.
А главное, магнитным полем электромагнита можно управлять. Поэтому электромагниты очень широко применяются в технике. Вывод: когда электричество бежит по проволоке, вокруг нее образуется магнитное поле.
На деле квантовая теория тут ни при чём: видна простая самоорганизация магнитных частиц атомов со стандартным магнитным моментом во внешнем магнитном поле, давно открытая Майером и легко воспроизводимая в магнитной жидкости и в порошке из магнитных опилок. А "квантовые маги" объясняют эти периодичные сгущения атомов бозе-эйнштейновской конденсацией с интерференцией атомных волн Де Бройля. Интерференцию будто бы подтверждает то, что от набегания одного облака атомов на другое в месте их пересечения видны полосы, типа интерференционных. Реально же виден обычный муаров узор, возникающий при наложении двух сеток.
Так и два облака атомов рубидия, формирующих в магнитном поле периодичные сетки тёмных узлов, образуют при наложении муаров узор, без следов интерференции. Выходит, квантовые краснобаи выдают желаемое за действительное, видя в обычных явлениях природы сверхъестественные. Взаимодействие магнитных частиц формирует не только правильные плоские структуры, но и чёткие пространственные комплексы, как показывает пример магнита, вытягивающий из магнитной жидкости пирамидальные игольчатые структуры, или симметрично обрастающий с двух сторон бородами магнитных опилок, а также пример объёмных фигур из магнитных шариков. Сходно формируется бипирамидальный каркас атома, образованный из магнитных частиц электронов и позитронов, рис.
Рассуждая формально, по теореме Ирншоу обычно считают, что конструкции из зарядов и магнитов нестабильны. Но при этом, как отмечал Томсон [ 11 ], не учитывают отклонений от закона Кулона на малых масштабах и осевое вращение электронов, придающее устойчивость магнитным системам [ 18 ]. Именно так атом и его пирамидальный атомный каркас приобретает стабильность без помощи квантовых законов. Ну а сами атомы, как недавно открыто, в процессе самосборки спонтанно организуются в пирамидальные наночастицы.
Приобретение такими микрокристаллами пирамидальной и часто многоступенчатой формы в виде пагод как у кристаллов висмута или золота , может быть связано не только с периодичным размещением атомов в кристалле, но отчасти и с формой самих атомов, обладающих многоуровневой пирамидальной структурой. Подобные кристаллы, сотовые и бипирамидальные структуры формируют и оптические солитоны — уединённые волны, взаимодействующие как магнитные частицы и вихри. Так что и без квантовых гипотез спонтанная организация электронов объясняет структуру электронных слоёв и спектров атомов по магнитной модели Ритца. Бипирамидальный каркас атома выделяет и элементы-ферромагнетики рис.
Именно среди них и их соединений открыты яркие ферромагнетики и антиферромагнетики. Даже графит C и твёрдый кислород O в некоторых состояниях оказались ферро- и антиферромагнитными, вопреки квантовой теории, но в согласии с прогнозом классической модели атома [ 10 ]. А соединение азота N с железом Fe оказалось самым сильным ферромагнетиком, превысив предел магнетизма из квантовой теории. В то же время переходные элементы нечётных периодов таблицы Менделеева например, платиновые металлы , у которых ожидался ферромагнетизм [ 12 ], лишены его.
Почему же ферромагнетизм присущ лишь немногим элементам? Всё дело в строении атомов: яркими магнитными свойствами обладают атомы с асимметричным строением, в которых магнитные моменты электронов не скомпенсированы. В пирамидальной модели атома такой асимметрией обладают как раз атомы чётных периодов таблицы, а в атомах нечётных периодов заполняются слои, зеркально симметричные предыдущим, и магнитные моменты электронов этих слоёв нейтрализуют друг друга, ориентируясь встречно. Такая встречная ориентация электронов, расположенных друг против друга, обусловлена не мистическими обменными силами, а ориентацией магнитных осей электронов вдоль магнитных силовых линий соседних электронов, отчего их магнитные моменты компенсируются.
