Новости глубина погружения подводных лодок

В 1985 году был установлен мировой рекорд погружения для подводной лодки: субмарина проекта 685 «Плавник» смогла опуститься на глубину 1030 метров. Австралийская подводная лодка Dechaineux находилась на сравнительно безопасной глубине, когда у нее прорвало трубу для забора морской воды. Подводные лодки России погружаются на глубину больше обычной на сто метров. Обычно лодки "ныряют" на 400 метров, но сегодня отметка глубины погружения составила 500 метров. Как сообщает РИА "Новости", по словам военного эксперта Брюса Джона, действия российских. Экипаж дизель-электрической подводной лодки «Магадан» Тихоокеанского флота выполнил глубоководное погружение на глубину 240 метров.

Свое первое погружение совершила новейшая подводная лодка из Петербурга

И оно никогда не бывает большим, речь идет о считанных сутках. Превышение этого лимита чревато катастрофой. Но даже без него погружения на большую глубину серьезно сокращают срок службы подлодки и приближают ее списание. И с этим ничего нельзя сделать. Со временем каждая подводная лодка получает ограничения по предельной глубине погружения.

Сегодня это касается почти всех атомных подлодок в нашем флоте, кроме лодок новых проектов. Нужен ли уход на глубину? Ведь вопреки распространенному мнению, акустическая заметность лодки с глубиной растет, а не снижается — наибольшая акустическая скрытность обеспечивается на небольших глубинах погружения, где есть слои воды с разной температурой и плотностью, а в глубине вода однородна и звук в ней распространяется намного дальше, а иногда, в некоторых гидрологических условиях, у него еще и скорость распространения растет. Все это верно, но дело в том, что у патрульной авиации США и их союзников в полную силу вошли неакустические средства обнаружения подлодок, идущих в подводном положении.

Их эффективность просто чудовищна, и единственным дающим надежду выжить действием для подлодки, «по душу» которой летит «Орион», «Посейдон» или «Кавасаки» является уход на глубину — и чем глубже, тем лучше. И вот тут-то внезапно оказывается, что у титана и помимо отсутствующего магнитного поля есть кое-что важное — корпус из титана намного лучше стального работает «на сжатие», износ и деформация титанового корпуса намного меньше, время предельного нахождения подлодки из титана на предельной глубине будет намного выше, чем у стальной, и сокращение остаточного ресурса корпуса тоже несравнимо меньше, чем у подлодки из стали. Повод задуматься, не так ли? При этом цена современного оборудования и оружия такова, что разница в стоимости между стальным и титановым корпусом не выглядит такой разительной, как раньше.

Титан по-прежнему намного дороже, но на фоне окончательной цены подлодки пятерка «Ясеней» стоит как Олимпиада в Сочи, вместе с перестройкой города это не будет заметно. С учетом уровня развития противолодочных сил наших вероятных противников, стоило бы рассмотреть возможность постройки перспективной подлодки проекта 545 шифр «Лайка» именно из титана. Возможно, когда-нибудь титановые корпуса вернутся. И тогда мы опять вспомним про К-162, которая была первой титановой подлодкой в мире — и благодаря которой у нас в принципе есть возможность думать о таких вещах.

Фактор скорости Советские подлодки долго были быстрее американских. Осознание того, насколько, в свое время вызвало у американцев настоящий шок. Но преимущества скорости они оценили очень быстро.

Интересно то, что, в отличие от большинства стран НАТО, французы не стали лениться и закупать баллистические ракеты у США, а поставили собственные. Тип «Вэнгард» Если тебе кажется, будто Великобритания давно не владычица морей, ты ошибаешься как минимум потому, что на ее вооружении стоят четыре атомные стратегические подлодки типа «Вэнгард». Это достаточно крупные, хоть и уступающие по размеру российским и американским аналогам подводные лодки длиной 149,9 метров, шириной 12,8 метров и водоизмещением 15 900 тонн.

Вся эта махина приводится в движение ядерным реактором мощностью 15 тысяч лошадиных сил и двумя турбинами мощностью 27,5 тысяч лошадиных сил. Интересно то, что британцы отказались от разработки собственных средств доставки ядерных боеголовок и взяли американскую систему Trident II D5. Всего на борту расположено 16 ракет. Проект 949А «Антей» Проектирование подлодок проекта 949А «Антей» началось еще в конце 60-х годов, а в строю они находятся с 1986 года. Эти ракетные подлодки 3-го поколения имеют длину 154 метра, ширину 18,2 метра и водоизмещение 14 700 тонн. И способны развивать до 15 узлов 27,7 километров в час в надводном положении и до 32 узлов 59,2 километра в час в подводном, что делает ее одной из самых быстрых подлодок в мире.

Вопреки мнению, будто все подлодки на вооружении ВМФ России несут ядерное оружие, в проекте 949А «Антей» не предусмотрено такой функции. Это противокорабельный комплекс, который предназначен для поражения крейсеров, авианосцев и других крупных надводных объектов.

