Новости гипотеза рнк мира

Согласно гипотезе РНК-мира, молекула РНК играла ключевую роль в молекулярных процессах и биохимических реакциях, которые привели к появлению жизни на Земле. Новости Российского национального комитета мирового нефтяного совета. Одной из главных теорий является гипотеза "РНК-мира", согласно которой первые формы жизни возникли благодаря РНК-репликазе, способной копировать себя и другие молекулы РНК.

Ученые нашли новое потенциальное объяснение возникновению жизни на Земле

В течение 1980-х и 1990-х годов Вахтершаузер работал над деталями своей теории. Он изложил, какие минералы подошли бы больше всего и какие химические циклы могли иметь место. Его идеи начали привлекать сторонников. Но все это было сугубо теоретическим. Вахтершаузеру нужно было реальное открытие, которое подкрепило бы его идеи. К счастью, его уже сделали десятью годами ранее. Источники в Тихом океане В 1977 году группа под руководством Джека Корлисса из Университета штата Орегон погрузилась на 2,5 километра в восточной части Тихого океана. Они изучали Галапагосские горячие источники в местах, где с морского дна поднимались высокие хребты. Эти хребты были вулканически активными. Корлисс обнаружил, что эти хребты были буквально усеяны горячими источниками. Горячая, обогащенная химическими веществами вода поднимается из-под морского дна и струится через отверстия в скалах.

Невероятно, но эти гидротермальные источники были густо населены странными животными. Там были огромные моллюски, мидии и кольчатые черви. Вода также была густо пропитана бактериями. Все эти организмы жили на энергии гидротермальных жерл. Открытие этих источников сделало Корлиссу имя. И заставило задуматься. В 1981 году он предположил, что подобные жерла существовали на Земле четыре миллиарда лет назад и что они стали местом происхождения жизни. Он посвятил львиную долю своей карьеры изучению этого вопроса. У гидротермальных источников живет странная жизнь Корлисс предположил, что гидротермальные источники могли создавать коктейли химических веществ. Каждый источник, говорил он, был своего рода распылителем первичного бульона.

По мере того, как горячая вода текла через скалы, тепло и давление приводили к тому, что простые органические соединения сливались в более сложные, такие как аминокислоты, нуклеотиды и сахара. Ближе к границе с океаном, где вода была не такой горячей, они начинали связываться в цепочки — формировать углеводы, белки и нуклеотиды вроде ДНК. Затем, когда вода подходила к океану и остывала еще больше, эти молекулы собирались в простые клетки. Это было интересно, теория привлекла внимание людей. Но Стэнли Миллер, эксперимент которого мы обсуждали в первой части, не поверил. В 1988 году он писал, что глубоководные жерла были слишком горячими. Каким образом человек смог повторно заразиться коронавирусом? Хотя сильное тепло может привести к образованию химических веществ вроде аминокислот, эксперименты Миллера показали, что оно также может и уничтожить их. Основные соединения вроде сахаров «смогли бы выжить пару секунд, не больше». Более того, эти простые молекулы вряд ли связались бы в цепи, поскольку окружающая вода мгновенно их разорвала бы.

На этом этапе к битве подключился геолог Майк Расселл. Он посчитал, что теория гидротермальных источников может быть вполне верной. Более того, ему показалось, что эти источники будут идеальным домом для прекурсоров организма Вахтершаузера. Это вдохновение привело его к созданию одной из самых широко признанных теорий происхождений жизни. Геолог Майкл Расселл В карьере Расселла было много интересных вещей — он делал аспирин, разыскивая ценные минералы — и в одном замечательном происшествии 1960-х годов координировал реагирование на возможное извержения вулкана, несмотря на отсутствие подготовки. Но его больше интересовало, как менялась поверхности Земли на протяжении эпох. Эта геологическая перспектива и позволила сформироваться его идеям о происхождении жизни. В 1980-х годах он обнаружил ископаемые свидетельства менее бурного типа гидротермального источника, в котором температуры не превышали 150 градусов по Цельсию. Эти мягкие температуры, по его словам, могли позволить молекулам жизни жить дольше, чем полагал Миллер. Более того, ископаемые остатки этих «прохладных» жерл содержали нечто странное: минерал пирит, состоящий из железа и серы, сформировался в трубочках диаметром 1 мм.

Работая в лаборатории, Расселл обнаружил, что пирит также может формировать сферические капли. И предположил, что первые сложные органические молекулы могли образоваться внутри этих простых пиритовых структур. Железный пирит Примерно в это же время Вахтершаузер начал публиковать свои идеи, в основе которых был поток горячей химически обогащенной воды, протекающей через минералы. Он даже предположил, что в этом процессе участвовал пирит. Расселл сложил два плюс два. Он предположил, что гидротермальные источники на глубине моря, достаточно холодные, чтобы позволить образоваться пиритовым структурам, приютили прекурсоры организмов Вахтершаузера. Если Расселл был прав, жизнь началась на дне моря — и сначала появился метаболизм. Расселл собрал это все в статье, опубликованной в 1993 году, 40 лет спустя после классического эксперимента Миллера. Она не вызвала такого же ажиотажа в СМИ, но была, возможно, более важной. Расселл объединил две, казалось бы, отдельные идеи — метаболические циклы Вахтершаузера и гидротермальные источники Корлисса — в нечто по-настоящему убедительное.

Расселл даже предложил объяснение того, как первые организмы получали свою энергию. То есть он понял, как мог бы работать их метаболизм. Его идея опиралась на работу одного из забытых гениев современной науки. Питер Митчелл, нобелевский лауреат В 1960-х годах биохимик Питер Митчелл заболел и был вынужден уйти в отставку из Университета Эдинбурга. Вместо этого он создал частную лабораторию в отдаленном поместье в Корнуолле. Изолированный от научного общества, он финансировал свою работу за счет стада молочных коров. Многие биохимики, в том числе и Лесли Оргел, чью работу по РНК мы обсудили во второй части, считали идеи Митчелла совершенно нелепыми. Спустя несколько десятков лет Митчелла ждала абсолютная победа: Нобелевская премия по химии 1978 года. Он не стал знаменитым, но его идеи сегодня в каждом учебнике по биологии. Свою карьеру Митчелл провел, выясняя, что организмы делают с энергией, которую получают из пищи.

По сути, он задавался вопросом, как всем нам удается оставаться в живых каждую секунду. Он знал, что все клетки хранят свою энергию в одной молекуле: аденозинтрифосфате АТФ. К аденозину крепится цепочка из трех фосфатов. Добавление третьего фосфата требует много энергии, которая затем запирается в АТФ. Может ли искусственный интеллект уничтожить человечество уже к 2035 году? Когда клетка нуждается в энергии — например, когда сокращается мышца — она разбивает третий фосфат в АТФ. Митчелл хотел узнать, как клетка вообще создает АТФ. Как она накапливает достаточно энергии в АДФ, чтобы прикрепить третий фосфат? Митчелл знал, что фермент, образующий АТФ, находится в мембране. Поэтому предположил, что клетка закачивает заряженные частицы протоны через мембрану, поэтому много протонов находится по одну сторону, а по другую — нет.

Затем протоны пытаются просочиться обратно через мембрану, чтобы уравновесить число протонов по каждую сторону — но единственное место, через которое они могут пройти, это фермент. Поток текущих протонов, таким образом, обеспечивал фермент энергией, необходимой для создания АТФ. Впервые Митчелл изложил свою идею в 1961 году. Следующие 15 лет он провел, защищая ее со всех сторон, пока доказательства не стали неопровержимыми. Теперь мы знаем, что процесс Митчелла используется каждым живым существом на Земле. Прямо сейчас он протекает в ваших клетках. Как и ДНК, он лежит в основе известной нам жизни. Расселл позаимствовал у Митчелла идею протонного градиента: наличие большого количества протонов на одной стороне мембраны и немногого — на другой. Все клетки нуждаются в протонном градиенте, чтобы хранить энергию. Современные клетки создают градиенты, откачивая протоны через мембраны, но для этого нужен сложный молекулярный механизм, который просто не мог появиться сам по себе.