Это видно на примере двух стрелок компаса: если компасы расположить рядом, то их стрелки установятся навстречу друг другу, создав в сумме лишь слабое магнитное поле как в антиферромагнетике, рис. Но одна стрелка или две стрелки, разнесённые далеко, ориентируются вдоль внешнего поля и создают заметное магнитное поле. Так и в атомах ферромагнетиков разнесённые электроны во внешнем поле или в поле соседних атомов ориентируются сонаправленно, усиливая внешнее поле тем заметней, чем их больше. Оттого у элементов начала чётных периодов, где электроны начинают заполнять новый слой, магнитные свойства ещё слабы.
Но, после заполнения электронами примерно половины периметра слоя, их общее магнитное поле уже достаточно для появления доменов, спонтанной намагниченности. Последующее заполнение периметра и рост числа электронов усиливает магнитные свойства: ферромагнетизм веществ нарастает. Но дальнейшее заполнение периметра делает слой всё более симметричным, и магнитные моменты уже отчасти компенсируются. Особенно это заметно при замыкании периметра и дальнейшем заполнении слоя электронами по сужающейся спирали, когда рядом с одними электронами становятся другие, нейтрализующие их магнитные моменты.
Оттого яркими магнитными свойствами обладают лишь элементы полупериметра чётных слоёв-периодов с их выраженной асимметрией рис. То же верно для ядер и элементарных частиц: у нейтральных идеально симметричных частиц магнитные моменты нулевые, а заряженные или асимметричные частицы обладают магнитным моментом. Так, нейтрон и протон, имея чуть асимметричную форму, обретают магнитный момент от несбалансированных моментов образующих их электронов и позитронов. Правда, соседние электроны и позитроны стремятся развернуться противоположно друг другу, как в антиферромагнетике, отчего их магнитное поле невелико — много меньше момента электрона.
А идеально симметричные пи-мезон и эта-мезон, где моменты частиц точно скомпенсированы, вообще лишены магнитного момента. Так и ферромагнетизм, и антиферромагнетизм явно зависят от симметрии атома и кристаллической решётки. Эту важную роль симметрии вскрыл уже Пьер Кюри, выдающийся исследователь магнетизма и кристаллов. Не исключено, что формирование магнитным полем объёмных структур из магнитных шариков, порошков и жидкостей позволит сконструировать машины и роботы рис.
Части такой машины могут даже отделяться, дистанционно удерживаясь магнитным полем. Такой электромагнитный подвес [ 18 ] уже применяют в технике в транспорте на магнитной подушке, в подшипниках конструкции Г. Николаева и т. Более совершенный магнитный подвес поможет сконструировать теория Ритца, предсказывающая подъёмную силу у раскрученных дисков рис.
Эффект был реально открыт Шарлем и Серлом ещё в 1950-х гг. Козыревым и другими физиками, повторявшими опыт в разных вариациях. Но поскольку квантовая физика не могла объяснить эффект, его отрицали и замалчивали. А теория Ритца легко объясняет эффект.
Ведь поток реонов, отбрасываемый диском, создаёт подъёмную силу и уносит импульс, оказывая давление, подобно давлению тока воздуха от вертолёта, прижимающего траву к земле. То есть раскрученный диск окажет дистанционное отталкивающее воздействие на предметы, помещённые под или над ним. Такой эффект давно открыт Е. Подклетновым [ 18 , 20 ], но отрицается кванторелятивистами включая Гинзбурга , не сумевшими его объяснить.
Эффект позволит построить летающий транспорт и генераторы силового поля, которые послужат для броневой защиты военной или космической техники, и для мягкого удержания тел космонавтов при полётах с гигантским ускорением. Лишь мягкое удержание космонавта на весу, придающее одинаковое ускорение всем его органам, позволит избежать повреждений при перегрузках. Не зря многие считают, что именно раскрученные диски — основа инопланетных космических кораблей и тарелок-НЛО. Идея применения для полётов магнетизма и раскрученных дисков восходит к Сирано Де Бержераку предложившему, наряду с ракетным двигателем,— магнитный , а также к Дж.