Даже приварка любой подвески титана требовала зачистки ее поверхности, обезжиривания, протирки, обработки кромок… То есть то, чего не требуется на других АПЛ». Это вносило дополнительные сложности, так как приходилось на ходу переделывать уже выполненную работу, стыковать и согласовывать новое оборудование с существующими системами. Однако это позволило оснастить подлодку вооружением и оборудованием по последнему слову техники», — вспоминал ответственный сдатчик Владимир Чувакин, под руководством которого шло строительство этого уникального корабля. Атомная субмарина из титанового сплава была уникальна не только тем, что могла погружаться на глубины более 1000 м, где оказывалась недосягаемой для противолодочного оружия противника, но и тем, что могла сама на большой глубине выстреливать торпеды благодаря наличию торпедных аппаратов специальной конструкции с силовыми установками пневмогидравлического типа.

Это была АПЛ «Комсомолец» под номером К-278, которая не только опустилась на глубину более километра, но и провела на этой глубине успешную стрельбу торпедами. К сожалению, спустя четыре года эта лодка затонула в Норвежском море, по официальной версии — из-за пожара, возникшего на её борту во время плавания. Подробности и настоящие причины гибели субмарины «Комсомолец» остаются невыясненными до сих пор. Наибольшая глубина погружения батискафа Наиболее удобным аппаратом для изучения морских глубин до сих пор остаётся батискаф. От него не требуется хорошей плавучести, единственное требование — высокая прочность стенок, которые должны выдержать чудовищное давление огромной толщи воды. Впервые на рекордную для человечества глубину, составляющую около 11 тысяч метров, опустился батискаф под названием «Триест», построенный учёными из США и Швейцарии. Акванавты пробыли на дне самой глубокой точки Марианской впадины всего 20 минут, а подготовка к погружению заняла около 8 лет. За это время был построен аппарат, толщина стенок которого составляла 1500 мм, а вес превышал 10 тонн. Рекордное погружение «Триеста» состоялось в 1960 году. Спустя 52 года, в 2012 году, достижение было повторено американским кинорежиссёром Джеймсом Кэмероном.

АО «АДМИРАЛТЕЙСКИЕ ВЕРФИ» ЗАЛОЖИЛО ПОДВОДНЫЕ ЛОДКИ «МАГАДАН» И «УФА»

Главным конструктором подлодки был легендарный Сергей Никитич Ковалев. Он прослужил два срока эксплуатации, установленные для кораблей этого проекта. Самая быстроходная в мире атомная подводная лодка 18 декабря 1970 года подлодка К-162 проекта 661 с подводным стартом крылатых ракет установила рекорд скорости — 44,7 узлов. Главным конструктором К-162 был советский ученый Николай Никитич Исанин. Единственный в мире залп 16 МБР 6 августа 1991 года в 21 час 9 минут впервые в мире, а также впервые в истории подводных ракетоносцев с подлодки К-407 «Новомосковск» был произведен пуск всего боекомплекта из 16 межконтинентальных баллистических ракет. Самый продолжительный штурманский поход С 1 марта по 18 ноября 2018 года учебный корабль проекта 887 «Перекоп» выполнил межфлотский переход по маршруту п. Кронштадт — п.

Полвека назад собранный из подручных средств стандартной стали и плексигласа батискаф достиг дна Марианской впадины. И мог бы продолжить свое погружение, если бы в природе встречались большие глубины. Безопасная расчетная глубина для «Триеста» составляла 13 километров! Подлинный оперативный простор для подводного флота! Почему никто не использует эти возможности? Покорение больших глубин никак не связано с прочностью корпуса «Акул», «Бореев» и «Вирджиний». Проблема заключается в другом. И пример с батискафом «Триест» здесь совершенно ни при чем. Они похожи, как самолет и дирижабль Батискаф — это «поплавок». Цистерна с бензином, с закрепленной под ней гондолой экипажа. При принятии на борт балласта конструкция обретает отрицательную плавучесть и погружается в глубину. При сбрасывании балласта — возвращается на поверхность. В отличие от батискафов, подводным лодкам требуется в течение одного погружения многократно изменять глубину нахождения под водой. Иначе говоря, подводный корабль обладает способностью многократно изменять запас плавучести. Это достигается путём заполнения забортной водой балластных цистерн, которые при всплытии продуваются воздухом. К примеру, на современных американских атомоходах запасы сжатого воздуха хранятся в баллонах под давлением 4500 фунтов на кв. Однако ни одна из систем-потребителей сжатого воздуха не использует ВВД напрямую. Резкие перепады давления вызывают интенсивное обмерзание и закупорку арматуры, одновременно создавая опасность компрессионных вспышек паров масла в системе. Повсеместное применение ВВД под давлением свыше 300 атм. Именно таким воздухом продуваются цистерны главного балласта. И здесь в действие вступают законы драматургии! С погружением в морские глубины на каждые 10 метров давление возрастает на 1 атмосферу На глубине 1500 м давление составляет 150 атм. На глубине 2000 м давление 200 атм. Ситуация усугубляется ограниченными объемами сжатого воздуха на борту. Особенно после продолжительного нахождения лодки под водой.

