К настоящему времени ультраструктура центриолей и ассоциированных с ними структур детально исследована.
Содержание
- Клеточный центр
- Клетка (в биологии) | Наука | Fandom
- Цитоплазма. Клеточный центр. Рибосомы. | теория по биологии 🌱 цитология
- Центросома — клеточный концертмейстер
- Другие публикации
- Что такое центриоли: характеристика, структура, функции
Центросома — клеточный концертмейстер
Матриксом называют белковую субстанцию, обволакивающую клеточный центр. В микроскопе это выглядит более светлым пятном на цитоплазме. Матрикс нужен для формирования белковых элементов. Основные функции Главная функция клеточного центра — формирование веретена деления. Это важнейшая структура, которая возникает во время митотического деления клетки. Процесс происходит в несколько этапов: Самоудвоение центросомы. Расхождение центриолей к разным полюсам клетки. Формирование цепи из микротрубочек. Один конец нити прикрепляется к хромосомам. Равномерное распределение наследственного материала по дочерним клеткам. Одиночная центриоль делает восстановление второй части.
Кроме того, центросома принимает участие в образовании нескольких важных элементов: микротрубочек, ресничек и жгутиков. Белковые структуры формируют цитоскелет клетки. Жгутики — это мембранные отростки, которые характерны как для растительных, так и для животных клеток.
Его ширина около 0,15 мкм, а длина такого цилиндра 0,3—0,5 мкм хотя встречаются центриоли, достигающие в длину несколько микрон рис. Микрофотография центросомы в клетке СПЭВ во время митоза, полученная с помощью электронного микроскопа фото И. Воробьева Видны триплеты микротрубочек на поперечном срезе центриоли. Длина каждого триплета равна длине центриоли.
Вторая и третья В и С микротрубочки отличаются от А-микротрубочки тем, что они являются неполными, содержат 11 субъединиц и вплотную примыкают к своим соседям. Кроме микротрубочек в состав центриоли входит ряд дополнительных структур. От микротрубочки А отходят так называемые «ручки», то есть выросты, один из которых внешний направлен к микротрубочке С соседнего триплета, а другой внутренний — к центру цилиндра. Обычно в интерфазных клетках всегда присутствуют две центриоли, располагающиеся рядом друг с другом, образуя дуплет центриолей, или диплосому рис. В диплосоме центриоли располагаются под прямым углом по отношению друг к другу. Из двух центриолей различают «материнскую» и «дочернюю», продольная ось последней перпендикулярна продольной оси материнской центриоли. Обе центриоли сближены своими концами так, что проксимальный конец дочерней центриоли как бы смотрит на поверхность материнской.
В дистальном участке материнской центриоли располагается аморфный материал в виде выростов или шпор — это придатки. Их нет на дочерней центриоли. Центральная часть цилиндра центриоли занята структурой, напоминающей тележное колесо; она имеет центральную «втулку» диаметром около 25 нм и 9 спиц, направленных по одной к А-микротрубочке каждого из триплетов. Такие структуры внутри центриоли расположены в одном из её концов, проксимальном, что делает строение цилиндра центриоли полярным. На дистальном конце центриоли внутри её нет таких структур. У некоторых видов втулка отсутствует или заменена скоплением аморфного материала. Торцы центриолярного цилиндра, кроме системы втулки и спиц на проксимальном конце, ничем не закрыты.
Вокруг каждой центриоли расположен бесструктурный, или тонковолокнистый, матрикс. Сами микротрубочки триплетов погружены в аморфный материал, так называемые муфты, или оправы. Если выделенные центриоли обработать 0,6М раствором NaCl, то произойдет полная экстракция микротрубочек, но центриоль как таковая не растворится: вместо нее останется цилиндрическая структура, имеющая девять полых отверстий, некогда занимавшихся триплетами микротрубочек. Поэтому все схемы центриолей здесь значительно упрощены и не включают материал муфты центриолярного цилиндра. Часто около центриолей и в связи с ним можно обнаружить несколько дополнительных структур: сателлиты, фокусы схождения микротрубочек, исчерченные волокнистые корешки, дополнительные микротрубочки, образующие особую зону — центросферу, вокруг центриоли рис. Клеточный центр в клетках позвоночных в интерфазе Воробьев, Надеждина, 1987 ЦНМТ — центр нуклеации микротрубочек При исследовании в электронном микроскопе интерфазных центриолей было найдено, что лучистое сияние центросферы, обнаруживаемое в световом микроскопе, представляет собой большое число микротрубочек, радиально расходящихся от зоны диплосомы. В диплосоме лишь одна из центриолей, материнская, содержит ряд дополнительных структур.