Свифту описавшему в "Гулливере" летающий остров-НЛО с магнитным приводом. И в XX веке фантасты не раз обращались к идее магнитного двигателя для космических полётов. Вспомним Г. Беляева аппарат инженера Лося из "Аэлиты".
И до сих пор фантасты связывают левитацию с электромагнитными полями, например в фильме "Аватар", где в электровихре парят камни и отказывает электроника. Да и в глубокой древности механизм левитации, похоже, связывали с вращением, рождающим магнетизм, судя по упоминаниям вращения дервишей для подъёма гигантских камней при возведении Стоунхенджа и других мегалитических построек. А в Древней Руси была игра кубарь, где раскрученные волчки, пущенные по поверхности льда, беспорядочно носились, соударяясь, отскакивая и временами высоко подпрыгивая. Если учесть, что М.
Ломоносов, выросший на русском Севере, именно в форме волчков представлял атомы и объяснял магнетизм, построив модель вертолёта с маховиком, то вполне возможно, что волчками наши предки моделировали бипирамидальные атомы, вращение в них волчков-электронов, создающее магнетизм и подъёмную силу. Ломоносов же изучал и загадку соловецких лабиринтов — древних спиральных построек из камней на русском Севере, отражающих связь полярных сияний, магнетизма и вращения Земли. Магнитное поле крутящейся Земли удерживает заряженные частицы в вышине, где и возникает свечение.
Почему магниты имеют свойство притягиваться и отталкиваться Магнетизм, как научное явление, вызывается перемещением электронов. Вещества и предметы состоят из мельчайших атомов, эта физическая единица представляет собой ядро и движущиеся вокруг него электроны. Поскольку электроны имеют отрицательные заряды, то создают магнитные поля. Вращение электрона по часовой стрелке направляет магнитное поле наверх, а вращение против часовой стрелки — вниз. Если количество разнонаправленных полей совпадает, то магнитные поля отсутствуют.
Если баланс нарушается, и электроны начинают вращение в одном направлении, возникает магнитное поле большой силы. Именно этот процесс и происходит в минерале под названием магнетит. У магнита два полюса: северный и южный. Если два магнита расположить вблизи, они начинают направлять магнитные поля строго в одном направлении, другими словами, усиливать друг друга. Южный полюс первого магнита стремится к северному полюсу второго. Если вблизи оказываются пара северных или пара южных полюсов магнитов, их магнитные поля направляются в разные стороны, и магниты отталкиваются. В структуре железа происходят приблизительно такие же процессы, электроны производят вращение в одну сторону. Если рядом появляется магнит, железо воспринимает его как близкий по структуре материал и стремится соединить свои магнитные поля с полями минерала.
Железо само становится магнитом, находясь рядом с минералом. Пока железо и магнит притянуты друг к другу, их магнитные поля остаются в параллельном направлении. Как только они разъединяются, магнитные свойства железа исчезают. Например, если у вас есть частица, движущаяся вперед в направлении x со скоростьюv, то это значение должно быть положительным. Если он движется в другом направлении, то значение v должно быть отрицательным. Эти две частицы отталкиваются друг от друга, если магнитные силы, определяемые их соответствующими магнитными полями между ними, нейтрализуют друг друга, указывая в разных направлениях друг от друга. Если две силы направлены в разные стороны друг к другу, магнитная сила притягивает. Магнитная сила вызвана этими движениями частиц.
Вы можете использовать эти идеи, чтобы показать, как магнетизм работает с повседневными предметами. Например, если вы поместите неодимовый магнит рядом со стальной отверткой и переместите его вверх, вниз по валу, а затем удалите магнит, отвертка может сохранить в нем некоторый магнетизм. Это происходит из-за взаимодействующих магнитных полей между двумя объектами, которые создают силу притяжения, когда они нейтрализуют друг друга. Это определение «отталкивать и притягивать» справедливо во всех случаях использования магнитов и магнитных полей. Следите за тем, какие направления соответствуют отталкиванию и притяжению. Отталкивающая сила магнита Противоположности притягиваются.