Виктория Сереброва Высший разум 647560 , закрыт 4 года назад Когда усталая подлодка из глубины идет домой??? Лучший ответ Ирина Робертовна Махракова Высший разум 3921586 4 года назад Сразу замечу: подлодки я видела только в кино да на картинках, но тема заинтересовала. Захотелось узнать, чьи же подлодки на сегодняшний день самые глубоководные. Порылась в общедоступных материалах Сети и результат моего исследования с огромной долей цитирования источников предлагаю Вашему вниманию. Википедия отмечает: «Глубина погружения — важнейшая тактическая характеристика и основной параметр подводной лодки, определяющий её возможности действий под водой, скрытность и неуязвимость. Чем выше глубина погружения, тем меньше вероятность обнаружения подлодки радиолокационными средствами и поражение её соответствующим противолодочным оружием. Глубина определяется прочностью корпуса подлодки».

Об этом сообщила пресс-служба флота в четверг, 31 августа. Там также отметили, что в ходе погружения был отработан алгоритм действий при управлении кораблем на глубине и при различных способах всплывания на поверхность. Безопасность погружения субмарины в рамках ходовых испытаний обеспечивали морская авиация, боевые корабли ВМФ и спасательное судно СС-750.

«Более совершенные и малошумные»: как развивается программа по созданию подлодок «Лада»

Ядерные стандарты никогда не нарушаются». Бывший капитан подлодки к-н Райан Рамсей добавил, что такой ремонт заставляет его задуматься о том, «что еще было сделано некачественно». Тактический пусковой механизм инженеров-оружейников на корабле HMS Vigilant, который будет использоваться на заключительном этапе запуска ядерной ракеты. Фото: PA Другой скандал, разразившийся в прошлом году, связан с увольнением двух подводников Королевского военно-морского флота за создание угрозы национальной безопасности из-за электронных писем, которыми они обменивались во время «тайных сексуальных отношений». Лейтенант Софи Брук считалась «первопроходцем», став первой женщиной-офицером на атомной подводной лодке. Женщинам разрешено служить на подводных лодках только с 2011 года. Ее даже прочили на роль первой женщины-капитана подводной лодки ВМС. Однако она и капитан-лейтенант Николас Стоун поставили под угрозу секретность британской системы ядерного сдерживания «Трайдент», поделившись секретной информацией о передвижениях подводной лодки, которая могла быть перехвачена противником, сообщил военный трибунал. Министр обороны Грант Шаппс прибыл на Даунинг-стрит для участия в заседании кабинета министров на прошлой неделе.

Все это «могло оказаться полезным для противника» и рисковало ослабить «краеугольный камень» ядерного сдерживания страны, было сказано на слушаниях.

Однако уже меньше чем через 4 года субмарина-рекордсмен выйдет в свой последний боевой поход — 7 апреля 1989 года К-278 затонет в Норвежском море. На борту «Комсомольца», который в то время нес боевое дежурство и двигался со скоростью 8 узлов на глубине в 380 метров, начался пожар. До настоящего времени причины его возникновения так и не установлены. Все попытки экипажа ликвидировать огонь не увенчались успехом, однако лодке удалось благополучно всплыть на поверхность. Все это время пожар усиливался, превращаясь из локального в объемный. Ванин, отдал приказ об эвакуации экипажа. Буквально через несколько минут после этого подводная лодка, полностью утратив остойчивость, начала стремительно погружаться в холодные воды Норвежского моря.

Из 69 членов экипажа погибли 42 человека. В том числе и капитан субмарины. В настоящее время «Комсомолец» покоится на глубине примерно 1,7 километра. Место нахождения затонувшей подлодки известно ученым и исследователям. Как норвежские, так и российские специалисты ведут постоянный мониторинг загрязнения радиоактивными изотопами на всей прилегающей акватории Норвежского моря. Американские «субмарины-Чернобыли» Кроме четырех советских атомных подлодок на дне мирового океана находятся и две американские военные субмарины. Весной 1963 года в водах северной Атлантики в период испытательных маневров затонула подлодка USS Thresher. В результате катастрофы погибло 129 человек.

Среди них находились не только члены экипажа 112 моряков-подводников , но и 17 инженеров гражданских лиц. Еще одна американская атомная подлодка USS Scorpion затонула вместе с экипажем из 99 человек 22 мая 1968 года в том же Атлантическом океане во время возвращения в Норфолк из Средиземного моря. Причиной затопления является внезапное разрушение корпуса лодки под действием сильного гидростатического давления. Точное место нахождения останков «Скорпиона» кроме глубины, которая составляет более 3 тысяч метров американские власти до сих пор держат в секрете. Как и состояние реактора и атомного боевого арсенала подлодки. Ведь каждая из них может стать полноценным новым Чернобылем в мировом океане. А это настоящая угроза для будущего всей биологической жизни на планете Земля.