Поэтому Расселл сделал еще один логический шаг: жизнь должна была сформироваться где-то с естественным протонным градиентом. Например, где-то у гидротермальных источников. Но это должен быть особенный тип источника. Когда Земля была молодой, моря были кислыми, а в кислой воде много протонов. Чтобы создать протонный градиент, вода из источника должна быть с низким содержанием протонов: она должна быть щелочной. Источники Корлисса не подходили. Они не только были слишком горячими, но еще и кислыми. Но в 2000 году Дебора Келли из Вашингтонского университета обнаружила первые щелочные источники. Ее отец умер, когда она заканчивала среднюю школу, и она была вынуждена работать, чтобы остаться в колледже. Но справилась и выбрала предметом своего интереса подводные вулканы и обжигающие горячие гидротермальные источники.

Эта пара и привела ее в центр Атлантического океана. В этом месте земная кора треснула и с морского дна поднялся хребет гор. На этом хребте Келли обнаружила поле гидротермальных источников, которое назвала «Потерянным городом». Они не были похожи на обнаруженные Корлиссом. Вода вытекала из них при температуре 40-75 градусов по Цельсию и была слегка подщелоченной. Карбонатные минералы из этой воды слипались в крутые белые «столбы дыма», которые поднимались с морского дна подобно трубам органа. На вид они жуткие и призрачные, но это не так: в них обитает множество микроорганизмов. Эти щелочные жерла идеально вписывались в идеи Расселла. Он твердо поверил в то, что жизнь появилась в таких «потерянных городах». Но была одна проблема.

Будучи геологом, он знал не так много о биологических клетках, чтобы убедительно представить свою теорию. Столб дыма «черной курилки» Поэтому Расселл объединился с биологом Уильямом Мартином. В 2003 году они представили улучшенный вариант прежних идей Расселла. И это, наверное, самая лучшая теория появления жизни на данный момент. Благодаря Келли, теперь они знали, что породы щелочных источников были пористыми: они были усеяны крошечными отверстиями, наполненными водой. Эти крошечные кармашки, предположили они, действовали в качестве «клеток». В каждом кармашке находились основные химические вещества, в том числе и пирит. В сочетании с естественным протонным градиентом от источников, они были идеальным местом для начала метаболизма. После того, как жизнь научилась использовать энергию вод источников, говорят Расселл и Мартин, она начала создавать молекулы вроде РНК. В конце концов, она создала себе мембрану и стала настоящей клеткой, сбежав из пористой породы в открытую воду.

Такой сюжет в настоящее время рассматривается в качестве одной из ведущих гипотез о происхождении жизни. Клетки бегут из гидротермального источника В июле 2016 года он получил поддержку, когда Мартин опубликовал исследование, реконструирующее некоторые детали « последнего универсального общего предка » LUCA. Это организм, который жил миллиарды лет назад и от которого произошла вся существующая жизнь. Едва ли мы когда-нибудь найдем прямые окаменевшие доказательства существования этого организма, но тем не менее вполне можем делать обоснованные предположения о том, как он выглядел и чем занимался, изучая микроорганизмы наших дней. Это и проделал Мартин. Он исследовал ДНК 1930 современных микроорганизмов и идентифицировал 355 генов, которые были почти у всех. Это убедительно говорит о передаче этих 355 генов, через поколения и поколения, от общего предка — примерно того времени, когда жил последний универсальный общий предок. Эти 355 генов включают некоторые для использования протонного градиента, но для генерации оного — нет, как и предсказывали теории Расселла и Мартина. Более того, LUCA, похоже, был адаптирован к присутствуют химических веществ вроде метана, что наводит на мысли, что он населял вулканически активную среду — по типу жерла. Сторонники гипотезы «мира РНК» указывают на две проблемы в этой теории.

Одну можно поправить; другая может быть фатальной. Гидротермальные источники Первая проблема в том, что экспериментальных доказательств описанных Расселлом и Мартином процессов нет. У них есть пошаговая история, но ни один из этих шагов не наблюдался в лаборатории. Он построил «реактор происхождения жизни», который имитирует условия внутри щелочного источника. Он надеется увидеть метаболические циклы, а может даже и молекулы вроде РНК. Но пока еще рано. Вторая проблема заключается в расположении источников в глубоком море. Как отмечал Миллер в 1988 году, длинноцепочечные молекулы вроде РНК и белков не могут формироваться в воде без вспомогательных ферментов. Для многих ученых это фатальный аргумент. И все же Расселл и его союзники остаются оптимистами.

И только в последнее десятилетие на первый план вышел третий подход, подкрепленный серией необычных экспериментов. Он обещает нечто, чего не удалось добиться ни «миру РНК», ни гидротермальным источникам: способ создать целую клетку с нуля. Часть пятая: так как же всё-таки создать клетку? К началу 2000-х годов ученые выделили две ведущие идеи о том, как могла появиться жизнь. Сторонники «РНК-мира» были убеждены, что жизнь началась с самовоспроизводящейся молекулы. В то же время ученые в лагере «сначала метаболизм» считают, что жизнь могла появиться в гидротермальных жерлах на дне океана. И все же на передний план вышла третья идея. Каждое живое существо на Земле состоит из клеток. Каждая клетка — это по сути мягкий шарик, мешочек, с жесткой внешней стенкой, или «мембраной». Задача клетки — удерживать все предметы первой необходимости вместе.

Если наружная стенка порвется, внутренности выльются наружу и клетка умрет — так же, как и выпотрошенный человек. Человечество изменило сушу до неузнаваемости. Но что насчет воды? Наружная стенка клетки настолько важна, что некоторые исследователи происхождения жизни даже считают, что она появилась прежде всего. Они считают, что подходы «сперва генетика», который мы обсудили во второй части, и «сперва метаболизм», который мы обсудили в четвертой части, ошибочны. Все живые предметы состоят из клеток Идея Луизи проста, и с ней трудно спорить. Каким образом вы собрались создавать рабочую метаболическую систему или самовоспроизводящуюся РНК, каждый из которых опирается на наличие большого количества химических веществ в одном месте, если вы сначала не сделаете контейнер, который удерживает все молекулы вместе. Если вы с этим согласны, есть только один способ, с которого могла начаться жизнь. Каким-то образом, в жаре и буре ранней Земли, неколько сырых материалов сложились в грубые клетки, или «протоклетки». Осталось только повторить это в лаборатории: создать простую живую клетку.

Идеи Луизи можно проследить аж до Александра Опарина и рассвета науки о происхождении жизни в СССР, которых мы обсудили в первой части. Опарин подчеркнул тот факт, что некоторые химические вещества образуют сгустки — коацерваты — которые могут держать другие вещества внутри. Он предположил, что коацерваты были первыми протоклетками. Любое жирное или маслянистое вещество будет образовывать сгустки или пленки в воде. Эти химические вещества известны в общем как липиды. Соответственно, гипотезу о том, что с них начала жизнь, назвали «липидным миром». Но просто сформировать сгустки недостаточно. Они должны быть стабильными, уметь делиться на «дочерние» сгустки и хоть немного контролировать, что проходит внутрь и выходи наружу — и все это без сложных белков, которые используют современные клетки для этих задач. Появилась задача собрать такие протоклетки из всего необходимого материала. Несмотря на множество попыток за много лет, Луизи так и не сделал ничего хоть мало-мальски убедительного.