Другие металлы и вещества тоже имеют это свойство, однако оно во много раз слабее. Рассмотреть притяжение в данный момент будет крайне сложно, для этого потребуется сильнейшее магнитное поле, которое невозможно создать в домашних условиях. Итак, если свойство притягивания к магниту есть у всех веществ, то почему именно металлические предметы сильно магнитятся, и этот процесс можно увидеть? Дело в том, что все зависит от внешнего строения атомов и их взаимосвязи именно в металле. Всё, что нас окружает, состоит из атомов, которые связаны между собой. Именно эта связь определяет материала. Атомы во многих веществах плохо скоординированы, поэтому имеют очень слабую взаимосвязь с магнитом. У металла атомы скоординированы, они ощущают магнитное поле и тянутся к нему, заставляя все остальные атомы действовать также.
Почему магнит притягивает? Описание, фото и видео
Почему магнит притягивает железо | Почему магнит не притягивает органические вещества? «У железа и похожих на него металлов есть особенная черта — связь между соседними атомами такова, что они чувствуют магнитное поле скоординированно». |
«Что такое магнит и почему он притягивает железо?» Учёные ответы на детские вопросы... | Почему магнит притягивает железо. |
Магнит железо почему притягивает металл | Сама по себе кристаллическая решетка построена таким образом, что в условиях сильных магнитных или электрических полей железо может намагничиваться и притягиваться к другому магниту. Так что такое магнит, и почему он притягивает? |
Почему магнит притягивает только металл | 2) Почему магнит притягивает только предметы из железа, никеля и кобальта? |
Почему магнит притягивает железо - краткое объяснение | Поля двух магнитов вблизи могут взаимодействовать между собой, и это взаимодействие проявляется как притяжение или отталкивание магнитов. |
Какая сила заставляет магнит притягивать, и как её применяют
При температуре Кюри домены интенсивно формируются уже во всём объёме металла, бесконечно повышая теплоёмкость. Наконец, при охлаждении ниже точки Кюри остаются лишь редкие малые участки металла, где тепловое движение атомов местами особенно интенсивное ввиду флуктуаций мешает формированию доменов. Но при понижении температуры они становятся всё меньше по объёму и по числу: их упорядочение требует всё меньшего отвода тепла, понижая теплоёмкость. Так и фазовый переход металла в сверхпроводящее состояние а гелия — в сверхтекучее всегда сопровождается выделением тепла [ 17 ]. Всё это снова доказывает, что природа следует честным классическим правилам, а не туманным квантовым, и лишние сущности, типа переходов второго рода, выдуманных Ландау,— излишни. Классически устроен и атом, где электроны, как показал открывший их Дж. Томсон, спонтанно организуются в упорядоченные кристаллические структуры под влиянием электрического и магнитного поля, формируя электронные слои с правильным размещением электронов [ 11 ].
Не зря Томсон иллюстрировал эффект спонтанной самоорганизации электронов в атоме магнитными поплавками, формирующими в поле центрального магнита правильные структуры. Так же и в электрическом и магнитном поле ядра магнитики-электроны формируют слои из правильно уложенных электронов отсюда стандартные ёмкости электронных слоёв. Способность электронов формировать плоскую кристаллическую решётку подтверждена и опытами, где электроны парили над жидким гелием [ 13 ]. Физик-спектроскопист Р. Вуд тоже изучал подобные эффекты самоорганизации электронов в атоме на примере магнитных шариков, плавающих в ртути и образующих в поле центрального магнита правильные фигуры. При выводе шариков из равновесия они колебались в магнитном поле каждый со своей стандартной частотой.