Титан с точки зрения отечественного подводного кораблестроения обладал ДВУМЯ реальными преимуществами: а меньшей плотностью, что означало более легкий корпус. Появившиеся резервы тратились на другие статьи нагрузки, например, ГЭУ большей мощности.

Неслучайно подлодки с титановым корпусом 705 К «Лира», 661 «Анчар», «Кондор» и «Барракуда» строились как покорители скорости. Но сварочные качества титана хотя бы позволяли производить сборку конструкций. За океаном имели более оптимистичный взгляд на применение сталей. В 1989 году в Штатах заложили головной «СиВулф». Спустя два года оптимизма поубавилось. Корпус «СиВулфа» пришлось разобрать на иголки и начинать работу заново. В настоящее время многие проблемы решены, и стальные сплавы, эквивалентные по свойствам HY-100, находят более широкое применение в кораблестроении. Существуют еще более прочные сплавы для изготовления корпусов, например, стальной сплав HY-130 900 МПа. Но из-за плохих сварочных свойств корабелы считали применение HY-130 невозможным.

Пока не поступили новости из Японии. В открытых источниках присутствует крайне мало информации о характеристиках японских боевых кораблей. Однако экспертов не останавливают ни языковой барьер, ни параноидальная секретность, свойственная вторым по силе ВМС в мире. Из доступной информации следует, что самураи наряду с иероглифами широко используют английские обозначения. В описании подлодок присутствует сокращение NS Naval Steel — военно-морская сталь , сочетаемая с цифровыми индексами 80 или 110. В метрической системе счисления «80» при обозначении марки стали, скорее всего, означает предел текучести 800 МПа. Более прочная сталь NS110 имеет предел текучести 1100 МПа. С точки зрения американца, стандартная для японских подлодок сталь носит обозначение HY-114. Более качественная и прочная — HY-156.

Немая сцена «Кавасаки» и «Мицубиси Хэви Индастриз» без всяких громких обещаний и «Посейдонов» научились изготавливать корпуса из материалов, ранее считавшихся несваримыми и невозможными при постройке подлодок. Приведенные данные соответствуют устаревшим субмаринам с воздухонезависимой установкой типа «Оясио». В составе флота 11 единиц, из которых две самые старые, вступившие в строй в 1998-1999 гг. Современные японские субмарины типа «Сорю» считаются улучшенными «Оясио» с сохранением основных конструктивных решений, доставшийся им от предшественников. При наличии прочного корпуса из стали NS110 рабочая глубина «Сорю» оценивается как минимум в 600 метров.

Под водой субмарина набирает скорость 50 км. Судя по всему, новая субмарина предназначена для атак на корабли противника и высадки десанта.

Сверхскоростная подлодка создала для России целую отрасль

Австралийская подводная лодка Dechaineux находилась на сравнительно безопасной глубине, когда у нее прорвало трубу для забора морской воды. В отличие от батискафов, подводным лодкам требуется в течение одного погружения многократно изменять глубину нахождения под водой. Рабочая глубина погружения корабля достигает 300 метров, а подводная скорость равняется 29 узлам. Россия провела учения с погружением подводных лодок на рекордную глубину.

Самая глубоководная атомная подводная лодка (Проект 685) "Плавник"

Абсолютный рекорд по глубине погружения среди подводных лодок принадлежит советской АПЛ К-278 «Комсомолец». Примитивное объяснение принципа погружения и всплытия подводной лодки. Сегодня исполнилось 30 лет со дня погружения атомной подводной лодки «Комсомолец», построенной на Севмаше.

ДЭПЛ «Магадан» проекта 636 выполнила глубоководное погружение

Другой собеседник ТАСС в военном ведомстве сообщал, что титановый прочный корпус АПЛ при пожаре 1 июля 2019 года не пострадал, что, по имеющимся данным, обеспечит аппарату прежнюю предельную глубину погружения. Реактор при пожаре не пострадал. В ноябре 2019 года подлодку доставили в Центр судоремонта "Звездочка", где была проведена операция по выгрузке активной зоны реактора. Подводную лодку АС-31 из-за специфической формы внутреннего корпуса - соединенных между собой нескольких титановых сфер - неофициально называют "Лошарик".

Титан с точки зрения отечественного подводного кораблестроения обладал ДВУМЯ реальными преимуществами: а меньшей плотностью, что означало более легкий корпус. Появившиеся резервы тратились на другие статьи нагрузки, например, ГЭУ большей мощности. Неслучайно подлодки с титановым корпусом 705 К «Лира», 661 «Анчар», «Кондор» и «Барракуда» строились как покорители скорости. Но сварочные качества титана хотя бы позволяли производить сборку конструкций.