Одни из них, перицентриолярные сателлиты, состоят из имеющей тонкое фибриллярное строение конусовидной ножки, расположенной на стенке центриоли, и головки, заканчивающейся на этой ножке. Ножки сателлитов часто имеют поперечную исчерченность рис. Количество таких перицентриолярных сателлитов непостоянно, они могут располагаться на разных уровнях по длине центриоли. Кроме этих структур рядом с диплосомой, но не связанные с ней структурно могут располагаться плотные мелкие 20-40 нм тельца к которым подходят одна или несколько микротрубочек фокусы схождения микротрубочек. Микротрубочки отходят и от головок сателлитов. Эти центросомные микротрубочки не отходят непосредственно от микротрубочек цилиндров центриолей, а связаны или с сателлитами, или с матриксом. Такие микротрубочки и образуют как бы лучистую сферу центросферу вокруг центриоли, где минус-концы МТ связаны с ЦОМТ, а плюс-концы радиально расходятся на периферию клетки.
При образовании центросферы в интерфазной клетке только специальные структуры центриоли — сателлиты и матрикс, каким-то образом связаны с образованием микротрубочек; микротрубочки самих центриолей в этом процессе не участвуют. Восстановление прицентриолярных микротрубочек после их деполимеризации на холоду происходит за счет появления новых микротрубочек, отходящих от головок сателлитов Таким образом, можно считать, что эти дополнительные структуры являются центрами, на которых осуществляется сборка микротрубочек из тубулинов центры организации микротрубочек — ЦОМТ. Микрофотографии интерфазной центриоли, полученные с помощью электронного микроскопа а — центриоль в G1-фазе; б — центриоль в S-фазе. Трудности биохимического изучения центриолей связаны с тем, что это одиночная клеточная структура, имеющая объем всего 0,03 мкм3. Для сравнения вспомним, что в клетке имеется: около тысячи штук митохондрий, около миллиона рибосом, около сотни хромосом, около 1 мм2 мембран. Есть все основания говорить о том, что в состав микротрубочек центриолей входят тубулины. Это доказывается тем, что колхицин прекращает рост микротрубочек в процентриолях, возникающих вблизи материнской центриоли.
Предположения о возможной химической природе остальных элементов центриоли основаны главным образом на данных, полученных из химии ресничек и жгутиков, имеющих много сходных черт строения с центриолями. Данные о химическом строении центриолей получены главным образом с помощью иммунохимических методов. В интерфазных клетках центриоли связаны с ядром и с ядерной мембраной. При выделении ядер практически все центриоли клеток печени и селезенки крыс оказываются в этой фракции. Связь центриолей с ядром осуществляется главным образом промежуточными филаментами. Если живые клетки подвергнуть ультрацентрифугированию, то центриоли опускаются к центробежному полюсу вместе с ядрами. Центросомный цикл Строение и активность центросом меняются в зависимости от периода клеточного цикла, в течение которого клеточный центр претерпевает тоже циклические изменения рис.
Центросомный цикл а — диплосома во время митоза М ; б — центриоль в начале G1-периода; в — центриоль в G1-периоде; г — центриоли в S-периоде, удвоение центриолей; д — центриоли в G2-периоде Целесообразнее начать рассмотрение циклических изменений в структуре центросом с митоза. Начиная с профазы и кончая телофазой, центросомы имеют сходное строение, несмотря на то что за время митоза происходит ряд существенных клеточных перестроек: конденсация хромосом, разрушение ядерной оболочки, образование веретена деления, расхождение хромосом. В митозе в клеточных центрах их два, по одному на каждый полюс клетки находится по диплосоме. Как полагается, дочерняя центриоль своим концом направлена на материнскую. Материнская центриоль на всех стадиях митоза окружена довольно широкой до 0,3 мкм зоной тонких фибрилл — центриолярное фибриллярное гало рис. От этого гало радиально отходят микротрубочки. Важно подчеркнуть, что у дочерних центриолей ни гало, ни отходящих от центриолей микротрубочек нет.
В это время происходит формирование веретена митотического аппарата, состоящего из микротрубочек. Эта структура действительно имеет форму веретена, где на концах его на полюсах клетки располагаются диплосомы, окруженные радиальными микротрубочками центросфера. В данном случае можно говорить о том, что зоны диплосом, клеточные центры, являются центрами организации полимеризации микротрубочек. В пользу этого говорят следующие факты: после исчезновения микротрубочек веретена и центросферы, которое происходит при действии холода или колхицина, новые микротрубочки возникают главным образом в районе материнских центриолей, диплосом, в каждом из полюсов клетки. Интересно, что рост новых микротрубочек не связан с микротрубочками триплетов центриолярного цилиндра, они начинают отрастать от зоны гало, расположенной на материнской центриоли. Важно отметить, что в это время на материнских центриолях как и на дочерних нет сателлитов, и в это же время цитоплазма теряет микротрубочки: микротрубочки цитоплазмы разбираются, а пул освободившихся тубулиновых мономеров идет на образование микротрубочек веретена и центросферы, которые образуются на фибриллярном гало, как на ЦОМТ. Этот процесс полимеризации митотических микротрубочек отражает первую форму активности центриолярного аппарата см.