И тогда, в 1994 году, он осмелился сделать дерзкое предположение. Он предположил, что первые протоклетки должны были содержать РНК. Более того, эта РНК должна была уметь воспроизводиться внутри протоклетки. Как-то клетка все же появилась И вот, его гипотеза стала очень сложной и отошла от чистого подхода «сперва компартментализация». Но у Луизи были веские доводы. Клетка с внешними стенками, но без внутренностей, мало что может. Возможно, она могла бы делиться на дочерние клетки, но не передавала бы никакой информации о себе потомству. Она могла начать развиваться и становиться более сложной только при наличии некоторых генов. Вскоре эта идея обрела сильного сторонника в лице Джека Шостака, работу которого на тему «мира РНК» мы изучили в третьей части. Луизи был членом лагеря «сперва компартментализация», Шостак поддерживал «сперва генетику», и много лет они не встречались с глазу на глаз.

Почти вся жизнь одноклеточная «Мы встречались на собраниях на тему происхождения жизни и затевали эти длинные дискуссии на тему того, что было важнее и что пришло первым», вспоминает Шостак. Мы пришли к общему мнению, что для возникновения жизни важно иметь и компартментализацию, и генетическую систему». В 2001 году Шостак и Луизи изложили свое видение этого единого подхода. В работе, опубликованной в Natire, они заявили, что должно быть возможность создать простую живую клетку с нуля, разместив реплицирующуюся РНК в обычной капле жира. Очень скоро Шостак решил полностью посвятить себя ей. Рассудив, что «мы не можем излагать эту теорию, ничем ее не подкрепив», он решил начать экспериментировать с протоклетками. Спустя два года Шостак и двое его коллег объявили о большом успехе. Везикулы — это простые контейнеры, состоящие из липидов Они экспериментировали с везикулами: сферическими каплями с двумя слоями жирных кислот на внешней стороне и центральным жидким ядром. Пытаясь найти способ ускорить создание везикул, они добавили малые частички глины под названием монтмориллонит. Везикулы начали формироваться в 100 раз быстрее.

Поверхность глины выступили катализатором, как некий фермент. Более того, везикулы могли поглощать как частицы монтморрилонита, так и цепи РНК с поверхности глины. Теперь эти протоклетки уже содержали гены и катализатор, и все из одной простой добавки. Решение добавить монтмориллонит было принято не просто так. За несколько десятилетий много работ предположили, что монтмориллонит и подобные ему глины могли иметь важное значение для происхождения жизни. Кусок монтмориллонита Монтмориллонит — это обычная глина. В настоящее время она используется для самых разных дел, из нее даже кошачий наполнитель делают. Образуется она, когда вулканический пепел расщепляется погодой. Поскольку ранняя Земля изобиловала вулканами, кажется вероятным, что на ней было и много монтмориллонита. Еще в 1986 году химик Джеймс Феррис показал, что монтмориллонит выступает катализатором, который помогает формироваться органическим молекулам.

Позже он обнаружил, что глина также ускоряет формирование малых РНК. Заходите в наш специальный Telegram-чат. Там всегда есть с кем обсудить новости из мира высоких технологий. И тогда Феррис предположил, что эта невзрачная глина могла быть местом зарождения жизни.

Ученые сравнили такое явление с регенерацией червей, которых разрезают на сегменты. Ранее ученые выяснили, что социальный статус влияет на активность генов и передается от матери к детям. Что думаешь?

Однако стоит отметить, что молекула не является самовоспроизводящейся, как настоящая. Поэтому ее нельзя считать живой. Тем не менее, созданная учеными молекула способна копировать другие молекулы РНК. Это показывает, как жизнь может возникнуть в лаборатории или, теоретически, в любой точке Вселенной", — заявил Джеральд Джойс, президент Института Солка, в статье, опубликованной в Washington Post. Многообещающая, даже фундаментальная работа Нам еще очень далеко до того, чтобы увидеть живое существо, даже одноклеточное, рожденное из пробирки.

Следовательно, такой характер связей отражает последовательность постепенного добавления блоков в процессе эволюции молекулы, который исследователям удалось детально реконструировать. Таким образом, у истоков жизни мог стоять сравнительно простой рибозим — PTC-центр молекулы 23S-рРНК, к которому затем добавлялись новые блоки, совершенствуя процесс синтеза белка. Предполагается, что такая структура возникла в результате дупликации удвоения одной исходной лопасти. Методом искусственной эволюции были получены функциональные РНК рибозимы , способные катализировать транспептидацию. Структура этих искусственно выведенных рибозимов очень близка к структуре той проторибосомы, которую «вычислили» авторы. Чаще всего постулируется необходимость агрегирующих РНК мембран или размещения РНК на поверхности минералов и в поровом пространстве рыхлых пород. В 1990-е годы А. Четвериным с сотрудниками была показана способность РНК формировать молекулярные колонии на гелях и твёрдых субстратах при создании им условий для репликации. Происходил свободный обмен молекулами, которые при столкновении могли обмениваться участками, что показано экспериментально. Вся совокупность колоний в связи с этим быстро эволюционировала. После возникновения белкового синтеза колонии, умеющие создавать ферменты, развивались успешнее. Ещё более успешными стали колонии, сформировавшие более надёжный механизм хранения информации в ДНК и, наконец, отделившиеся от внешнего мира липидной мембраной, препятствующей рассеиванию своих молекул. Шапиро критикует гипотезу РНК-мира, считая, что вероятность спонтанного возникновения РНК, обладающей каталитическими свойствами, очень низка. Взамен гипотезы «вначале была РНК», он предлагает гипотезу «вначале был метаболизм», то есть возникновение комплексов химических реакций — аналогов метаболических циклов — с участием низкомолекулярных соединений, протекающих внутри компартментов — пространственно ограниченных самопроизвольно образовавшимися мембранами или иными границами раздела фаз — областей. Эта концепция близка к коацерватной гипотезе абиогенеза, предложенной А.

Решена главная проблема появления жизни на Земле

В 1964 г. Темин выдвинул гипотезу о существовании вирусспецифичного фермента, способного синтезировать на РНК-матрице комплементарную ДНК. Гипотеза мира РНК — Структура рибозима — молекулы РНК, выполняющей функцию катализа Мир РНК — гипотетический этап возникновения жизни на Земле, когда как функцию хранения генетической информации. Исследования в рамках гипотезы «мира РНК» показали, что эти макромолекулы способны и к полноценной химической эволюции. А раз так, то верна гипотеза о том, что РНК должны была возникнуть на Земле раньше, чем ДНК.

Японские ученые впервые доказали способность РНК эволюционировать

Чудо противоречит природе такой, какой мы ее знаем. Но нельзя сказать, что наше знание природы и некоторых ее законов предельно. Наше знание, каких бы высот оно ни достигало, всегда остается таким же несовершенным, ограниченным, как и мы сами. Чудо кажется невозможностью только для тех кто отрицает Бога, как Создателя и Зиждителя Вселенной.

Для тех же, кто признает, что за всем творением стоит Творец, как Высший Разум и Всемогущая Сила, вполне понятно, что Бог имеет право и может, для Своих целей, нарушать законы и отменять их. Тем более что установленные Богом законы только временны и для Него не обязательны. Бог может задерживать действие того или иного закона, на тот или иной период времени.

Возьмем, для примера, такой случай. Я бросил стеклянный стакан вверх и знаю, что он, будучи подвержен закону тяготения, упадет на каменный пол и разобьется, но вот, в последний момент я подхватил его и стакан остался целым. Произошло своего рода чудо: — то, что подлежало роковому падению, спасено.

Но разве я, совершив это «чудо», нарушил закон тяготения? Конечно, нет!