За океаном имели более оптимистичный взгляд на применение сталей. В 1989 году в Штатах заложили головной «СиВулф». Спустя два года оптимизма поубавилось. Корпус «СиВулфа» пришлось разобрать на иголки и начинать работу заново. В настоящее время многие проблемы решены, и стальные сплавы, эквивалентные по свойствам HY-100, находят более широкое применение в кораблестроении. Существуют еще более прочные сплавы для изготовления корпусов, например, стальной сплав HY-130 900 МПа. Но из-за плохих сварочных свойств корабелы считали применение HY-130 невозможным.

Пока не поступили новости из Японии. В открытых источниках присутствует крайне мало информации о характеристиках японских боевых кораблей. Однако экспертов не останавливают ни языковой барьер, ни параноидальная секретность, свойственная вторым по силе ВМС в мире. Из доступной информации следует, что самураи наряду с иероглифами широко используют английские обозначения. В описании подлодок присутствует сокращение NS Naval Steel — военно-морская сталь , сочетаемая с цифровыми индексами 80 или 110. В метрической системе счисления «80» при обозначении марки стали, скорее всего, означает предел текучести 800 МПа. Более прочная сталь NS110 имеет предел текучести 1100 МПа.

С точки зрения американца, стандартная для японских подлодок сталь носит обозначение HY-114. Более качественная и прочная — HY-156. Немая сцена «Кавасаки» и «Мицубиси Хэви Индастриз» без всяких громких обещаний и «Посейдонов» научились изготавливать корпуса из материалов, ранее считавшихся несваримыми и невозможными при постройке подлодок. Приведенные данные соответствуют устаревшим субмаринам с воздухонезависимой установкой типа «Оясио». В составе флота 11 единиц, из которых две самые старые, вступившие в строй в 1998-1999 гг. Современные японские субмарины типа «Сорю» считаются улучшенными «Оясио» с сохранением основных конструктивных решений, доставшийся им от предшественников. При наличии прочного корпуса из стали NS110 рабочая глубина «Сорю» оценивается как минимум в 600 метров.

Стоит также отметить, что показатель максимальной глубины индивидуален для разных типов субмарин. Не обошлось и без рекордных достижений в этой сфере. Касательно максимальной глубины погружения, лучшее достижение принадлежит АПЛ «Комсомолец», которая в 85-м году прошлого века погрузилась до отметки в 1030 м. Через несколько лет эта субмарина из-за внезапного пожара затонула в акватории норвежского моря.

Тестовая глубина Есть еще одна характеристика, о которой следует упомянуть в контексте. Это глубина погружения подводной лодки, предельная согласно расчетам, нахождение ниже которой может вызывать разрушение самой обшивки, либо шпангоутов, либо другого внешнего оборудования. Она также называется «тестовой» в зарубежных источниках. Она не в коем случае не должна превышаться для конкретного аппарата.

Возвращаясь к «Трешеру»: при расчетном значении в 300 метров он пошел на тестовую глубину в 360 метров. К слову, в США на эту глубину подлодка отправляется сразу после спуска на воду с завода и, по сути, «обкатывается» на ней определенное время, прежде чем передается заказывающему ее ведомству. Завершим печальную историю «Трешера». Испытания на 360 метрах для него завершились трагически, и хотя это было вызвано не самой глубиной, а техническими неполадками с атомным двигателем субмарины, однако случайности, по всей видимости, не случайны.

Подлодка потеряла ход из-за остановки мотора, продувка балластных цистерн не дала результата, и аппарат пошел на дно. Согласно данным экспертов, разрушение корпуса субмарины произошло на глубине около 700 метров, так что, как видим, между тестовым значением и действительно разрушительным есть еще порядочная разница. Факторы увеличения В связи с этим есть несколько соображений. Увеличение глубины позволяет улучшать маневренность подлодки в вертикальной плоскости, поскольку длина боевого корабля обычно составляет не менее нескольких десятков метров.

Таким образом, если он находится в 50 метрах под водой, а его габариты в два раза больше, перемещение вниз или вверх чревато полной потерей маскировки. Кроме того, в водных толщах имеется такое понятие, как «тепловые слои», которые сильно искажают гидролокационный сигнал. Если уходить ниже их, то подлодка становится практически «невидимой» для следящего оборудования надводных кораблей. Не говоря уже о том, что на больших глубинах такой аппарат намного сложнее уничтожить любым имеющимся на планете оружием.

Чем больше глубина погружения подводных лодок, тем прочнее должен быть корпус, способный выдерживать невероятные давления. Это, опять же, на руку общей обороноспособности корабля. Наконец, если предел глубины позволяет ложиться на океанское дно, это также повышает невидимость подлодки для любого локационного оборудования, имеющегося в распоряжении современных систем отслеживания. С погружением в морские глубины на каждые 10 метров давление возрастает на 1 атмосферу На глубине 1500 м давление составляет 150 атм.