Клетки, не являющиеся половыми называются соматическими. Иногда клетки с гаплоидным набором хромосом называют гаплоидными клетками, а с диплоидным набором хромосом — диплоидными клетками. При слиянии двух родительских гаплоидных половых клеток образуется диплоидная клетка, дающая начало новому организму с набором генов отца и матери Совокупность всех хромосом ядра а значит и генов клетки называется генотип. Именно генотип определяет все внешние и внутренние признаки конкретного организма. В соматических клетках 44 Х-образные хромосомы 22 пары у женщин и мужчин идентичны сходны по строению , их называют аутосомами. А 23-я пара имеет конфигурацию ХХ — у женщин и ХY — у мужчин. Эти пары хромосом именуются половыми хромосомами. В половых клетках 22 хромосомы также одинаковые у яйцеклеток и у сперматозоидов, а 23-я хромосома конфигурации Х — у яйцеклетки и Х или Y — у сперматозоидов. Необходимо помнить, что хотя в соматических клетках набор хромосом диплоидный 2n , однако, перед началом деления клеток происходит репликация ДНК, то есть, удвоение их количества, а, значит, и удвоение количества хромосом.
Поэтому перед началом деления соматической клетки в ней насчитывается 4n хромосом рис. Она становится тетраплоидной. Функции ядра: — хранение генетической информации; — контроль за всеми процессами, происходящими в клетке: делением, дыханием, питанием и др. Ядрышко — структура, содержащаяся в ядре. Ядро может содержат 1, 2 или более ядрышек. Функция ядрышка — формирование рибосом. Следует отметить, что не все клетки имеют оформленное ядро. Клетки, имеющие ядро называются эукариотическими или эукариотами. Клетки, не имеющие ядра, называются прокариотическими или прокариотами.
У гифов грибов есть несколько ядер. У ядра грибной клетки есть одна главная функция — репликация ДНК. Репликация подразумевает перенос генетической информации в клеточную цитоплазму через РНК. В клеточном аппарате грибов имеются дикарионы или спаренные ядра — они образуются в результате слияния цитоплазмы. У ядер грибов есть одна важная особенность: они способны перемещаться из одной клетки в другую. Особенностью строения клетки грибов является также оригинальные черты митоза. Он у грибов является закрытым или не сопровождается разрушением ядерной оболочки. В митозе у грибов отсутствуют центриоли.
В ходе деления ядра не всегда происходит образование перегородки между клетками, которые делятся. Как результат — образование многоядерных клеток. Какие еще органоиды отсутствуют в клетках грибов? К примеру, в цитоплазме их клеток нет крахмала. Однако важную роль занимает гликоген — как основное запасное вещество грибной клетки. Он равномерно распределяется по всей цитоплазме в виде мелких гранул. Как видно, клетки грибов содержат оригинальное по своему строению ядро. Оно провоцирует изменения в процессе деления грибных клеток.
Заметно изменяется процесс митоза, снижается интенсивность развития дочерних клеток сразу после деления ядерной клетки. Всё ещё сложно?
- Опорно-двигательная система клетки
Рассмотренное выше строение центриолей характерно для Gj-периода интерфазы. В этом видео вы узнаете: 1) Строение ядра, строение его мембраны, его функции. К настоящему времени ультраструктура центриолей и ассоциированных с ними структур детально исследована. Новости Новости.
Центросома — клеточный концертмейстер
СТРОЕНИЕ ЯДРА, РИБОСОМ, ЦЕНТРИОЛЕЙ (ЕГЭ И ОГЭ ПО БИОЛОГИИ) - Скачать видео | Строение и функционирование генетических структур клеток на микроскопическом уровне, их количественную и качественную изменчивость изучает одно из направлений генетики. |
Центриоль — Википедия Переиздание // WIKI 2 | В интерфазе митоза центриоли располагаются в центре клетки, связываясь с ядром или с комплексом Гольджи. |
Что такое центриоли: характеристика, структура, функции
Формирование ресничек или цилиогенез В ресничкиявляются Подвижные или неподвижные отростки поверхности плазматической мембраны некоторых эукариотических клеток. Они выполняют важные функции там, где находятся, например, защита от микроорганизмов и движения слизи на респираторных поверхностях - смещение ооцита, образованного маточными трубами или сенсорными функциями слухового аппарата и других органов чувств. Его образование происходит из базальных тел путем удлинения, которое происходит при полимеризации микротрубочек A и B каждого из триплетов. Когда клетка завершает свое клеточное деление, старая центриоль мигрирует к плазматической мембране и становится образующим реснички базальным телом. Есть клетки, на свободной поверхности которых расположены тысячи ресничек, например, клетки трахеи, эпендимы или яйцеводов. Для образования независимых ресничек в этих клетках базальные тельца должны мигрировать на поверхность клетки и другие элементы цитоскелета, такие как актиновые микрофиламенты и микротрубочки.
Поскольку наличие ресничек несовместимо с делением клетки, они должны быть разобраны, когда клетка собирается делиться, и снова собраны после завершения этого процесса. Считается, что эта разборка происходит так, что базальные тельца не мешают центриолям во время формирования митотического веретена. Асимметрия клеток В асимметричных делениях существует неравное распределение между дочерними клетками и центриолями, необходимыми для этого типа деления, поскольку они будут способствовать правильной ориентации митотического веретена. Другой способ создания асимметрии зависит от того, какая дочерняя клетка принимает самую старую центриоль. Кажется, что самая старая центриоль окружает себя молекулами, немного отличными от тех, что окружают самую молодую, и служат стволовым клеткам для распределения между ними.