Помимо всего этого, рибоза должна иметь правильную стереоизомерию , так как нуклеотиды, имеющие неправильную хиральность , выступают в роли терминаторов транскрипции. Фактически, он утверждал, что этот эксперимент не показал, что нуклеиновые кислоты были основой происхождения жизни, а просто показал, что эта гипотеза не была неправдоподобной. Кэрнс-Смит утверждал, что для того, чтобы достичь количества молекул, необходимого для возникновения жизни, процесс построения нуклеиновых кислот должен соблюдать 18 автономных условий между ними в течение нескольких миллионов лет. Мир РНК в деталях Механизмы синтеза пребиотической РНК Гипотеза предполагает наличие в первичном бульоне нуклеотидов, способных легко образовывать химические связи между собой и с такой же вероятностью разрывать эти связи благодаря малой энергии, необходимой для таких событий. В этой среде некоторые последовательности оснований, обладающие каталитическими свойствами, могли бы усиливать образование последовательностей с идентичными характеристиками именно благодаря каталитической активности, способной снижать энергию, необходимую для образования таких последовательностей. Главным последствием образования этих последовательностей было бы то, что производство нитей РНК стало бы явно более выгодным, чем их разрыв.

Эти последовательности считаются самыми ранними, примитивными формами жизни. Только наиболее эффективные с точки зрения катализа и самовоспроизведения выжили бы, чтобы развиться и сформировать современную РНК. Конкуренция между РНК, возможно, способствовала возникновению кооперации между различными цепями, тем самым прокладывая путь для первых протоклеток. В пределах этого набора РНК некоторые, возможно, развили способность катализировать образование пептидной связи с эволюционно выгодным последствием способности генерировать вспомогательные пептиды для каталитической активности рибозимов. Точно так же все другие химические молекулы, которые характеризуют его сегодня, такие как ДНК, липиды или углеводы , также могли быть вовлечены в процесс формирования жизни. Другие предположения Существует другая версия гипотезы, называемая гипотезой преРНК-мира. Согласно этой теории, до РНК существовала другая нуклеиновая кислота. Среди предложенных есть, прежде всего, ПНК , более стабильная, чем РНК, и более легкая для синтеза в пребиотических условиях в которых образование рибозы и присоединение фосфатных групп, отсутствующих в ПНК, определенно проблематично.

Он предположил, что последним общим предком среди трех доменов мог быть РНК-вирус. Некоторые вирусы позже примут ДНК, гораздо менее подверженные внешним повреждениям, и начнут заражать организмы, принадлежащие к трем доменам, этой нуклеиновой кислотой, что также позволит их эволюции. На протяжении большей части двадцатого века научное сообщество считало жизнь комбинацией ДНК и белков , считало две доминирующие макромолекулы, низводя РНК до статуса простой вспомогательной молекулы.

Согласно этой идее наличие каталитической функции у полинуклеотидов могло привести к формированию своеобразного «мира РНК» как основы эволюции первичной биосферы. Представления о существовании мира РНК исходят из предположения, что именно полинуклеотиды составляют химическую основу древнейших организмов, то есть молекулы РНК функционировали как генетический материал и одновременно выполняли каталитические функции в присутствии генетически упорядоченных белков [30]. При наличии активированных аминокислот синтез пептидов не представляется трудной задачей. Активированные аминокислоты конденсируются даже в водных растворах с образованием коротких пептидов, а цепи длиной до 50 аминокислот образуются на минеральных поверхностях. Абстрактная схема биосинтеза белка в примитивных системах с участием каталитических РНК представлялась следующим образом. Примитивные РНК, аминоацилирующие сами себя активированными аминокислотами по аутокаталитическому механизму, могут выступать донорами и акцепторами аминокислот в реакциях переноса ацильных групп, катализируемых рибозимами [16]. Для признания РНК в качестве молекул, осуществляющих в примитивных системах синтез белков, показана возможность выполнение ими следующих функций: узнавание аминокислот, аминоацилирование тРНК, перенос ацильных групп, активация аминокислот и синтез пептидов.

Рибозимы способны катализировать и некоторые другие химические реакции, характерные для обмена веществ. Сегодня развиваются представления о том, что каталитический потенциал примитивных РНК мог быть существенно расширен за счет присоединения к их молекулам коферментных групп [7]. Дальнейшие исследования этой же группы исследователей показали, что молекулы РНК при столкновении в водной среде могут спонтанно обмениваться частями, то есть, обладают способностью к неэнзиматической рекомбинации. Возможность легкого распространения молекул РНК через среду, в том числе атмосферную, также было продемонстрирована в прямых экспериментах [32, 36, 37]. В теоретическом отношении это открытие в контексте мировой научной концепции о рибозимах "РНК-мир" способствует возможности в корне пересмотреть теорию происхождения жизни на Земле. Смешанные колонии РНК на твёрдых или полутвёрдых носителях могли быть первыми эволюционизирующими бесклеточными ансамблями, где одни молекулы выполняли генетические функции репликацию молекул РНК всего ансамбля , а другие формировали необходимые для успешного существования структуры например, такие, которые адсорбировали нужные вещества из окружающей среды или были рибозимами, ответственными за синтез и подготовку субстратов для синтеза РНК. Эта коммунальная форма существования мира РНК должна была очень быстро эволюционировать. Что же стало с РНК после распада коммуны? Хотя коммуна распалась, мир РНК сохранился в каждой клетке каждого живого организма. В качестве центрального звена этого процесса биосинтеза белков выступает совокупность взаимодействующих друг с другом молекул РНК различных типов, прежде всего рибосомной РНК, формирующей аппарат белкового синтеза, тРНК, доставляющей в рибосому активированные аминокислоты для построения полипептидных цепей белков, и мРНК, несущей в своей нуклеотидной последовательности программу для синтеза белка.

Оказалось, что нкРНК выполняют множество функций с использованием не известных ранее механизмов: нкРНК участвуют в регуляции транскрипции генов, сплайсинге и регуляции деградации РНК. Они вовлечены в трансляцию и её регуляцию, в процессинг и модификацию рибосомной РНК, в защиту от вирусных инфекций и мутагенной активности мобильных генетических элементов, а также в ряд других процессов. РНК явно потеснили белки на пьедестале главных молекул, обеспечивающих жизнедеятельность клеток [16, 25]. Все рассмотренные аргументы подчёркивают важную, если не исключительную, роль РНК в происхождении жизни на земле. Исследования продолжаются. Современная жизнь - это РНК, передавшая часть свих генетических функций рождённому ею же полимеру - ДНК и синтезирующая белки для всеобъемлющего эффективного функционирования содержащих её компонентов - клеток и многоклеточных организмов [27-29]. Необычные древние особенности РНК нашли в последнее время эффективные практические приложения. Так как практически каждая наноколония происходит из одной матричной молекулы, с помощью наноколоний можно обнаружить и идентифировать одиночные молекулы ДНК и РНК, в том числе - с диагностическими целями. В настоящее время наноколонии применяются в нашей стране и за рубежом для различных научных и прикладных задач. Важнейшим направлением исследований является разработка ранней диагностики онколологических заболеваний.

В России от разных видов рака умирает около 300 000 человек в год, что представляет большую демографическую, экономическую социальную проблему. Лечение осложняется тем, что у большинства больных болезнь диагностируется уже на поздних стадиях. С развитием экономики проблема может только усугубляться, так как частота онкологических заболеваний растёт по мере ухудшения экологической обстановки и увеличения продолжительности жизни населения. Эффективность лечения рака зависит от своевременности диагностики. Однако до сих пор проблема ранней диагностики рака не решена. Наноколонии РНК позволяют создать технологию молекулярной диагностики рака на стадии, когда его ещё невозможно обнаружить существующими методами. Диагностировать болезнь предполагается путём обнаружения в клинических образцах например, в крови, в моче или в мокроте молекул определённых индикаторных "маркёрных" РНК, которые присутствуют во всех раковых клетках независимо от вида рака. Примером такого универсального маркёра является мРНК белковой субъединицы теломеразы - фермента, отвечающего за синтез концевых участков хромосом теломер. Эта мРНК присутствует и в нормальных стволовых клетках, которые, подобно раковым клеткам, способны к неограниченному делению. Однако, в отличие от раковых клеток, стволовые клетки находятся в своих нишах и не распространяются по организму.