Этим магнитная модель атома Ритца объясняет стандартные спектры атомов [ 10 ]. Такую самоорганизацию можно наблюдать и в наборе неодимовых магнитных шариков, порой спонтанно слипающихся в кристально чёткие объёмные структуры. Самосборка стандартных упорядоченных систем в поле центрального магнита видна и в магнитной жидкости, и в порошке из железных опилок, которые собираются в периодичные выступы, холмики, образующие сотовую структуру и вытянутые вдоль силовых линий магнита рис. Наблюдают такие системы и в сверхпроводниках, на срезах которых магнитный порошок образует сотовую структуру абрикосовские вихри. Да и цилиндрические магнитные домены формируют сотовую структуру [ 13 ]. Все эти явления спонтанной организации магнитных частиц в правильные структуры объяснимы классически и легко моделируются на ЭВМ как результат взаимодействия магнитных частиц друг с другом и с внешним полем.
Но и их хотят свести к квантовым. Яркий пример — "квантовые вихри" в виде упорядоченных скоплений из атомов щелочных металлов например, рубидия , подвешенных в магнитном поле при сверхнизких температурах и образующих периодичные сгущения рис. На деле квантовая теория тут ни при чём: видна простая самоорганизация магнитных частиц атомов со стандартным магнитным моментом во внешнем магнитном поле, давно открытая Майером и легко воспроизводимая в магнитной жидкости и в порошке из магнитных опилок. А "квантовые маги" объясняют эти периодичные сгущения атомов бозе-эйнштейновской конденсацией с интерференцией атомных волн Де Бройля. Интерференцию будто бы подтверждает то, что от набегания одного облака атомов на другое в месте их пересечения видны полосы, типа интерференционных. Реально же виден обычный муаров узор, возникающий при наложении двух сеток.
Так и два облака атомов рубидия, формирующих в магнитном поле периодичные сетки тёмных узлов, образуют при наложении муаров узор, без следов интерференции. Выходит, квантовые краснобаи выдают желаемое за действительное, видя в обычных явлениях природы сверхъестественные. Взаимодействие магнитных частиц формирует не только правильные плоские структуры, но и чёткие пространственные комплексы, как показывает пример магнита, вытягивающий из магнитной жидкости пирамидальные игольчатые структуры, или симметрично обрастающий с двух сторон бородами магнитных опилок, а также пример объёмных фигур из магнитных шариков. Сходно формируется бипирамидальный каркас атома, образованный из магнитных частиц электронов и позитронов, рис. Рассуждая формально, по теореме Ирншоу обычно считают, что конструкции из зарядов и магнитов нестабильны. Но при этом, как отмечал Томсон [ 11 ], не учитывают отклонений от закона Кулона на малых масштабах и осевое вращение электронов, придающее устойчивость магнитным системам [ 18 ].
Именно так атом и его пирамидальный атомный каркас приобретает стабильность без помощи квантовых законов. Ну а сами атомы, как недавно открыто, в процессе самосборки спонтанно организуются в пирамидальные наночастицы. Приобретение такими микрокристаллами пирамидальной и часто многоступенчатой формы в виде пагод как у кристаллов висмута или золота , может быть связано не только с периодичным размещением атомов в кристалле, но отчасти и с формой самих атомов, обладающих многоуровневой пирамидальной структурой. Подобные кристаллы, сотовые и бипирамидальные структуры формируют и оптические солитоны — уединённые волны, взаимодействующие как магнитные частицы и вихри. Так что и без квантовых гипотез спонтанная организация электронов объясняет структуру электронных слоёв и спектров атомов по магнитной модели Ритца. Бипирамидальный каркас атома выделяет и элементы-ферромагнетики рис.
Именно среди них и их соединений открыты яркие ферромагнетики и антиферромагнетики. Даже графит C и твёрдый кислород O в некоторых состояниях оказались ферро- и антиферромагнитными, вопреки квантовой теории, но в согласии с прогнозом классической модели атома [ 10 ]. А соединение азота N с железом Fe оказалось самым сильным ферромагнетиком, превысив предел магнетизма из квантовой теории. В то же время переходные элементы нечётных периодов таблицы Менделеева например, платиновые металлы , у которых ожидался ферромагнетизм [ 12 ], лишены его. Почему же ферромагнетизм присущ лишь немногим элементам? Всё дело в строении атомов: яркими магнитными свойствами обладают атомы с асимметричным строением, в которых магнитные моменты электронов не скомпенсированы.