Одна из наблюдавшихся гипотез заключается в том, что клетка, которой удается захватить центросому, имеющую самую старую центриоль, в конечном итоге первой развивает реснички, которые Они служат для более раннего реагирования на различные сигналы в окружающей среде, то есть такое неравномерное распределение может вызывать различное поведение между двумя ячейками. Сотовая организация Положение, в котором центриоли расположены в цитозоле клеток, составляющих центросомы клеток, важно для определить организацию множества ячеек, или чтобы позволить клетке двигаться, поскольку они помогают создать различие между продвигающейся передней и задней частью клетки.
Вокруг центриолей находится так называемый центр организации цитоскелета, район в котором группируются минус концы микротрубочек клетки. Перед делением клетка содержит две центриоли, расположенные под прямым углом друг к другу. В ходе митоза они расходятся к разным концам клетки, формируя полюса веретена деления. После цитокинеза каждая дочерняя клетка получает по одной центриоли, которая удваивается к следующему делению. Удвоение центриолей происходит не делением, а путем синтеза новой структуры, перпендикулярной существующей.
Источник: StudFiles. Функции центриоли. Строение центриоли. По-другому клеточный центр называется центросомой. В большинстве клеток центросома включает две центриоли. Однако в клетках высших растений и некоторых других организмов клеточный центр есть, а центриолей или центросомы нет. Обычно в неделящейся клетке бывает только одна центросома, и находится она в центральной ее области.
Центриоль — немембранный органоид. Каждая центриоль состоит из девяти триплетов микротрубочек, которые образует белок тубулин. Триплеты соединены между собой таким образом, что создается цилиндр. Высота цилиндра относится к его диаметру как 3 : 1. Средняя высота составляет около 0,3 мкм, а диаметр — около 0,1 мкм. Однако строение клеточного центра несколько сложнее. Кроме пары центриолей в нем образуется сеть волокон и отходящих микротрубочек.
Причем одна из центриолей является материнской и именно на ней формируются дополнительные образования. Основная функция клеточного центра — это организация веретена деления. У животных и многих грибных клеток в процессе клеточного деления центриоли центросомы расходятся к различным полюсам клетки. Около каждой путем самосборки из тубулина образуется парная дочерняя центриоль или она образуется позже, после деления. Таким образом, в клетке оказывается два клеточных центра. От каждого в направлении к центру, к хромосомам, осуществляется сборка микротрубочек.
Возможно, по аналогии с белковыми структурами, формирующими цитоскелет клетки, микротрубочки также служат для транспортировки определенных веществ. В непосредственной близости от материнских центриолей находятся фокусы схождения микротрубочек в виде плотных мелких телец. С их помощью осуществляется «сборка» микротрубочек, служащих основой клеточного каркаса. Развитие Чаще всего за весь жизненный цикл клетки от ее образования из материнской и до момента следующего деления или гибели центриоли удваиваются только один раз. Сначала образуются по две половинки материнской и дочерней центриоли, а затем они перемещаются к полюсам, образуя центросомы. Однако из этого правила существует множество исключений: У некоторых видов клеток такое деление происходит неоднократно. В созревших яйцеклетках многих животных центриоли разрушаются. При образовании сперматозоидов центриоли распадаются. Одна из них трансформируется в кинетосому жгутика, а вторая остается неповрежденной. У улиток и некоторых видов грызунов распадаются обе центриоли сперматозоида. Биохимия Биохимия данных клеточных структур в современной цитологии изучена плохо, так как трудно выделить чистую фракцию для того, чтобы узнать, что такое центриоли. Также очень мал их объем — порядка 0,03 мкм3. В отличие от митохондрий, которых в клетке насчитывается около тысячи штук, и рибосом а их порядка одного миллиона , центриоли — это одиночные клеточные структуры. Данные об их химическом составе были получены в основном с помощью иммунохимического анализа.
Этот способ увеличения числа центриолей был назван дупликацией. Перед митозом центриоль является одним из центров полимеризации микротрубочек веретена клеточного де ления. Центриоль - центр роста микротрубочек аксонемы ресничек или жгутиков. Наконец, она сама индуцирует полимеризацию тубулинов новой процентриоли, возникающей при ее дупликации.
Клеточный центр: функции и строение, распределение генетической информации
В клетках высших растений центриоли отсутствуют, хотя веретено в них при делении ядра образуется. Функции: Центриоли принимают участие в формировании цитоплазматических микротрубочек во время деления клетки и в регуляции образования митотического веретена. Строение центриоли. Центросомы представляют собой структуры, которые содержат центриоли, которые дают микротрубочки, которые функционируют как митотический веретено. ИнтернетПо строению центриоли — это белковые цилиндры, от которых отходит сеть нитей — центросфера. Еще одна работа, которую выполняют центриоли, заключается в расположении органелл клетки. центриоли окружены бесструктурным веществом – центриолярным матриксом, который участвует в создании микротрубочек.
