Губернатор Андрей Травников во время выездного совещания на площадке АО «Катод» обсудил вопросы поддержки воинских подразделений, участвующих в СВО. Они показали, что такие катоды могут выдерживать до 25000 циклов работы, а также заряжаться за несколько секунд, что превосходит возможности современных литий-ионных аккумуляторов. История «Катода» — это история развития наукоемкого бизнеса в России, который, несмотря на внутренние и внешние проблемы, все же достиг успеха и мирового признания.
Читайте также:
- Разработка российских ученых позволила увеличить пробег электрокаров на одной зарядке
- В КНР ученые нашли пагубное влияние черного чая на легкие — ведет к онкологии
- Ученые сформулировали новую теорию о жизни после смерти
- Ученые разработали новый тип катода для аккумуляторов |
- Новый LMR-катод минимизирует падение напряжения в литий-ионных батареях
Российские ученые создали эффективную замену литию в аккумуляторах
Перевод основных положений публикации представлен изданием discover24. Литий-ионные батареи LiB — перезаряжаемые батареи, которые сохраняют энергию за счет обратимого восстановления ионов лития, остаются одной из наиболее широко используемых аккумуляторных технологий во всем мире. Эти батареи питают широкий спектр устройств, от смартфонов, наушников и ПК до умных бытовых приборов и электромобилей. Группа исследователей из Городского университета Гонконга и ряда научных центров в США под эгидой Северо-Западного университета в Чикаго разработала решение, способное серьезно улучшить производительность LiB, продлить срок их службы и увеличить их энергоемкость за счет нового типа катодного материала. Известно, что многослойные катоды LMR подвержены явлению, известному как «утечка напряжения», которое влечет за собой быстрый износ катодов и потерю заряда в батарее. Эта хорошо изученная проблема ранее не находила решения, что значительно ограничивает производительность LiB и их общий потенциал.
Электроды соединяют с клеммами-токосъемниками. Особенности анода Углеродным материалам графиту, саже, коксу свойственно обратимо встраивать катионы лития в пространства между слоями с минимальным увеличением удельного объема.
Это важно, чтобы исключить риск возникновения огромных внутренних напряжений и вызываемого ими разрушения активных материалов. Удачным экспериментом стало использование в роли анодного материала пентатитаната лития — Li4Ti5O12. Но номинальный вольтаж у них составляет 2,4 В. Особенности катода В роли катода используют разные соединения лития, и от их выбора зависят характеристики аккума. Так, для получения высокотоковых ячеек используется катодный материал LiMn2O4. Для увеличения проводимости в активную массу катода включают электропроводные добавки. Оксиды кобальта обеспечивают Li-ion аккумуляторам большое напряжение 3,7 В и солидный запас емкости.
Иногда для изготовления катода используют смешанные оксиды или фосфаты, которые улучшают эксплуатационные характеристики элементов питания. Ячейки с катодом из литий-железо-фосфата LiFePO4 выдерживают большие токовые нагрузки, отличаются морозоустойчивостью, химической стабильностью и ресурсом свыше 2000 циклов.
Об этом сообщили в пресс-службе компании.
Абсолютные приоритеты компании: безопасность, здоровье и забота о персонале, обеспечение непрерывного и надежного производства — и выполнение всех существующих обязательств. Производство и отгрузка углеводородов покупателям ведутся без сбоев и в соответствии с графиком, утвержденным на 2022 год», - говорится в сообщении. Об этом свидетельствуют данные лондонской биржи ICE.
Эти материалы относительно редки, дороги в добыче и переработке, их добывают на рудниках в бедных странах или регионах, где мало или вообще не уделяется внимание благополучию рабочих и окружающей среде. Если вы помните , мы рассказывали в предыдущих статьях о возможных победителях и проигравших в индустрии электромобилей, потому что добыча лития требует огромного количества воды как в процессе экстракции, так и в бассейнах испарения, которые используются для производства кристаллов, богатых литием. Добыча и переработка лития — очень опасная работа и чрезвычайно разрушительна для окружающей экосистемы. Похожая история у кобальта, который часто добывают на так называемых «кустарных рудниках». Эти небольшие шахты часто связаны с использованием детского труда в ужасных условиях, которые выбрасывают большое количество вредных веществ, переносимых воздухом уран — в воздух, а также большое количество серы — в воду. С другой стороны, твердотельные Ssbt-батареи содержат в себе такие распространенные и менее токсичные составляющие элементы, как натрий. Экстракция натрия, в изобилии встречающаяся в соленой воде, несет гораздо меньшее вредное воздействие на окружающую среду. Это позволит конкурировать с литий-ионными батареями и по цене, и по качеству. Преимущества твердотельных Ssbt-батарей Выше мы уже коснулись некоторых ключевых преимуществ solid-state battery, но каковы другие важные преимущества этой технологии?