Поэтому присутствие теломеразной мРНК там, где стволовых клеток быть не должно например, в плазме или в клетках крови , может служить указанием на наличие злокачественного процесса. Существуют также РНК, которые могут служить групповыми маркёрами всех видов рака кишечника, или всех видов рака молочной железы, или всех видов рака печени. Попытки использовать РНК-маркёры для молекулярной диагностики рака были и раньше, но из-за ограниченной чувствительности и недостаточной специфичности стандартной ПЦР полимеразной цепной реакции они закончились неудачей. Следует отметить исключительно высокий потенциал наноколоний для диагностики любых заболеваний, для которых существуют РНК- или ДНК-маркёры, в т. Например, молекула белка в том числе белка-маркёра рака может быть обнаружена путём размножения суррогатной ДНК-мишени, образованной лигированием фрагментов ДНК, способных одновременно связываться с данной молекулой белка посредством специфических лигандов например, антител. Подобным же образом с помощью наноколоний можно обнаружить одиночные молекулы любого вещества например, наркотика или допинга , достаточно сложные для формирования на своей поверхности, по крайней мере, двух участков специфического связывания лигандов [16]. В помощь антибиотикам Важнейшей проблемой современности является быстрая эволюция бактерий в направлении приобретения устойчивости к антибиотикам, приводящая к возрождению многих заболеваний человека. Профессор Йельского университета США Сидни Альтман, продолжая исследования в области каталитической способности РНК, стал разрабатывать способы борьбы с инфекционными заболеваниями антибактериальная и антималярийная терапия , используя каталитические способности конкретного РНК-фермента - рибонуклеазы Р. Конечная цель - создать препарат, который мог бы быть альтернативой в случае устойчивости инфекции к антибиотикам. На конкретных объектах исследований разрабатываются фундаментальные основы подходов, которые могли бы быть общими для лечения многих инфекционных заболеваний.

В перспективе синтезировать определённые соединения, которые могут быть легко модифицированы для борьбы, как с бактериями, так и с малярией. Это направление исследований представляет перспективную альтернативу применению в медицине антибиотиков, возможности которых стремительно тают. Сидни Альтман разрабатывает это важнейшее направление, в частности, совместно с Институтом химической биологии и фундаментальной медицины СО РАН г. Новосибирск [6]. Как зарождались знания, составляющие основу практического применения теорий и методов молекулярной биологии РНК Лауреат Нобелевской премии за открытие рибозимных свойств РНК Сидни Альтман Олтмен, 1939 г. Заняться молекулярной биологией начинающему учёному Альтману посоветовал русский физик Георгий Гамов. Он понял, что структуры белков, состоящих из 20 основных природных аминокислот - должна быть зашифрована в последовательности из четырёх возможных нуклеотидов, входящих в состав молекулы ДНК. Исходя из простых арифметических соображений, Гамов показал, что при сочетании 4-ёх нуклеотидов тройками получается 64 различные комбинации, чего вполне достаточно для записи наследственной информации. Таким образом, он был первым, кто предложил кодирование аминокислотных остатков триплетами нуклеотидов [17]. Практически генетический код позволил расшифровать метод бесклеточной системы синтеза белка in vitro.

Первые результаты в этом направлении были получены в 1961 году, когда М. Ниренберг и Х. Матеи синтезировали упрощённую форму мРНК, состоящую из одинаковых нуклеотидов и обнаружили, что в её присутствии происходит образование длинной цепи белковоподобной молекулы, состоящей из аминокислот одного-единственного вида. Искусственная мРНК представляла собой полинуклеотид поли-У, в котором все нуклеотиды содержали только одно основание - урацил. Когда поли-У добавляли к экстракту из клеток бактерии E. Так было обнаружено, что кодон УУУ соответствует фенилаланину. Этот первый успех указал путь, следуя которому в скором времени удалось установить кодоны и для ряда других аминокислот; требовалось только перепробовать различные формы синтетических мРНК. Тогда возник вопрос, каким образом некоторые синтетические мРНК, например поли-У, которые, конечно, не содержат таких кодонов, ухитряются как-то заставлять рибосомы синтезировать полипептиды? Вероятно, это происходит по ошибке - из-за того, что рибосомы ведут себя «не по инструкции». Следовательно - ирония судьбы!

Каковы же те обстоятельства, которые приводят к тому, что эти системы совершают «нужные» ошибки?

Ученые предполагают, что древние полимеры могли использовать такие циклы для размножения, возможно, полагаясь на неорганические поверхности, например, камни, в этом процессе. Эти новые данные открывают дополнительные перспективы для понимания исходных этапов эволюции жизни на Земле.

Как в мир РНК пришли белки

Это новое исследование ставит под сомнение гипотезу мира РНК, которая предполагает, что самовоспроизводящиеся молекулы РНК были предшественниками всех современных форм жизни на Земле. Гипотеза о существовании мира РНК получила новую жизнь после исследований, продемонстрировавших то, что молекулы РНК проявляют более высокую каталитическую активность в условиях, сходных с теми, что существовали на Земле миллиарды лет назад. Новости по тэгу. Открытия, показывающие способность молекул РНК самовоспроизводиться, а также выполнять ферментативные функции, привели к возникновению гипотезы мира РНК. В конце концов, был написан сценарий «Мир РНК», согласно которому сначала якобы образовалась РНК, содержащая информацию о белке, а затем и сам белок. В рамках своего проекта ученые поставили под сомнение достоверность гипотезы РНК-мира. Хотя гипотеза мира РНК восторжествовала, некоторые ученые были с ней не согласны.

гипотеза "Мир-РНК"

В основном потому, что гипотеза мира РНК подкрепляется большим числом экспериментальных свидетельств, чем набрали её конкуренты. Сторонники гипотезы РНК-мира считают, что на начальном этапе зарождения жизни на нашей планете возникли автономные РНК-системы, которые катализировали «метаболические» реакции (например, синтеза новых рибонуклеотидов) и самовоспроизводились. Летающие лисы. Подписаться. Гипотеза РНК-мира для ЕГЭ по биологии. Показать больше. Окончательная уверенность в том, что «мир РНК» действительно существовал, наступила после выявления деталей строения кристаллов рибосом методом рентгеноструктурного анализа.

Гипотеза мира РНК

Они предложили гипотезу "мира РНК", которая предполагает, что возникновение жизни на Земле произошло путем усложнения РНК-молекул и их преобразования в молекулы ДНК и белки. Ученые из Института биологических исследований Солка провели исследования, подтверждающие гипотезу о мире РНК. Ученые из Брукхейвенской национальной лаборатории опубликовали статью в журнале eLife, в которой сообщили о новых доказательствах в пользу гипотезы РНК-мира. рибозимов - в 1982-1983. рибозимов - в 1982-1983. Новости о недвижимости, экономики и финансах в России.

Ученые описали, как появилась РНК

Репликация происходила за счет циклического изменения температуры, что поддерживало процесс размножения, как в циклах день-ночь. Исследователи также отметили, что неорганические поверхности, вроде камней, могли способствовать этому процессу, что открывает новые горизонты в понимании начал биологической эволюции на Земле.

Если одна из цепочек обладает петлей шпилькой , то возможно образование молекулы РНК, которая действует как рибозим типа hammerhead, способный осуществлять собственное расщепление. В дальнейшем начинается самовоcпроизводство этого энзима в соответствии с первой моделью. Репликация полимера происходила на основе циклического изменения температуры между горячей и холодной фазами типично для циклов день-ночь , что позволяет предположить, что древние полимеры, возможно, полагались на такие циклы для своего размножения.

Неорганические поверхности, такие как камни, также могли способствовать этому процессу.

Часть проблемы заключается в том, что молекулы РНК образуют стабильные структуры, называемые дуплексами. Эти структуры обладают так называемым сильным сродством связывания. Это означает, что молекулы РНК с трудом отделяются друг от друга и действуют как матрицы для дальнейшей репликации в отсутствие ферментов. У Кришнамурти теперь есть экспериментальные доказательства, чтобы продемонстрировать, что жизненный процесс на Земле мог начаться с молекул, которые выглядели как смесь РНК и ДНК. В последнем выпуске Nature Chemistry он и первый автор исследования, Субхенду Боумик, доктор философии, также из Научно-исследовательского института Скриппса, сообщают, что эти смешанные молекулы образуют нестабильные дуплексы и имеют меньшую аффинность к себе.