42. Центриоли, их строение и поведение в клеточном цикле
Естественно, он не самый крепкий, но достаточно жесткий для того, чтобы придавать ей форму. Также при помощи микротрубочек переносятся некоторые вещества, так что они выполняют еще и транспортную функцию. Цитоскелет имеет свои составляющие структуры: микротрубочки, микрофиламенты и промежуточные филаменты. Все эти компоненты не являются мембранными. Микротрубочки собираются в клеточном центре из белка тубулина. Эти полые структуры пронизывают всю цитоплазму, не давая клетке слишком сильно сжаться или растянуться. Транспортную функцию выполняют именно микротрубочки, они же тубулиновые нити. Они полярны, поэтому во время деления клетки микротрубочки прикрепляются к хромосомам в определенном участке белковой природы — кинетохоре, а далее, в анафазе, хромосомы расходятся к полюсам клетки.
Не все микротрубочки присоединяются к хромосомам, некоторые остаются без ничего. Благодаря полярности тубулиновые нити не присоединяются друг к другу. Микрофиламенты — структуры, состоящие из белка актина и миозина, которые должны быть хорошо знакомы по теме «мышечная система организма», ведь актин и миозин осуществляют сокращение мышц, а значит, и все движения.
Однако в то время понимание, что такое центриоли, сильно отличалось от современного представления. Бовери назвал так едва заметные маленькие тельца, которые находились на границе видимости светового микроскопа. Теперь же подробно изучены не только строение, но и функции центриолей. Что такое центриоли? Вам будет интересно: Бифторид аммония: характеристика вещества, сфера применения, токсичность Как уже было отмечено выше, эти органеллы представляют собой составные компоненты центросомы. Во время интерфазы она выполняет поддерживающе-структурную функцию, а во время митоза или мейоза участвует в формировании веретена деления.
По строению центриоли — это белковые цилиндры, от которых отходит сеть нитей — центросфера. Оба компонента в совокупности и называют центросомой. Электронная микроскопия позволяет детально рассмотреть ультраструктуру центриолей.
Локализация микротрубочек в различных типах клеток фибробласты, эпителий, нервные клетки, мышечные клетки. Белки, ассоциированные с микротрубочками MAP. Стабилизирующие и дестабилизирующие белки семейства МАР. Роль белков семейства MAP в регуляции динамического состояния и функциях микротрубочек. Моторные белки микротрубочек. Белки семейства кинезинов.
Разнообразие суперсемейства кинезинов. Строение молекулы классического кинезина. Структурные и функциональные домены тяжелых цепей кинезина. Направленность кинезин-зависимого транспорта. Плюс и минус-конец ориентированные кинезины. Механохимический цикл кинезина, активация его АТФ-азной активности микротрубочками. Понятие процессивности кинезин-зависимого транспорта. Роль кинезинов во внутриклеточном транспорте. Белки семейства динеинов.
Флагеллярный и цитоплазматический динеин, строение динеинового комплекса. Структурные и функциональные домены динеина. Роль динеина в движении ресничек и жгутиков. Цитоплазматический динеин, прикрепление к микротрубочкам и карго, механохимический цикл динеина. Строение динактинового комплекса, его взаимодействие с динеином. Локализация динеина и динактинового комплекса в клетках. Внутриклеточный транспорт, зависимый от динеина. Строение центросомы в клетках животных, ее динамика в клеточном цикле. Роль центросомы в инициации сборки микротрубочек и организации микротрубочек в цитоплазме.
Заякоривание микротрубочек в центросоме. Другие белки-нуклеаторы микротрубочек. Строение центросомы: центриоли и перицентриолярный материал. Структура и белковый состав центриолей.
У некоторых типов клеток вместо втулки имеется аморфная структура.
Функции Функции центриолей еще мало изучены. Можно было бы предположить, что они участвуют в образовании веретена деления, однако они формируются и в клетках растений и грибов. Ученые предполагают, что центриоли играют определенную роль в пространственной ориентации веретена деления по отношению к полюсам клетки. Микротрубочки в составе этих органоидов выполняют опорную функцию. Возможно, по аналогии с белковыми структурами, формирующими цитоскелет клетки, микротрубочки также служат для транспортировки определенных веществ.
В непосредственной близости от материнских центриолей находятся фокусы схождения микротрубочек в виде плотных мелких телец. С их помощью осуществляется «сборка» микротрубочек, служащих основой клеточного каркаса. Развитие Чаще всего за весь жизненный цикл клетки от ее образования из материнской и до момента следующего деления или гибели центриоли удваиваются только один раз. Сначала образуются по две половинки материнской и дочерней центриоли, а затем они перемещаются к полюсам, образуя центросомы. Однако из этого правила существует множество исключений: У некоторых видов клеток такое деление происходит неоднократно.
В созревших яйцеклетках многих животных центриоли разрушаются. При образовании сперматозоидов центриоли распадаются. Одна из них трансформируется в кинетосому жгутика, а вторая остается неповрежденной.