На глубине 2000 м давление 200 атм. Ситуация усугубляется ограниченными объемами сжатого воздуха на борту. Особенно после продолжительного нахождения лодки под водой. Большие глубины — всегда риск, и там требуется действовать с предельной осторожностью.

В наши дни существует практическая возможность создания подлодки с корпусом, рассчитанным на глубину погружения 5000 метров. Но для продувания цистерн на такой глубине потребовался бы воздух под давлением свыше 500 атмосфер. Сконструировать трубопроводы, клапаны и арматуру, рассчитанные под такое давление, при сохранении их разумной массы и исключения всех связанных опасностей на сегодняшний день является технически неразрешимой задачей. Современные подлодки строятся по принципу разумного баланса характеристик.

Зачем делать высокопрочный корпус, выдерживающий давление километровой толщи воды, если системы всплытия рассчитаны на гораздо меньшие глубины. Погрузившись на километр, подлодка будет обречена в любом случае. Однако в этой истории имеются свои герои и отверженные. Традиционными аутсайдерами в области глубоководных погружений считаются американские подводники Корпуса американских лодок на протяжении полувека делаются из одного сплава HY-80 с весьма посредственными характеристиками.

Многие эксперты выражают сомнения в адекватности такого решения. Из-за слабого корпуса лодки неспособны в полной мере использовать возможности систем всплытия. Которые позволяют продувание цистерн на значительно больших глубинах. По оценкам, рабочая глубина погружения глубина, на которой лодка может находиться длительное время, совершая любые маневры для американских субмарин не превышает 400 метров.

Предельная глубина — 550 метров.

На ней стоит новейший инерциальный навигационный комплекс, современная автоматизированная информационно-управляющая система. Подлодка несет шесть торпедных аппаратов. Всего для Тихоокеанского флота построят шесть субмарин.

Источник сообщил, что АПЛ "Лошарик" в ходе испытаний "нырнет" на предельную глубину

Значит, одним залпом можно будет уничтожить не только авианосец, а еще и часть его эскорта. Если 10-я дПЛ и 19-я дПЛ приступили к эксплуатации подводной техники третьего поколения еще в советские времена, то 25-я дПЛ долгое время использовала предыдущее. Такое решение флотоводцев объясняется тем обстоятельством, что головные корпуса проходят большой объем конструкторских испытаний с целью выявить недочеты. А устранять отмеченные замечания удобнее, если рядом с базой подводников находится завод-строитель. Поскольку строительство всех атомных подлодок четвертого поколения ведет «Северное машиностроительное предприятие» «Севмаш» , расположенное в Северодвинске, головные корпуса традиционно достаются морякам-североморцам.

Серийные корабли проекта 955 «Александр Невский» и «Владимир Мономах» ушли на Тихий океан, как и первая пара серийных атомоходов улучшенного проекта 955А — «Князь Олег» и «Генералиссимус Суворов». Затем северодвинские судостроители вновь переключатся на снабжение СФ. Ему предназначается тройка заключительных корпусов в серии «Борей-А». Возможно, окончательное решение на перевооружение 25-й дПЛ на технику четвертого поколения было принято в 2007 году, когда Вилючинск посетил Владимир Путин.

Правда, осенью следующего года состав соединения пополнился лодкой второго поколения «Рязань», выполнившей трансарктический переход Северным морским путем в бухту Крашенинникова. Эта субмарина 1982 года постройки первое время служила на СФ, но после ремонта в 2005—2007 годах флотоводцы перевели ее на Тихий океан. В отличие от предыдущих она получила буксируемую гидроакустическую станцию «Аврора» и другие средства и системы, разработанные для применения на последующем проекте 667БДРМ. Командующий ТОФ с 2010 года по апрель 2023 года адмирал Сергей Авакянц в одном из своих интервью утверждал, что атомоходы второго поколения еще долго будут служить на Тихом океане.

На самом же деле получилось, что продолжительная служба выпала лишь последнему из «кальмаров». К настоящему времени 11 корпусов уже утилизированы, «Оренбург» перестроен в носитель мини-субмарин, а оставшиеся ждут утилизации. С 2019-го по середину текущего года «Рязань» оставалась единственной лодкой проекта 667БДР в составе действующих сил. Последний раз она производила пуск 19 октября 2019 года из акватории Охотского моря.

Тогда боевые блоки упали на полигоне Чижа, очередной раз продемонстрировав высокую надежность ракеты Р-29М. Она вошла в историю как первая серийная МБР отечественного флота, оснащенная разделяющимися боевыми блоками.