Более быстрая зарядка — твердотельные батареи обеспечивают гораздо более высокую скорость зарядки. В зависимости от технологии, некоторые из них могут заряжаться в шесть раз быстрее, чем литий-ионные аккумуляторные батареи. Если исследования квантовых твердотельных накопителей в конечном итоге окажутся успешными, можно будет заряжать solid-state battery практически мгновенно. Более высокая плотность энергии — еще одно потенциальное преимущество твердотельных батарей. У некоторых технологий его может быть вдвое больше, чем у литий-ионных батарей при том же объеме. Значительно увеличенный срок службы — одно из основных преимуществ твердотельных Ssbt-батарей. Срок службы заряда-разряда-перезарядки — может быть продлен до десяти лет, по сравнению с более скромными двумя годами у традиционных альтернатив. Сниженная скорость утечки саморазряд — еще одно потенциальное преимущество твердотельных батарей. Их можно сделать меньше и дешевле теоретически твердотельные батареи могут быть гораздо меньше литий-ионных альтернатив.
Безопасность — основным преимуществом твердотельных батарей является их относительная безопасность. Они не производят газообразный водород. Возможности использования твердотельных батарей и пути выхода из кризиса Ожидается, что главной движущей силой развития аккумуляторных технологий станут — электромобили. Так, тайваньские компании, имеющие опыт в производстве аккумуляторов для компьютерного и телекоммуникационного секторов, уже начали сборку аккумуляторов для электромобилей. В частности, в этом преуспели компании Simplo, Dynapack и Celxpert. Чуть дальше пошли тайваньские компании, которые смогли наладить производство материалов для электродов литиевых аккумуляторов — анодов и катодов. Но стоит еще раз подчеркнуть, что батареи на подобных материалах приближаются к пределу своих возможностей и не сохранят лидирующие позиции в будущем. Foxconn заявила, что демонстрация ее твердотельных Ssbt-продуктов состоится в конце 2021 года, а серийный запуск производства — к 2024 году. Почему основное применение твердотельных аккумуляторов ожидается в индустрии электромобилей?
Ssbt-батареи потенциально предлагают меньший вес, повышенную надежность, дальность действия, безопасность и меньшую скорость перезарядки, по сравнению с жидкостными батареями. Все эти преимущества, вместе взятые, фактически произведут революцию в индустрии электромобилей. Это, в свою очередь, создаст огромную потребность в поставках лития во всем мире, что приведет к увеличению затрат на производство новых батарей если не будут разработаны способы безопасной и надежной утилизации старых Li-on батарей. Чтобы преодолеть это потенциальное узкое место в поставке аккумуляторных батарей, многие автомобильные компании сами разрабатывают более дешевые и устойчивые solid-state battery. Например, Toyota недавно объявила, что планирует добавить Ssbt-батареи в свои новые автомобили уже в 2021 году. Согласно отчету, опубликованному Nikkei Asia , это может позволить электромобилям предлагать запас хода в 310 миль 500 км на одной зарядке, а также быструю перезарядку с нуля до полной за 10 минут. General Motors вместе с SolidEnergy Systems организовал производство аккумуляторов Ultium с жидким электролитом, анодами на базе графита и катодов с комбинацией никеля, кобальта, марганца и алюминия.
Как технологии твердотельных Ssbt-аккумуляторов изменят мир
Инженеры из США разработали литий-ионную батарею с катодом из органики вместо кобальта или никеля — она может снять зависимость индустрии электротранспорта от редких металлов. Катод и его отрицательный заряд Отрицательный заряд катода объясняется тем, что во время процесса электролиза, положительно заряженные ионы перемещаются к катоду под. В новых батареях ионы натрия заменяют ионы лития в катоде, а соли лития в электролите (жидкость, которая помогает переносить заряд между электродами батареи) заменяются.