Центросома: определение, структура и функции (с диаграммой)
Лизосомы Лизосомы — одномембранные органоиды. Представляют собой мелкие пузырьки диаметр от 0,2 до 0,8 мкм , содержащие набор гидролитических ферментов. Ферменты синтезируются на шероховатой ЭПС, перемещаются в аппарат Гольджи, где происходит их модификация и упаковка в мембранные пузырьки, которые после отделения от аппарата Гольджи становятся собственно лизосомами. Лизосома может содержать от 20 до 60 различных видов гидролитических ферментов.
Расщепление веществ с помощью ферментов называют лизисом. Различают: 1 первичные лизосомы, 2 вторичные лизосомы. Первичными называются лизосомы, отшнуровавшиеся от аппарата Гольджи.
Первичные лизосомы являются фактором, обеспечивающим экзоцитоз ферментов из клетки. Вторичными называются лизосомы, образовавшиеся в результате слияния первичных лизосом с эндоцитозными вакуолями. В этом случае в них происходит переваривание веществ, поступивших в клетку путем фагоцитоза или пиноцитоза, поэтому их можно назвать пищеварительными вакуолями.
Автофагия — процесс уничтожения ненужных клетке структур. Сначала подлежащая уничтожению структура окружается одинарной мембраной, затем образовавшаяся мембранная капсула сливается с первичной лизосомой, в результате также образуется вторичная лизосома автофагическая вакуоль , в которой эта структура переваривается. Продукты переваривания усваиваются цитоплазмой клетки, но часть материала так и остается непереваренной.
Вторичная лизосома, содержащая этот непереваренный материал, называется остаточным тельцем. Путем экзоцитоза непереваренные частицы удаляются из клетки. Автолиз — саморазрушение клетки, наступающее вследствие высвобождения содержимого лизосом.
В норме автолиз имеет место при метаморфозах исчезновение хвоста у головастика лягушек , инволюции матки после родов, в очагах омертвления тканей. Функции лизосом: 1 внутриклеточное переваривание органических веществ, 2 уничтожение ненужных клеточных и неклеточных структур, 3 участие в процессах реорганизации клеток. Вакуоли Вакуоли — одномембранные органоиды, представляют собой «емкости», заполненные водными растворами органических и неорганических веществ.
В образовании вакуолей принимают участие ЭПС и аппарат Гольджи. Молодые растительные клетки содержат много мелких вакуолей, которые затем по мере роста и дифференцировки клетки сливаются друг с другом и образуют одну большую центральную вакуоль. Мембрана, ограничивающая растительную вакуоль, называется тонопластом.
Жидкость, заполняющая растительную вакуоль, называется клеточным соком. В состав клеточного сока входят водорастворимые органические и неорганические соли, моносахариды, дисахариды, аминокислоты, конечные или токсические продукты обмена веществ гликозиды, алкалоиды , некоторые пигменты антоцианы. В животных клетках имеются мелкие пищеварительные и автофагические вакуоли, относящиеся к группе вторичных лизосом и содержащие гидролитические ферменты.
У одноклеточных животных есть еще сократительные вакуоли, выполняющие функцию осморегуляции и выделения. Функции вакуоли: 1 накопление и хранение воды, 2 регуляция водно-солевого обмена, 3 поддержание тургорного давления, 4 накопление водорастворимых метаболитов, запасных питательных веществ, 5 окрашивание цветов и плодов и привлечение тем самым опылителей и распространителей семян, 6 см. Эндоплазматическая сеть, аппарат Гольджи, лизосомы и вакуоли образуют единую вакуолярную сеть клетки, отдельные элементы которой могут переходить друг в друга.
Митохондрии 1 — наружная мембрана; 2 — внутренняя мембрана; 3 — матрикс; 4 — криста; 5 — мультиферментная система; 6 — кольцевая ДНК. Форма, размеры и количество митохондрий чрезвычайно варьируют. По форме митохондрии могут быть палочковидными, округлыми, спиральными, чашевидными, разветвленными.
Длина митохондрий колеблется в пределах от 1,5 до 10 мкм, диаметр — от 0,25 до 1,00 мкм. Количество митохондрий в клетке может достигать нескольких тысяч и зависит от метаболической активности клетки. Митохондрия ограничена двумя мембранами.
Наружная мембрана митохондрий 1 гладкая, внутренняя 2 образует многочисленные складки — кристы 4. Кристы увеличивают площадь поверхности внутренней мембраны, на которой размещаются мультиферментные системы 5 , участвующие в процессах синтеза молекул АТФ.
Шепель О.
Строение клетки Размеры клетки широко варьируют от 0,1 мкм некоторые бактерии до 155 мм яйцо страуса. У всех клеток, независимо от их формы, размеров, функциональной нагрузки обнаруживается сходное строение рис. Схема строения живой клетки: 1 — оболочка; 2 — мембрана; 3 — цитоплазма; 4 — ядро; 4а — ядрышко; 5 — рибосомы; 6 — эндоплазматическая сеть ЭПС ; 7 — митохондрии; 8 — комплекс гольджи; 9 — лизосомы; 10 — пластиды; 11 — клеточные включения Снаружи клетка одета мембраной.
Внутренняя часть клетки содержит многочисленные органоиды — структурные образования клетки, выполняющие определенные функции жизнедеятельности клетки. Присутствует только у растительных клеток. Состоит из волокон целлюлозы.