В пирамидальной модели атома такой асимметрией обладают как раз атомы чётных периодов таблицы, а в атомах нечётных периодов заполняются слои, зеркально симметричные предыдущим, и магнитные моменты электронов этих слоёв нейтрализуют друг друга, ориентируясь встречно. Такая встречная ориентация электронов, расположенных друг против друга, обусловлена не мистическими обменными силами, а ориентацией магнитных осей электронов вдоль магнитных силовых линий соседних электронов, отчего их магнитные моменты компенсируются. Это видно на примере двух стрелок компаса: если компасы расположить рядом, то их стрелки установятся навстречу друг другу, создав в сумме лишь слабое магнитное поле как в антиферромагнетике, рис. Но одна стрелка или две стрелки, разнесённые далеко, ориентируются вдоль внешнего поля и создают заметное магнитное поле. Так и в атомах ферромагнетиков разнесённые электроны во внешнем поле или в поле соседних атомов ориентируются сонаправленно, усиливая внешнее поле тем заметней, чем их больше. Оттого у элементов начала чётных периодов, где электроны начинают заполнять новый слой, магнитные свойства ещё слабы.
Но, после заполнения электронами примерно половины периметра слоя, их общее магнитное поле уже достаточно для появления доменов, спонтанной намагниченности. Последующее заполнение периметра и рост числа электронов усиливает магнитные свойства: ферромагнетизм веществ нарастает. Но дальнейшее заполнение периметра делает слой всё более симметричным, и магнитные моменты уже отчасти компенсируются. Особенно это заметно при замыкании периметра и дальнейшем заполнении слоя электронами по сужающейся спирали, когда рядом с одними электронами становятся другие, нейтрализующие их магнитные моменты. Оттого яркими магнитными свойствами обладают лишь элементы полупериметра чётных слоёв-периодов с их выраженной асимметрией рис. То же верно для ядер и элементарных частиц: у нейтральных идеально симметричных частиц магнитные моменты нулевые, а заряженные или асимметричные частицы обладают магнитным моментом.
Так, нейтрон и протон, имея чуть асимметричную форму, обретают магнитный момент от несбалансированных моментов образующих их электронов и позитронов. Правда, соседние электроны и позитроны стремятся развернуться противоположно друг другу, как в антиферромагнетике, отчего их магнитное поле невелико — много меньше момента электрона. А идеально симметричные пи-мезон и эта-мезон, где моменты частиц точно скомпенсированы, вообще лишены магнитного момента. Так и ферромагнетизм, и антиферромагнетизм явно зависят от симметрии атома и кристаллической решётки. Эту важную роль симметрии вскрыл уже Пьер Кюри, выдающийся исследователь магнетизма и кристаллов. Не исключено, что формирование магнитным полем объёмных структур из магнитных шариков, порошков и жидкостей позволит сконструировать машины и роботы рис.
Части такой машины могут даже отделяться, дистанционно удерживаясь магнитным полем. Такой электромагнитный подвес [ 18 ] уже применяют в технике в транспорте на магнитной подушке, в подшипниках конструкции Г. Николаева и т. Более совершенный магнитный подвес поможет сконструировать теория Ритца, предсказывающая подъёмную силу у раскрученных дисков рис. Эффект был реально открыт Шарлем и Серлом ещё в 1950-х гг. Козыревым и другими физиками, повторявшими опыт в разных вариациях.