Жена юноши была обеспокоена, что тот выглядит слишком молодо для своей должности. К счастью, в тот же день у раввина появилось 18 рядов седых волос. Средневековый раввин Маймонид утверждал, что седина появилась из-за напряженной учебы: день и ночь бен Азария корпел над Торой, из-за чего ослаб и резко постарел.

Это была первая из многих попыток объяснить, почему волосы могут быстро побелеть. В 1806 году французский химик и фармацевт Луи-Николя Воклен предположил, что выделяется некоторое таинственное вещество, которое растворяет пигмент. Спустя 60 лет немецкий физиолог Леонард Ландуа придумал другой механизм внезапного поседения: по его гипотезе, при внезапном поседении внутрь волоса почему-то проникают пузырьки воздуха, что придает ему белый оттенок из-за преломления света. А уже в начале XX века Илья Мечников допустил, что по волосам ползают особые иммунные клетки — пигментофаги, которые поглощают пигмент, а затем относят его к волосяной луковице и откладывают в соединительной ткани. Сейчас внезапное поседение все чаще объясняют тем, что меняется цикл роста волос: анаген становится короче, волосы быстрее выпадают, а новые вырастают с нехваткой пигмента. Избыточное выпадение волос называют телогеновой алопецией telogen effluvium , и начинается она через два-три месяца после воздействия какого-то триггера. Триггером могут быть лекарства оральные контрацептивы, антидепрессанты, бета-блокаторы , травма, эмоциональный стресс или проблемы с диетой, вроде нехватки калорий, белка и жирных кислот в пище. Еще одна возможная причина — облучение ультрафиолетом. Трихологи даже замечают «эффект лета», когда количество пациентов с телогеновой алопецией увеличивается с июля по октябрь. Вряд ли Лиланд Палмер оголодал в Твин Пиксе, знаменитом своими вишневыми пирогами.

Также маловероятно, что в феврале ему напекло голову. Но эмоциональный стресс налицо, как, впрочем, вероятно и использование антидепрессантов. Под клиническую картину не подходит лишь срок появления седины — с момента смерти Лоры к началу второго седого сезона проходит пара недель, а не два-три месяца, которые необходимы для манифестации заболевания. Пусть время в Твин Пиксе течет очень своенравно, но версию с telogen effluvium для Лиланда все же придется отбросить. Но вот в случае с Марией Антуанеттой на развитие седины после избыточного выпадения волос времени было более чем достаточно: между заключением в Тампль и восхождением на эшафот прошло более года. Кроме того, королеву в заточении почти никто не видел, а значит ее появление на казни поседевшей могло быть воспринято как произошедшее за одну ночь. Но у Лиланда был один недостаток: он нервничал. Вы нервничаете Помимо повышенной скорости выпадения волос стресс приводит к истощению популяции стволовых клеток, которые могли бы стать меланоцитами. Важную роль в поддержании работы волосяного фолликула играют окружающие его клетки: например жировой ткани и иммунные. Волосяные фолликулы также оплетены чувствительными нервами и нервами вегетативной нервной системы.

При этом вегетативная нервная система — одна из главных при реагировании на стресс. В современном мире нам редко приходится использовать эту реакцию в прямом смысле, тем не менее симпатическая нервная система все равно активируется. Но нервы, которые находятся в тесном контакте с волосяным фолликулом, в ситуации стресса могут случайно нарушить его работу. Часть нервных окончаний симпатической системы примыкают к области выпуклости, где обитают предшественники меланоцитов. У мышек стресс приводит к выбросу адреналина из нервных окончаний у фолликула. Из-за адреналина стволовые клетки начинают слишком активно делиться и мигрировать. В конце концов в области выпуклости ничего не остается: популяция предшественников меланоцитов полностью истощается, растущий волос некому подкрасить и появляется седина. Особенности биологии волоса, его роста и пигментации отличаются у людей и других млекопитающих: например, циклы роста у грызунов, как правило, короче и чаще, чем у человека. Кроме того, разнится и возраст появления седины: в то время как шимпанзе и собаки отращивают седину старея, у самцов серебристоспиных горилл седина появляется после 12 лет как статусный аксессуар. Поэтому переносить результаты исследований с животных на человека следует с осторожностью.

Косвенно на роль активации симпатической нервной системы в появлении седины от стресса у человека указывают случаи пациентов, у которых иссечение симпатических нервов на уровне шейного или поясничного отделов приводило к тому, что седина, наоборот, появлялась позже обычного. И если во внезапно появившейся седине виновата избыточная активация симпатической нервной системы, то поседевшие волосы — меньшая из проблем организма. Как, впрочем, было и у мистера Палмера. Седина — не то, чем кажется Если нормальная физиологическая серебристая шевелюра ассоциируется со старостью, то появление значительной седины до 30 лет считается преждевременным. Как и стрессовое внезапное поседение в любом другом возрасте. Остается вопрос: если наступает преждевременная седина — означает ли это и преждевременное старение? Эпидемиологические исследования показывают, что ранняя седина связана с повышенным риском сердечно-сосудистых заболеваний, метаболическим синдромом, остеопенией это уменьшение содержания минералов в костной ткани , болезнью Альцгеймера и даже тяжелым протеканием коронавирусной инфекции.

Обнаружены новые доказательства РНК-мира

Гипотеза РНК-мира заключается в том, что первые репликаторы на Земле представляли собой РНК-молекулы, которые могли инициировать собственное воспроизведение без помощи белковых ферментов. Но долгое время было неясно, как такая молекула может появиться из предшественников, которые не могут проявлять каталитической активности. Специалисты обнаружили, что рибозим, который помогает расщеплять другие молекулы, может появиться спонтанно, потому что для обеспечения его работы необходимы только несколько классических оснований. Но и тут оставалась проблема, как именно это свойство сохранилось во время биохимической эволюции.

Фото Археологическая группа из University of Colorado Boulder обнаружила верхнюю часть огромной статуи фа... Да, в самое ближайшее время - 44.

Следовательно, такой характер связей отражает последовательность постепенного добавления блоков в процессе эволюции молекулы, реконструированном исследователями. Таким образом, у истоков жизни мог стоять сравнительно простой рибозим — PTC-центр молекулы 23S-рРНК, к которому затем добавлялись новые блоки, совершенствуя процесс синтеза белка. Чаще всего постулируется необходимость агрегирующих РНК мембран или размещения РНК на поверхности минералов и в поровом пространстве рыхлых пород. В 1990-е годы А. Четвериным с сотрудниками была показана способность РНК формировать молекулярные колонии на гелях и твёрдых субстратах при создании им условий для репликации. Происходил свободный обмен молекулами, которые при столкновении могли обмениваться участками, что показано экспериментально. Вся совокупность колоний в связи с этим быстро эволюционировала [10]. После возникновения белкового синтеза колонии, умеющие создавать ферменты, развивались успешнее. Ещё более успешными стали колонии, сформировавшие более надёжный механизм хранения информации в ДНК и, наконец, отделившиеся от внешнего мира липидной мембраной, препятствующей рассеиванию своих молекул. Шапиро критикует гипотезу РНК-мира, считая, что вероятность спонтанного возникновения РНК, обладающей каталитическими свойствами, очень низка.