Функции оболочки: защита клетки от внешних повреждений, придает стабильную форму клетки, эластичность растительным тканям. Повреждение наружной оболочки приводит к гибели клетки цитолиз. Такая структура обеспечивает уникальную эластичность и прочность мембране Функции мембраны: участие в обмене веществ.
Эта функция связана с избирательной проницаемостью в клетку определенных веществ и выведение из нее продуктов обмена. В процессе питания в клетку могут проникать определенные растворы веществ пиноцитоз и твердые частицы фагоцитоз. Явление фагоцитоза — поглощение клеткой твердых частиц — впервые было описано русским врачом Мечниковым.
Фагоцитарная особенность лежит в основе процесса иммунитета. Особенно развита у лейкоцитов, клеток костного мозга, лимфатических узлов, селезенки, надпочечников и гипофиза. Пиноцитоз — поглощение клеткой растворов — состоит в том, что мельчайшие пузырьки жидкости втягиваются через образующуюся воронку, проникают через мембрану и усваиваются клеткой.
Цитоплазма — внутренняя среда клетки. Цитоплазма живой клетки находится в постоянном движении циклоз.
Позднее Эдвард ван Бенеден и Теодор Бовери сумели параллельно друг с другом установить, что центросферы не исчезают в окончании процесса митоза, а сохраняются в клетке, которая находится в интерфазе, при этом зачастую обнаруживаются строго в геометрическом центре. Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем вплоть до отчисления.
Если нет возможности написать самому, закажите тут. Со временем знания о центросоме, ее устройстве и функциях в биологии прибавлялись. Это отражалось также на том, какие названия присваивали клеточному центру. Так, например, в качестве изначального понятия использовался термин «центросфера», затем — «центральные корпускулы».
Позднее был введено в оборот определение «центросома», но окончательно оно прижилось лишь в середине XX века, когда была определена структура клеточного центра. Все ли клетки содержат клеточный центр Несмотря на то что центросома выполняет довольно важную функцию, она присутствует в клетках далеко не у всех организмов. Так, ее обнаруживают чаще всего в клетках животных, тогда как высшие растения, низшие грибы и ряд простейших не обладают ею. Особенности строения, где находится и как выглядит Приведем описание основных компонентов центросомы: Центриоли материнская и дочерняя — включают в себя микротрубочки, белковые стержни и нити.
Являются центром организации микротрубочек. Лишь материнская центриоль имеет в наличии дополнительные придатки. Сателлиты — составные части материнской центриоли, соединенные с ней с помощью белковых ножек.
На втором конце, который располагается дальше от материнской центриоли, вышеописанное «колесо» отсутствует. У некоторых типов клеток вместо втулки имеется аморфная структура. Функции Функции центриолей еще мало изучены.
Можно было бы предположить, что они участвуют в образовании веретена деления, однако они формируются и в клетках растений и грибов. Ученые предполагают, что центриоли играют определенную роль в пространственной ориентации веретена деления по отношению к полюсам клетки. Микротрубочки в составе этих органоидов выполняют опорную функцию. Возможно, по аналогии с белковыми структурами, формирующими цитоскелет клетки, микротрубочки также служат для транспортировки определенных веществ. В непосредственной близости от материнских центриолей находятся фокусы схождения микротрубочек в виде плотных мелких телец. С их помощью осуществляется «сборка» микротрубочек, служащих основой клеточного каркаса.
Развитие Чаще всего за весь жизненный цикл клетки от ее образования из материнской и до момента следующего деления или гибели центриоли удваиваются только один раз. Сначала образуются по две половинки материнской и дочерней центриоли, а затем они перемещаются к полюсам, образуя центросомы. Однако из этого правила существует множество исключений: У некоторых видов клеток такое деление происходит неоднократно. В созревших яйцеклетках многих животных центриоли разрушаются. При образовании сперматозоидов центриоли распадаются.
Эндоплазматическая сеть
- Строение клеточного центра
- Цитология. Лекция 6. Центриоль. Окштейн И.Л. - YouTube
- Микротрубочки. Центриоли. Базальные тельца. Реснички. Жгутики. Внутриклеточный транспорт.
- Centriole Definition
- Строение клеточного центра
42. Центриоли, их строение и поведение в клеточном цикле
ЦЕНТРИОЛОС: функции, характеристики и структура | Центриоли удваиваются и начинают расходиться в интерфазе, а уже в профазе стартует образование нитей веретена деления. |
СТРОЕНИЕ ЯДРА, РИБОСОМ, ЦЕНТРИОЛЕЙ (ЕГЭ И ОГЭ ПО БИОЛОГИИ) | Клеточный центр строение состав центриолей. |
42. Центриоли, их строение и поведение в клеточном цикле | Что такое клеточные центриоли: их местоположение в клетке, внутреннее и внешнее строение, особенности диплосом, дочерняя и материнская центриоли. |
Что такое центриоли клетки: строение и функции. | Центриоли удваиваются и начинают расходиться в интерфазе, а уже в профазе стартует образование нитей веретена деления. |
- Опорно-двигательная система клетки
Функции: Центриоли принимают участие в формировании цитоплазматических микротрубочек во время деления клетки и в регуляции образования митотического веретена. ИнтернетПо строению центриоли — это белковые цилиндры, от которых отходит сеть нитей — центросфера. Такие структуры внутри центриоли расположены в одном из её концов, проксимальном, что делает строение цилиндра центриоли полярным. Центриоли представляют собой полые цилиндры, расположенные перпендикулярно друг другу. Функции: Центриоли принимают участие в формировании цитоплазматических микротрубочек во время деления клетки и в регуляции образования митотического веретена. Большинство органелл имеют мембранное строение, мембраны отсутствуют в структуре рибосом и центриолей.