Погрузились на дно Северного Атлантического океана, впервые в истории — достигнув глубины в 4300 метров, выполнили отбор проб и установили на дне российский флаг. Можно сказать, что глубоководные аппараты «Мир» — настоящие рок-звезды в деле освоения глубин океанов. Советуем посмотреть прекрасный документальный фильм о том, как проходили экспедиции к «Титанику» и «Бисмарку» на «Мстиславе Келдыше». На чем сейчас проходят глубоководные погружения Но давайте теперь посмотрим на современное положение вещей, какие аппараты используют сейчас и на какие глубины они погружались. Причем далеко не всегда речь идет о пилотируемых аппаратах — все чаще встречаются автономные Autonomous underwater vehicle, AUV и управляемые удаленно Remotely underwater vehicles, ROV. Как говорится, «все зависит от задачи».

DeepSea Challenger. Аппарат был построен в Австралии в 2012 году инженером Роном Аллумом при содействии Rolex — наверное, поэтому на одной из рук робота были закреплены часы при погружении, в рамках рекламной акции. Подводный аппарат содержит более 180 бортовых систем, включая батареи, двигатели, системы жизнеобеспечения, 3D-камеры и светодиодное освещение. Все питается современными литий-ионными аккумуляторами. На дне он провел более 6 часов, провел съемки и без происшествий вернулся на поверхность. После этого был передан в дар Обществу Океанографии в Сиднее. Можно сказать, что он — этакий Илон Маск в деле погружения на дно океанов. Корпус сделан из титана и рассчитан на двух пассажиров.

Способно развивать боковую скорость до 2-3 узлов за счет использования пяти гребных винтов, а также вращаться вокруг своей оси. Причем судно сертифицировано на погружение в любую точку океана — при испытаниях корпус выдержал давление свыше 1400 атмосфер. Limiting Factor прославился тем, что принял участие в «Экспедиции пяти океанов». В рамках нее он погрузился в самые глубокие точки всех океанов на планете Земля, в том числе 7 июня 2020 года — на дно «Бездны Челленджера». Кстати, на борту была женщина, бывший астронавт Кэтрин Салливан. Кстати, аппарат действует до сих пор и является рекордсменом по глубине погружения из всех DSV, находящихся в эксплуатации. Например, в 2021 году он совершил погружение к кораблю USS-Johnston, лежащий возле Филиппин на глубине 6 460 метров — тоже рекорд. Limiting Factor погружается к Титанику в 2020 году, спустя 15 лет после последних погружений наших аппаратов «Мир» «Консул» проект 16811, АС-39.

Про «Лошарик» мы говорили. Но кроме него, в России есть еще один проект производства «Малахит». Проектирование начали еще в 1989 году, в 90-х притормозили строительство из-за недостатка финансирования. Но в 2000-х вернулись к нему, и в 23 ноября 2011 аппарат поступил на службу ВМФ России. Аппарат имеет традиционный для DSV титановый корпус лучшее соотношение массы и прочности , экипаж состоит из двух человек. Подтвержденная глубина погружения — 6 200 метров. Кстати, до этого был построен аналогичный аппарат «Русь», но беспилотный Nautile. Способен вместить трех человек.

Имеет длину 8 м, оснащен фото- и видеокамерами, а также прожекторами и роботизированными руками для сбора образцов. Время автономной работы — до 8 часов. Судно использовалось для погружения к «Титанику», к затонувшему в 2002 году танкеру «Престиж, а также поиска черного ящика разбившегося самолета рейса 447 Air France. Кстати, Nautile не был первым глубоководным аппаратом Франции — в 1961 году на воду спустили батискаф «Архимед». Выведен из эксплуатации в 1970 году. Первые модели японских DSV были введены в эксплуатацию еще в 1970 году. Первоначально мог погружаться только до 1500 метров, но в 1990 году появилась модель Shinkai 6500, с подтвержденной глубиной 6000 метров — он успешно используется до сих пор. Забавный факт: для его популяризации был выпущен даже отдельный набор Lego.

С 1995 по 2003 год 10-тонный подводный аппарат совершил более 250 погружений, собрав 350 биологических видов в том числе 180 различных бактерий. Также в 1995 году он достиг «Бездны Челленджера» — на 17 лет раньше Challenger Джеймса Кэмерона, но без пилотирования человека. Потом он погружался на глубину почти 11 км еще несколько раз. В 2003 аппарат затонул. Они были способны погружаться на глубину до 7000 метров, и построено было сразу несколько модификаций. Однако самым известным их аппаратом является Striver, введенный в эксплуатацию в 2020 году. Он вмещает трех членов экипажа и рассчитан на погружение на максимальную глубину в 11 000 метров. Он успешно доказал это, 10 ноября 2020 года опустившись на дно «Бездны Челленджера» с тремя учеными на борту.

Там он провел ряд испытаний, собрав образцы грунта при помощи роботизированных рук, а также гидравлического бура. Matsya 6000. В 2021 году мир увидел и индийский глубоководный аппарат. Основная его задача: поиск полезных ископаемых на морском дне, в рамках глобального проекта. Пока что он прошел только предварительные испытания без экипажа на глубине 600 метров, но по расчетам титановый корпус спокойно выдержит глубину и 6000 метров. В итоге вопрос изучения океана не такой простой. DSV аппараты опускаются на дно намного реже, чем космические корабли летают в космос. Этому есть простое объяснение: космос престижнее, в него инвестируют намного больше денег.