Для осуществления реакции, предложенной учеными, требуются цианамид на схеме обозначен цифрой 4 , цианоацетилен 3 , гликолевый альдегид 7 , глицеральдегид 6 и неорганический фосфат 2 — молекулы, нахождение которых на первобытной Земле оценивается как весьма вероятное. В начале процесса гликолевый альдегид реагирует с цианамидом, образуя промежуточное соединение — 2-аминооксазол 5. Периодический нагрев солнечными лучами и понижение температуры в ночной период позволяют произвести очистку 2-аминооксазола, превращая его в «заменитель» сахара и азотистого основания. Под воздействием УФ-излучения в присутствии неорганического фосфата процесс завершается образованием рибонуклеотида 1. Коллеги ученых по достоинству оценили результаты их работы.

Рибозим со свойствами РНК-полимеразы синтезировал функциональные молекулы РНК

Один из этапов эволюции РНК-полимеразы класса I —рибозима, производящего рибозимы. Credit: PNAS, 2020. DOI: 10. На праймер отжигается матрица коричневый для синтеза участка РНК, превращающего шпильку с биотином в рибозим — молекулу РНК типа «головка молота» hammerhead , которая разрезает сама себя. Полимераза синтезирует hammerhead голубой на матрице, и вся конструкция захватывается на магнитные шарики со стрептавидином. Если hammerhead успешно синтезирован а в нем есть участок, крайне чувствительный к ошибкам , он вносит разрез в оранжевый участок, полимераза высвобождается, подвергается обратной транскрипции и ПЦР-амплификации; затем с помощью транскрипции синтезируются дочерние молекулы полимеразы, и цикл повторяется. Десятки раундов эволюции в этой системе улучшили свойства РНК-полимеразы, существенно сократили время получение полноразмерного продукта.

Однако точность синтеза РНК оставалась недостаточно высокой, и лишь незначительная доля молекул лигазы, которые они синтезировали, обладала каталитической активностью. Авторы отмечали, что понадобится более строгий отбор, чтобы получить РНК-полимеразы с высокой точностью, которые смогли бы синтезировать более длинные молекулы.

В начале процесса гликолевый альдегид реагирует с цианамидом, образуя промежуточное соединение — 2-аминооксазол 5. Периодический нагрев солнечными лучами и понижение температуры в ночной период позволяют произвести очистку 2-аминооксазола, превращая его в «заменитель» сахара и азотистого основания. Под воздействием УФ-излучения в присутствии неорганического фосфата процесс завершается образованием рибонуклеотида 1. Коллеги ученых по достоинству оценили результаты их работы. Полная версия отчета ученых опубликована в журнале Nature.

Возможно, наши читатели слышали и об РНК, но вот что? Что когда-то в древности, на только что остывшей Земле, возник и существовал загадочный «мир РНК»… Прежде чем отправиться к «началу начал», давайте запасемся необходимыми знаниями о строении нуклеиновых кислот — ДНК дезоксирибонуклеиновой и РНК рибонуклеиновой.

По своему химическому составу РНК является двойняшкой, хотя и не полным близнецом, ДНК, основного хранителя генетической информации в живой клетке. Нуклеиновые кислоты представляют собой полимерные макромолекулы, состоящие из отдельных звеньев — нуклеотидов. Скелетом макромолекулы являются молекулы пятиуглеродного сахара, соединенные остатками фосфорной кислоты. К каждой молекуле сахара присоединяется одно азотистое основание. Честно говоря, насчет РНК никто не задумывался долгие годы. Существовала догма, что вот есть клетка, есть хромосомы, в которых есть ДНК — хранитель генетической информации. В конце концов, на рибосомах синтезируются белки. А потом посыпались открытия, которые заставили совершенно по-другому взглянуть на РНК Главное отличие нуклеиновых кислот заключается в их углеводной компоненте. Так, ДНК существуют в основном в форме всем известных жестких спиралей, в которых две цепи ДНК удерживаются вместе за счет образования водородных связей между комплементарными нуклеотидами.

РНК также могут формировать спирали из двух цепочек, похожие на спирали ДНК, однако в большинстве случаев РНК существуют в виде сложных структур-клубков. Структуры эти формируются не только за счет образования упомянутых водородных связей между разными участками РНК, но и благодаря оксигруппе рибозы, которая может образовывать дополнительные водородные связи и взаимодействовать с фосфорной кислотой и ионами металлов. Глобулярные структуры РНК не только внешне напоминают белковые структуры, но и приближаются к ним по свойствам: они могут взаимодействовать с самыми разными молекулами, как маленькими, так и полимерными. Кого Считать «Живым»? Почему же именно РНК мы называем праматерью ныне существующей жизни? Чтобы ответить на этот вопрос, давайте разберемся, где проходит граница между живым и неживым. Поскольку над проблемой происхождения жизни работают ученые из разных областей, каждый оперирует терминами близкой ему науки. Химики обязательно вспомнят слово «катализатор», математики — «информация». Биологи будут считать живой систему, содержащую вещество генетическую программу , которое может копироваться или, по-простому, размножаться.

При этом необходимо, чтобы в ходе такого копирования могли происходить некоторые изменения наследственной информации и возникать новые варианты систем, т. Еще биологи обязательно заметят, что такие системы должны быть пространственно обособлены. Иначе возникшие более прогрессивные системы не смогут воспользоваться своими преимуществами, поскольку их более эффективные катализаторы и другие продукты будут беспрепятственно «уплывать» в окружающую среду. Каким же образом первые молекулярные системы были обособлены от окружающей среды? Колонии молекул могли, например, удерживаться вместе за счет адсорбции на какой-нибудь минеральной поверхности или пылевых частицах. Однако возможно, что уже самые примитивные системы располагали, подобно современным живым клеткам, настоящей мембранной оболочкой. Это слово должно быть хорошо известно прекрасной половине наших читателей: липосомы широко используются в косметических кремах — крохотные жировые капсулы начиняются витаминами и другими биологически активными веществами. А вот чем были наполнены древние «протоклетки»? Оказалось, что на роль «начинки» претендуют именно РНК.

РНК умеет все? Жизнь, без сомнения, должна была начаться с образования «умелых» молекул, которые могли бы сами себя размножать и выполнять все другие «хозяйственные работы», необходимые для существования клетки. Однако на роль таких умельцев не подходит ни ДНК, ни белок. Белки — непревзойденные катализаторы, но не могут работать в качестве «генетических программ». Но не будем забегать вперед. Рассмотрим давно известные функции РНК, связанные с работой экспрессией гена в клетке.

В конце 70-х годов американские биохимики Томас Чек и Сидни Альтман независимо друг от друга изучали структуру и функции таких ферментов. Вначале, следуя общепринятому мнению, ученые полагали, что молекула РНК является в таких комплексах лишь вспомогательным элементом, отвечающим, может быть, за построение правильной структуры фермента или за правильную ориентацию при взаимодействии фермента и субстрата то есть той молекулы, которая и подвергается изменению , а саму катализируемую реакцию выполняет белок. Для того чтобы прояснить ситуацию, исследователи отделили белковую и РНК составляющие друг от друга и исследовали их способности к катализу. К своему огромному удивлению, они заметили, что даже после удаления из фермента белка, оставшаяся РНК была способна катализировать свою специфическую реакцию.

Такое открытие означало бы переворот в молекулярной биологии: ведь раньше считалось, что к катализу способны лишь белки, но никак не нуклеиновые кислоты. Самым убедительным доказательством способности РНК к катализу стала демонстрация того, что даже искусственно синтезированная РНК, входящая в состав изучаемых ферментов, может самостоятельно катализировать реакцию. Эндорибонуклеазная активность самой РНК вне связи с белком была впервые обнаружена Т. Чеком в 1980 г. С тех пор аутокаталитические реакции расщепления были выявлены у многих молекул РНК. Молекулы РНК, способные к катализу, были названы рибозимами по аналогии с энзимами, то есть белковыми ферментами. За их открытие в 1989 году Чек и Альтман были удостоены Нобелевской премии по химии [34, 35]. Вместе с тем показано, однако, что рибозимы современных организмов обладают весьма ограниченным диапазоном каталитических активностей, осуществляющих преимущественно реакции гидролиза и переноса фосфодиэфирных связей в самой РНК, а также в ДНК. Представления о возможностях РНК катализа значительно расширились с развитием методов искусственного отбора и амплификации молекул из синтезированных хаотических последовательностей РНК. Оказалось, что рибозимы, полученные в результате молекулярной селекции, катализируют образование полимерных цепей, комплементарных материнским молекулам РНК.