С помощью книги «Нескучная наука» серии «Вы и ваш ребёнок», можно узнать подробнее об этом, и ещё познакомится с такими терминами как: «притягивать», «примагничивать», «магнетизм», «магнитное поле». А вы знали? Оказывается, магниты окружают нас повсюду, так как все устройства, используемые нами в повседневной жизни, так или иначе включают в себя магниты — мобильные телефоны, компьютеры, дверцы в шкафах, музыкальные центры, электрические двигатели, автомобили, дисплеи, компасы, игрушки, разнообразные датчики и приборы, научно-исследовательское оборудование и многие другие. Множество интересных опытов с магнитом можно провести и в домашних условия.
Он установлен в прочный стальной корпус с оцинкованным покрытием. Надежная защитная оболочка позволяет использовать изделие как в речной, так и в морской воде. Благодаря уникальным показателям усилия на отрыв поисковый магнит весом 2,3 кг позволяет поднять со дна водоема объекты массой до 300 кг. Готовый набор для магнитной рыбалки: поисковый магнит F120, веревка и сумка Какие металлы можно найти с помощью поискового магнита Как и другие постоянные магниты, неодимовый магнит притягивает только ферромагнетики. К таковым относятся железо, никель и кобальт, а также их сплавы. Таким образом, поисковый магнит позволяет эффективно обнаруживать и поднимать объекты из этих металлов.
После изменения направления намагничивающего поля на обратное кривая В Н проходит точку 4, причем отрезок 1 — 4 соответствует коэрцитивной силе, препятствующей размагничиванию. Дальнейший рост значений -H приводит кривую гистерезиса в третий квадрант — участок 4—5. Следующее за этим уменьшение величины -H до нуля и затем возрастание положительных значений H приведет к замыканию петли гистерезиса через точки 6, 7 и 2.
Узкая петля гистерезиса рис. Такие сплавы и были созданы с целью снижения обусловленных гистерезисом энергетических потерь. Большинство подобных специальных сплавов, как и ферриты, обладают высоким электрическим сопротивлением, благодаря чему уменьшаются не только магнитные потери, но и электрические, обусловленные вихревыми токами.
При этом очень существенны предварительная механическая и термическая обработка, а также отсутствие в образце примесей. Для сердечников трансформаторов в начале 20 в. Между 1915 и 1920 появились пермаллои сплавы Ni с Fe с характерной для них узкой и почти прямоугольной петлей гистерезиса.
Почему сила магнита действует по-разному? В других материалах электроны движутся в разных направлениях, поэтому не могут создать сильное магнитное поле, не способны притягивать магниты. Магнит притягивается с разной силой к различным металлам.
К примеру, к никелю, железу и другим сплавам магнит притягивается очень прочно. Подавляющая часть металлов не взаимодействует с магнитами с такой силой, взаимодействие иногда невозможно заметить в домашних условиях, а только в лабораториях, во время проведения опытов. Строение и связь атомов у других металлов отличны от строения и связей железа, поэтому притяжение столь малозаметно.
По какой причине не все материалы способны магнититься Магнит взаимодействует с широким перечнем веществ. Вид взаимодействия не ограничивается притяжением или отталкиванием. Отдельные металлы и сплавы обладают специфическим строением, что дает возможность притягиваться к магниту с определенной мощностью.
Другие материалы также обладают данным свойством, но в меньших масштабах. Чтобы зафиксировать притяжение в таких условиях, необходимо создание очень сильного магнитного поля. Это невыполнимо в домашних условиях.
Почему свойство притяжения есть у всех материалов, а магнититься доступно для восприятия только металл? Разгадка заключается в особом внешнем строении атомов. Окружающие нас вещи состоят из атомов, связанных между собой.
Тип связи между ними определяет материал. Атомы в большинстве веществ плохо сгруппированы, поэтому связь с магнитом формируется слабая. В металле атомы хорошо скоординированы, все атомы синхронно ощущают магнитное поле и тянутся к нему.
Магнит и магнитное поле: почему притягивается только металл? .