Из полимеров сделали катоды для литиевых аккумуляторов
КАТОД, сеть магазинов и СТО 2024 | ВКонтакте | Главная» Новости» Катод имеет заряд. |
Научились заряжать аккумулятор за несколько секунд ученые в России | Отрицательный заряд катода позволяет ему притягивать положительно заряженные ионы из электролита, что создает условия для проведения электролиза. |
Российские химики разработали полимерные катоды для сверхбыстрых аккумуляторов | Отрицательный заряд катода привлекает положительные ионы и приводит к образованию нейтральных частиц. |
Ионные жидкости произвели фурор в твердотельных литий-металлических батареях следующего поколения
Отрицательный заряд катода позволяет ему притягивать положительно заряженные ионы из электролита, что создает условия для проведения электролиза. В новых батареях ионы натрия заменяют ионы лития в катоде, а соли лития в электролите (жидкость, которая помогает переносить заряд между электродами батареи) заменяются. Главная» Новости» Катод имеет заряд. Это заставляет катод становиться положительно заряженным (по сравнению с анодом), что, в свою очередь, притягивает к катоду больше отрицательно заряженных электронов. Заряд перестает передаваться по внешней цепи, оставаясь внутри аккумулятора.
Как технологии твердотельных Ssbt-аккумуляторов изменят мир
Исследователи из Токийского столичного университета разработали новый квазитвердотельный катод для твердотельных литий-металлических батарей со значительно сниженным. Натрий-ионный аккумулятор работает по аналогии с литий-ионным: когда устройство заряжается и разряжается, ионы перемещаются между катодом и анодом. Автоматическое зарядное устройство КАТОДЪ-501 здорово всем народ сегодня решила разобрать и посмотреть что с этим зарядным устройством так как он работает неправильно.
Аккумуляторы будущего
История «Катода» — это история развития наукоемкого бизнеса в России, который, несмотря на внутренние и внешние проблемы, все же достиг успеха и мирового признания. Очередной юбилей предприятия стал поводом оглянуться назад, чтобы еще раз вспомнить, из каких экономических глубин поднялся завод. Официальная дата регистрации ОКБ — 19 октября 1959 года. В начале 90-х годов все рухнуло практически в одночасье. Не стало заказов, остановилось финансирование НИОКР — научно-исследовательских и опытно-конструкторских работ. От коллектива численностью почти 600 человек осталось всего 150.
Мы стали искать направление, которое позволило бы коллективу поверить в себя и одновременно было бы перспективным». Он пришел на «Катод» начальником группы по ремонту механических частей и оборудования. И до сих пор, несмотря на почтенный возраст — 73 года, продолжает здесь трудиться. Но руководство предприятия, в частности Владимир Ильич Локтионов, сумело найти правильный вектор развития. И у нас все получилось.
Предприятие стабильно работает, неплохие зарплаты, а главное — у нас очень интересная, творческая работа», — рассказал Лев Фридман. В середине 90-х «Катод» на свой страх и риск стал участником уникального проекта Российской академии наук по исследованию темной материи, для которого предприятие разработало фотоэлектронные умножители ФЭУ диаметром 350 мм. Это не удалось сделать ни Hamamatsu, ни Philips. ФЭУ «Катода» обеспечили функционирование возможно единственной в своем роде нейтринной обсерватории. Этот проект вдохновил катодовцев, помог поверить в себя и, пожалуй, предопределил выбор направления развития.
Мы только знали, что Россия отстает в сфере разработки ЭОПов от развитых стран лет на 25. По сути, наша армия в темноте была абсолютно беспомощна. В итоге мы опередили наших зарубежных коллег на несколько лет».
В отличие от традиционных литиевых аккумуляторов, новые элементы для накопления заряда используют не только катионы Li, но и анионы галогенов LiCl и LiBr. При этом такой аккумулятор намного безопаснее. Команда продемонстрировала обратимость в течение 150 циклов. Помимо портативных аккумуляторов, этот химический состав можно использовать в устройствах, которые требуют больших энергий на уровне киловатт или мегаватт.
Но у новых аккумуляторов всё же есть ряд преимуществ. Например, восполнить заряд до 80 процентов при комнатной температуре можно всего за 15 минут, а при минус 20 градусах по Цельсию батарея сохраняет больше 90 процентов ёмкости. В CATL видят несколько сценариев использования натрий-ионных источников тока: во-первых, электромобили, особенно если они эксплуатируются в регионах с холодным климатом; во-вторых, буферные накопители энергии, скажем, для солнечных батарей, где низкая масса не является важным условием. И чтобы подкрепить свои слова о перспективности разработки, компания уже приступила к промышленному внедрению натрий-ионных аккумуляторов: базовую производственную цепочку планируют полностью сформировать к 2023 году. Параллельно в CATL Research Institute продолжится работа над совершенствованием натриевых батарей: экземпляры следующего поколения будут иметь удельную ёмкость в 200 ватт-часов на килограмм и выше.