Они также способны катализировать реакции, имеющие прямое отношение к биосинтезу белка, например, перенос аминоацильных и пептидильных радикалов и образование пептидной связи. С этим хорошо согласуется тот факт, что рибосомная 23 8 РНК выполняет каталитическую функцию в биосинтезе белка и нельзя исключить, что именно полинуклеотидный катализатор обеспечивает пептидилтрансферазную активность современной рибосомы. Эти результаты дают основание полагать, что каталитические активности, присущие полирибонуклеотидным молекулам, могли обеспечить развитие процессов репликации и трансляции в мире РНК [4, 7]. После открытия Т. Чеком с соавторами в 1981-1982 гг. Именно открытие рибозимов РНК-ферментов привело к созданию концепции «мира РНК» - мира, который, вероятно, возник и существовал задолго до оформления ныне существующего «ДНК-белкового мира». Вскоре после открытия рибозимов в одной из работ родоначальник и классик молекулярной биологии Ф. Крик писал: «Эти эксперименты по каталитической РНК поддерживают гипотезу, что биохимия РНК предшествовала традиционной биохимии, основанной на нуклеиновых кислотах и белках». Эта книга в последствие неоднократно переиздавалась. Авторы, среди которых был и Чек, обсуждали на страницах объёмистого тома эволюционные аспекты зарождения катализа, специфичность и функции макромолекул.

В начале 1990-ых годов ещё никто не мог предполагать взрыва интереса к РНК, и книга пользовалась интересом главным образом среди теоретиков. Теперь же совсем другое дело. Можно только поразиться провидческой способности редакторов первого издания, которые предпослали книге подзаголовок: "Природа современной РНК предполагает её пребиотичность" [16]. Новый взгляд на происхождение жизни на планете Земля Проблема происхождения жизни приобрела неодолимое очарование для всего человечества. Она не только привлекает к себе пристальное внимание учёных разных стран и специальностей, но интересует вообще всех людей мира. В конце 60-ых годов XX века известный английский учёный Джон Бернал в своей монографии «Возникновение жизни» 1967 писал: «Гипотеза Уотсона и Крика, предложенная ими в 1953 году, произвела полный переворот в биологии, да и, можно сказать, в науке вообще. Возможность приложения этой гипотезы к проблеме возникновения жизни очевидна, хотя и не осознаётся ещё должным образом даже её авторами.... Успехи, достигнутые молекулярной биологией, заставили нас пересмотреть многое из того, что прежде считалось очевидным... Лишь после работ Уотсона, Крика и Ниренберга, раскрывших всю сложность процесса белкового синтеза, нам стало ясно, что здесь мы имеем дело с тончайшим механизмом воспроизведения - воспроизведения не столько самих организмов, сколько составляющих его молекул» [3]. Однако до 80-ых годов XX века, ввиду отсутствия экспериментально мотивированного ответа на вопрос о том, как сформировались в эволюции системы декодирования генетической информации нуклеиновых кислот в структурные параметры белков, проблема возникновения организмов, одновременно обладавших каталитическим и генетическим аппаратом, казалось неразрешимой.

Возможность решения этой проблемы открывалась, если предположить, что на начальных этапах эволюции обе функции могли быть объединены, в каком-либо одном классе биополимеров. Следует сказать, что, несмотря на экспериментальные свидетельства абиотической конденсации аминокислот в каталитически активные полимеры, неспособность полипептидов в отличие от полинуклеотидов реплицироваться с образованием комплементарных последовательностей не позволяла рассматривать белки в качестве хранителя и переносчика генетической информации. Сценарий развития жизни преобразовался. Вначале, по новой гипотезе, в условиях молодой Земли спонтанно появились короткие цепочки молекул РНК. Некоторые из них, опять же спонтанно, приобретали способность к катализу реакции собственного воспроизведения репликации. Из-за ошибок при репликации некоторые из дочерних молекул отличались от материнских и обладали новыми свойствами, например, могли катализировать другие реакции. Еще одно важнейшее свидетельство того, что "вначале была РНК", принесли исследования рибосом. Рибосомы - структуры в цитоплазме клетки, состоящие из РНК и белков и отвечающие за синтез клеточных протеинов. В результате их изучения было выявлено, что у всех организмов именно РНК, находящаяся в каталитическом центре рибосом, отвечает за главный этап в сборке белков - соединение аминокислот между собой. Открытие этого факта еще более упрочило позиции сторонников РНК-мира.

Действительно, если спроецировать современную картину жизни на ее возможное начало, разумно предположить, что рибосомы -структуры, специально существующие в клетке, чтобы "расшифровывать" код нуклеиновых кислот и производить белок, - появились когда-то как комплексы РНК, способные к соединению аминокислот в одну цепочку. Так на основе мира РНК мог появиться мир белков. Таким образом, имеется много достаточно веских теоретических доводов, чтобы считать молекулу РНК основоположницей жизни на Земле. В 1989 году нобелевский лауреат по химии Уолтер Гилберт, придумавший на основании идеи российских академиков Е. Свердлова и А. Мирзабекова, один из первых методов секвенирования ДНК, ввел в оборот выражение "мир РНК", имея в виду полноценный, самостоятельный и способный к эволюции мир доклеточной жизни. Эти результаты не замедлили сказаться на теории происхождения жизни: "фаворитом" стала молекула РНК. В самом деле, была обнаружена молекула, способная нести генетическую информацию и вдобавок к этому катализировать химические реакции! Более подходящего кандидата для зарождения доклеточной жизни трудно было представить [4]. Плодотворной оказалась идея, высказанная К.

Вузом и несколько позже Л. Оргелем и окончательно сформулированная В. Гилбертом уже в 80-е годы. Согласно этой идее наличие каталитической функции у полинуклеотидов могло привести к формированию своеобразного «мира РНК» как основы эволюции первичной биосферы. Представления о существовании мира РНК исходят из предположения, что именно полинуклеотиды составляют химическую основу древнейших организмов, то есть молекулы РНК функционировали как генетический материал и одновременно выполняли каталитические функции в присутствии генетически упорядоченных белков [30]. При наличии активированных аминокислот синтез пептидов не представляется трудной задачей. Активированные аминокислоты конденсируются даже в водных растворах с образованием коротких пептидов, а цепи длиной до 50 аминокислот образуются на минеральных поверхностях. Абстрактная схема биосинтеза белка в примитивных системах с участием каталитических РНК представлялась следующим образом. Примитивные РНК, аминоацилирующие сами себя активированными аминокислотами по аутокаталитическому механизму, могут выступать донорами и акцепторами аминокислот в реакциях переноса ацильных групп, катализируемых рибозимами [16]. Для признания РНК в качестве молекул, осуществляющих в примитивных системах синтез белков, показана возможность выполнение ими следующих функций: узнавание аминокислот, аминоацилирование тРНК, перенос ацильных групп, активация аминокислот и синтез пептидов.

Рибозимы способны катализировать и некоторые другие химические реакции, характерные для обмена веществ. Сегодня развиваются представления о том, что каталитический потенциал примитивных РНК мог быть существенно расширен за счет присоединения к их молекулам коферментных групп [7]. Дальнейшие исследования этой же группы исследователей показали, что молекулы РНК при столкновении в водной среде могут спонтанно обмениваться частями, то есть, обладают способностью к неэнзиматической рекомбинации. Возможность легкого распространения молекул РНК через среду, в том числе атмосферную, также было продемонстрирована в прямых экспериментах [32, 36, 37].

Похожие новости:

Оцените статью
Добавить комментарий