Почему магнит не притягивает органические вещества? «У железа и похожих на него металлов есть особенная черта — связь между соседними атомами такова, что они чувствуют магнитное поле скоординированно». Если магнит притянул предмет, то он как бы его привязал и дальше он бездействует и энергию не расходует. Дак и я не сомневаюсь что магнит притягивает железки и могу померить параметры этого притяжения. Таким образом, магниты притягивают железо благодаря своим магнитным свойствам и магнитным веществам, которые содержатся внутри магнита.
Расплавленное железо против магнита: увлекательный эксперимент
Какое железо притягивает магнит. почему магнит притягивает хлопья? их и вправду обогащают металлической пылью, что ли? хлопья в воде после блендера выделили МЕТАЛЛИЧЕСКУЮ КРОШКУ: почему банан и киви не реагируют на магнит, если в них связанного железа в разы выше, чем. Основная причина, почему железо притягивается к магниту, заключается в его атомной структуре.
Неодимовый магнит – суперсильный и суперполезный
Именно за счет железа магнетит обладает свойствами притягивать себе подобное. Как и другие постоянные магниты, неодимовый магнит притягивает только ферромагнетики. Поскольку мы регулярно подвергаемся воздействию магнитов, которые, как мы знаем, притягивают железо, возникает вопрос: можно ли извлечь железо из крови с помощью мощного магнита? В статье расскажем, работает ли поисковый магнит на золото и серебро, как он устроен и действительно ли притягивает драгметаллы. тем хуже притягиваются. Таким образом, магниты притягивают только железо из-за взаимодействия их магнитного поля с магнитными моментами электронов в атомах железа.
Почему магнит притягивает? Описание, фото и видео
Вся современная материалистическая физика основывается на теории близкодействия. Например, видимый свет - это волна. Некоторого физического поля, в котором произошло возмущение волновой природы - фотона - вполне себе материального объекта, только материя эта особенная, живущая по своим законам. Не может же быть волны, без того, что эту волну образует?
В таких веществах, как железо, кобальт и никель, большинство электронов вращаются в одном направлении. Почему магниты притягиваются? Почему магнит притягивает железо, а не алюминий? Железо притягивается к магнитам из-за его высокопроводящей природы. А вот алюминий совсем другой.
Парамагнетики втягиваются по направлению градиента неоднородного магнитного поля. Но этот эффект очень слабый. Он в сотни и в тысячи раз слабее, чем притяжение ферромагнетика к магниту. В бытовых условиях это практически незаметно, потому что неоднородность магнитного поля обычного магнита очень маленькая. Остальные ответы.
Внутри материала, такого как железо, есть множество микроскопических областей, называемых магнитными доменами. Каждый домен имеет магнитный момент, который может быть ориентирован в одном из двух направлений: вверх или вниз. Когда магнит не подвергается воздействию внешнего магнитного поля, домены ориентированы хаотично и магнитный момент всех доменов взаимно уничтожается, что делает материал немагнитным. Однако, когда магнит подносится к железу, его магнитное поле начинает воздействовать на домены, выстраивая их вдоль силовых линий магнитного поля магнита. Это приводит к тому, что магнитные моменты доменов начинают суммироваться и создают сильное магнитное поле в железе. Это привлекает магнит к железу и создает притяжение. Однако, важно отметить, что магнитная притяжение между магнитом и железом не является единственным видом притяжения, который может быть наблюдаемым. Магнитное притяжение также может возникать между магнитом и другими магнитными материалами, такими как никель или кобальт. Это объясняется тем, что эти материалы также содержат свободные электроны и магнитные домены, которые могут ориентироваться в магнитном поле и создавать притягивающую силу. Таким образом, притяжение магнита к железу вызвано взаимодействием магнитного поля магнита с свободными электронами и магнитными доменами внутри железа. Когда магнитное поле магнита воздействует на железо, свободные электроны в железе начинают двигаться и ориентироваться вдоль магнитного поля, создавая магнитизацию в железе и притягивая его к магниту. Это явление можно объяснить еще более подробно. Внутри атомов железа находятся электроны, которые обращаются вокруг ядра.