Мы целевым образом помогаем воинским формированиям, которые дислоцируются или были созданы на территории нашего региона — это и «Ермак», и армейские подразделения, составленные из мобилизованных. Мы оказываем им различные виды помощи», — подчеркнул губернатор. Для поддержки таких предприятий в Новосибирской области есть целый ряд программ и инструментов, утверждённых Правительством региона, уточнил заместитель губернатора Сергей Сёмка. Также Андрей Травников провёл в правительстве региона совещание по вопросам содействия и координации усилий по обеспечению поставок имущества и оказания услуг воинским подразделениям, принимающим участие в СВО. Напомним, бронежилеты «Архангел» производят для добровольцев «Веги» в Новосибирске. Районные СМИ.
Из полимеров сделали катоды для литиевых аккумуляторов
Аккумуляторы на базе таких катодов могут обладать плотностью хранения заряда, превосходящей LFP-батареи как минимум в два раза. После чего электроны переносятся на катод, где они используются вместе со свободными протонами для восстановления кислорода до воды», — пояснила Екатерина Вахницкая. Губернатор Андрей Травников во время выездного совещания на площадке АО «Катод» обсудил вопросы поддержки воинских подразделений, участвующих в СВО. Необходимо изменить свойства как анодов, так и катодов. У первых хромает скорость заряда, а вторые не отличаются высокой ёмкостью. Отрицательный заряд катода позволяет ему притягивать положительно заряженные ионы из электролита, что создает условия для проведения электролиза. 29 июля команда сети магазинов "КАТОД" приняла участие в забеге Trail Run от "Гонки Героев".
Научились заряжать аккумулятор за несколько секунд ученые в России
Telegram: Contact @globalenergyprize | В процессе заряда ионы Li⁺ экстрагируются из материала катода, переносятся через электролит к аноду и внедряются в его структуру. |
Группа "Катод" усиливает заряд | Инженеры из США разработали литий-ионную батарею с катодом из органики вместо кобальта или никеля — она может снять зависимость индустрии электротранспорта от редких металлов. |
Новосибирский завод «Катод» поставил приборы ночного видения бойцам СВО
Новый LMR-катод минимизирует падение напряжения в литий-ионных батареях | Новая структура микрочастиц катода, разработанная командой, может привести к созданию более долговечных и безопасных батарей, способных работать при очень высоком напряжении. |
Новый материал катода ускорит зарядку литий-ионных батарей | Новости электроники, справочник радиолюбителя, электронные компоненты, радиодетали. |
Химики впервые перезарядили тионилхлоридный аккумулятор
Более того, использование органических катодов позволяет полностью отказаться от использования дорогостоящих соединений лития, заменив их на дешевые соли натрия и калия. Отрицательный заряд катода позволяет ему притягивать положительно заряженные ионы из электролита, что создает условия для проведения электролиза. Главная» Новости» Катод имеет заряд.
Российские химики разработали полимерные катоды для сверхбыстрых аккумуляторов
Например, смешивая более мелкие и более крупные частицы. Еще одна важная деталь - сферические частицы минимизируют поверхностный контакт с электролитом батареи, что замедляет деградацию катода. Это позволяет уменьшить размер катодов, сделать батареи более компактными и, следовательно, увеличить емкость хранения энергии при том же объеме. Дополнительным бонусом является то, что материал значительно медленнее деградирует". Исследование было опубликовано в журнале Energy Advances. Источники: Сколковский институт науки и технологий, journal Energy Advances.
Сам конверсионный катодный материал обладает существенно более высокими практически вдвое показателями удельной емкости и плотности энергии, чем существующие коммерчески-применяемые классические интеркаляционные материалы. Помимо этого, разработанный метод синтеза является достаточно простым, масштабируемым и более экологически безопасным», — пояснил младший научный сотрудник Международной исследовательской лаборатории нанодиагностики МИИ ИМ ЮФУ Виктор Шаповалов.