Хотя потенциал глубоководных погружений в плане исследования биологических видов или обнаружения полезных ископаемых кажется более интересным, чем попытки найти что-то в бесконечно пустом космическом пространстве. Мы могли находить такое количество меди, что на суше такого не встретишь. У океана огромный потенциал для добычи полезных ископаемых», — говорит в интервью Анатолий Сагалевич, разработчик аппаратов «Мир» И уж точно там нет той жизни, которая находится в голубых водах нашей планеты.

Подводники же расстаются с этим идиллическим взглядом с первых дней службы на лодке, когда приступают к изучению ее устройства. Прочный корпус субмарины на поверку во многих местах пронизан забортными отверстиями, обеспечивающими работу многочисленных систем. И во время глубоководного погружения все они, что называется, поштучно, становятся объектами пристального контроля со стороны членов экипажа. Подготовка к встрече с околопредельными для этого проекта глубинами началась еще у пирса, когда в отсеках задраенной лодки до минимальных значений понижалось атмосферное давление, чтобы проверить корпус на герметичность. На борту К-96 работали также специалисты поисково-спасательной службы флота. Они проверяли аварийные системы подачи воздуха и установления аварийной связи с водолазом, продувания цистерн главного балласта и вентилирования отсеков со спасательного судна, индивидуальные средства спасения, аварийные запасы пищи. Одновременно с К-96 к выходу в море готовилась еще одна субмарина. В точке глубоководного погружения она должна будет поддерживать с лодкой капитана 1 ранга Шкабары звукоподводную связь, при которой оба корабля используют свои гидроакустические станции и азбуку Морзе. Матросский глубиномер Первый раз психологическую проверку многометровой толщей воды я прошел в середине шестидесятых прошлого века на срочной службе в 155-й Констанцской ордена Ушакова отдельной бригаде подводных лодок Черноморского флота. Рабочая глубина средней дизельной лодки 613 проекта составляла 170 метров, предельная - 200. В полигоне С-384 под командованием капитана 2 ранга Никиты Маталаева начала погружение на фиксированные глубины, задерживаясь на каждой из них для осмотра на боевых постах. Хорошо помню, как в торпедном отсеке был сооружен «матросский глубиномер» - свисающая с подволока нить с грузиком на конце, лежащем на палубе. В начале погружения она была натянута как струна, но когда лодка уже находилась на глубине, близкой к рабочей, нить провисла - глубина «стиснула» прочный корпус в своих «объятиях»… Служба под началом капитана 2 ранга Маталаева, одного из самых ярких и талантливых подводников ЧФ, особо запомнилась по двум эпизодам - смешному и трагичному. Нашему экипажу предстояло выполнить торпедную стрельбу. В полигоне «эска» погрузилась на глубину 30 метров. На лодке были отключены все шумящие вспомогательные агрегаты и механизмы, гидроакустическая станция субмарины работала в пассивном режиме, прослушивая горизонт. К этому времени С-384 уже завоевывала приз главкома ВМФ - за торпедную атаку отряда боевых кораблей и приз командующего ЧФ - за поиск и атаку подводной лодки. Складывалось успешно противоборство с противолодочниками и в тот раз. Субмарина была уже близка к тому, чтобы «пустить на дно» главную цель, и тем самым поставить победную точку в извечном противоборстве подводников и надводников. И тут рабочую тишину отсеков нарушили гулкие ритмичные удары, передающиеся по корпусу лодки, как звуки в деке контрабаса. Командир приказал застопорить электромоторы и яростным полушепотом скомандовал по переговорному устройству: «Осмотреться в отсеках! Определить источник шума и доложить! Замечаний нет. Второй отсек осмотрен. Замечаний нет»... Но удары продолжали резонировать в корпусе лодки.

Дизель-электрическая подводная лодка «Уфа» прошла испытательное погружение на глубину до 190 метров, которое обеспечили корабли Балтийского флота БФ. Дарья Драй ИА REGNUM Подводная лодка «Уфа» «В ходе погружения экипаж подводной лодки и представители промышленности проверили работу всех систем и механизмов подводной лодки, отработали алгоритмы действий при управлении кораблём на глубинах и при различных способах всплытия на поверхность».

О глубине погружения подводных лодок

это глубина, на которой подводная лодка раздавливается, подводная лодка, по определению, не может превысить глубину раздавливания, не будучи раздавленной. В подводном положении лодка может менять глубину погружения с помощью рулей. Максимальная глубина погружения подводной лодки Н по критерию ее безопасности от посадки на грунт рассчитывается по минимальной глубине моря Нк на данном участке маршрута.

Похожие новости:

Оцените статью
Добавить комментарий