Исследователи также выяснили ключевые особенности и отличия конверсионных электрохимических реакций, протекающих в процессе работы катодного материала, полученного по новой методике. Виктор Шаповалов — младший научный сотрудник Международной исследовательской лаборатории нанодиагностики МИИ ИМ ЮФУ «Уникальной чертой данного исследования является разработка методики синтеза наноструктурированного материала, обладающего уникальными характеристиками, которые появляются благодаря использованию в технологии синтеза получаемого в нашей лаборатории материала MIL-88, обладающего необычными свойствами. В частности, содержащим упорядоченные массивы наноразмерных пор», — отметил Александр Солдатов.
Ямато Sony первым показал, что в наноразмерном состоянии железофосфат лития способен работать даже при высоких скоростях заряда-разряда. На сегодняшний день наноразмерные композиты железо-фосфата лития и углерода практически не уступают по электрохимическим показателям другим известным катодным материалам. Поэтому они являются перспективными для использования в гибридных энергетических системах и крупногабаритных аккумуляторах для электромобилей, где большое значение имеют цена и безопасность.
С чем же связано улучшение мощностных характеристик электродных материалов, особенно с низкой электронно-ионной проводимостью, при повышении их дисперсности? Это приводит к ускорению ионного транспорта и, соответственно, процессов заряда-разряда в аккумуляторах. Меньшие по размеру частицы также лучше адаптируются к объемным изменениям в ходе внедрения и экстракции ионов лития, что способствует повышению структурной стабильности материалов. С увеличением дисперсности наблюдается и повышение электрохимической емкости. Особенность этого способа в том, что синтез наночастиц LiFePO4 из исходных реагентов идет параллельно с модифицированием поверхности этих частиц углеродом. В 2011 г.
В сфере литий-ионных аккумуляторов все происходит на удивление быстро. Так, кобальтат лития был предложен в качестве катодного материала в 1986 г. Синтезировать железо-фосфат лития сложнее, к тому же он выходил на уже имеющийся рынок, однако в данном случае от идеи до внедрения прошло не более десятка лет. И сразу же после этого многие автомобилестроительные компании, такие как Toyota, Renault, General Motors, Nissan и др. Сейчас разрабатываются новые виды литиевых аккумуляторов — литий-серные и литий-воздушные. При использовании кислорода воздуха в качестве катода плотность аккумулирования энергии может увеличиться в 5—10 раз!
Рекордные значения удельной энергии и емкости, характерные для литий-воздушных аккумуляторов, а также низкая стоимость реагентов объясняют большой практический и экономический интерес к этой теме. В последние годы в США на эти исследования тратятся миллиарды долларов, в России же это направление только начинает развиваться. Но самый удивительный вклад в разработку ЛИА собираются внести... Ученые из Массачусетского технологического института показали, что с помощью генетически модифицированных бактериофагов — вирусов, инфицирующих бактерии и безвредных для человека, — можно наладить процесс самосборки рабочих электродов литиевого аккумулятора. Сначала бактериофаги покрывают свою оболочку аморфным фосфатом железа, способным обратимо принимать и отдавать ионы лития, а затем селективно присоединяются к углеродным нанотрубкам, обладающим высокой электропроводностью Belcher, 2010. Аккумулятор, собранный на основе таких «вирусных» электродов с разветвленной структурой, продемонстрировал мощность и емкость на уровне самых современных аккумуляторов, а также стабильную работу как минимум при 100 циклах перезарядки.
Производство такого литиевого аккумулятора обходится значительно дешевле, чем обычного аккумулятора, к тому же оно не требует использования токсичных химических веществ — все процессы идут в водной среде при комнатной температуре. Благодаря процессу самосборки электродам можно придать самую разнообразную форму еще на стадии синтеза, что позволит в будущем встраивать их в различные портативные электронные устройства.
Алексей Носаченко Натрий-ионный аккумулятор работает по аналогии с литий-ионным: когда устройство заряжается и разряжается, ионы перемещаются между катодом и анодом. Однако их размеры больше, чем у ионов лития, плюс ионы натрия склонны к образованию нежелательных примесей, которые сокращают срок службы батареи, а следовательно, они более требовательны к структурной устойчивости и кинетическим свойствам материалов катода и анода. В CATL утверждают, что им удалось найти решения этих проблем. Так, в роли катода использовали материал под названием Prussian white ферроцианид железа, или выцветшая и окислившаяся берлинская лазурь с особой структурой, что решило проблему потери ёмкости. А для анода — пористый материал на основе твёрдого углерода, обеспечивший быстрое перемещение ионов натрия и высокий ресурс.