Что такое центриоли: характеристика, структура, функции
Однако ответы на многие вопросы, касающиеся этих органелл, науке до сих пор неизвестны. Что такое центриоли? Центриоли представляют собой немембранную структуру в виде мелких телец, которые входят в состав клеточного ядра. Их с трудом можно рассмотреть в электронный микроскоп.
Они часто встречаются среди представителей царства Простейших, характерны для животных, иногда наблюдаются у некоторых видов грибов, а среди растений обнаружены только у мхов и папоротников. Центриоли в клетке окружены мелкозернистым полужидким веществом, которое либо не обладает четко определенной структурой, либо имеет волокнистый вид. Строение Основу строения центриолей составляют 9 комплексов по 3 микротрубочки, которые образуют полый цилиндр.
Его ширина в среднем составляет 0,15 мкм, а длина — 0,3-0,5 мкм. Эта клеточная структура обладает следующими особенностями: Первая трубочка, расположенная ближе к центру цилиндра — полная, она ее диаметр равен порядка 25 нм. Толщина ее стенки составляет всего 5 нм, она состоит из 13 белковых субъединиц.
Последние представляют собой полипептидный, или мультимерный, комплекс. Последующие две трубочки являются неполными и плотно примыкают друг к другу. В их составе содержится 11 пептидных субъединиц.
Микротрубочки погружены в аморфную субстанцию.
Также лизосомы могут полностью переварить всю клетку. Этот процесс называется автолиз. Он важен в процессах развития эмбрионов и личинок. Например, хвост у головастика укорачивается и постепенно совсем исчезает благодаря автолизу. Запрограммированная клеточная смерть — апоптоз, тоже выполняется с участием лизосом.
Вакуоли Вакуоли — одномембранные органоиды. В зрелых клетках растений есть одна большая центральная вакуоль, заполненная клеточным соком. В ней находится вода и питательные вещества. В молодых клетках растений вакуоли мелкие, но по мере развития клетки они сливаются в одну центральную вакуоль. У животных и грибов вакуоли имеются но они гораздо меньше и выполняют другие функции. Например, у амёбы сократительная вакуоль выделяет из клетки ненужные вещества и избыток воды.
О вакуолях животных мы поговорим в зоологии. Они обеспечивают процесс трансляции — синтеза белка. Рибосомы расположены в цитоплазме клетки, на шероховатом ЭПС, внутри митохондрий и пластид. Рибосомы отличаются по размерам: большие рибосомы 80S содержатся в цитоплазме и ЭПС, а маленькие 70S — в митохондриях, пластидах и бактериях. Немного о том, что такое 70S и 80S… S — коэффициент седиментации. Чем больше S, тем больше плотность и масса изучаемого объекта.
Тогда же ученые обнаружили, что они состоят из более мелких структур — центриолей. Изучить подробнее, что такое центриоли и каково их тонкое строение, удалось только к середине XX в. Однако ответы на многие вопросы, касающиеся этих органелл, науке до сих пор неизвестны. Что такое центриоли?
Центриоли представляют собой немембранную структуру в виде мелких телец, которые входят в состав клеточного ядра. Их с трудом можно рассмотреть в электронный микроскоп. Они часто встречаются среди представителей царства Простейших, характерны для животных, иногда наблюдаются у некоторых видов грибов, а среди растений обнаружены только у мхов и папоротников. Центриоли в клетке окружены мелкозернистым полужидким веществом, которое либо не обладает четко определенной структурой, либо имеет волокнистый вид.
Строение Основу строения центриолей составляют 9 комплексов по 3 микротрубочки, которые образуют полый цилиндр. Его ширина в среднем составляет 0,15 мкм, а длина — 0,3-0,5 мкм. Эта клеточная структура обладает следующими особенностями: Первая трубочка, расположенная ближе к центру цилиндра — полная, она ее диаметр равен порядка 25 нм. Толщина ее стенки составляет всего 5 нм, она состоит из 13 белковых субъединиц.
Последние представляют собой полипептидный, или мультимерный, комплекс. Последующие две трубочки являются неполными и плотно примыкают друг к другу.
Количество микротрубочек в наборе может колебаться для разных организмов от 1 до 3. Вокруг центриолей находится так называемый центр организации цитоскелета, район в котором группируются минус концы микротрубочек клетки. Перед делением клетка содержит две центриоли, расположенные под прямым углом друг к другу. В ходе митоза они расходятся к разным концам клетки, формируя полюса веретена деления. После цитокинеза каждая дочерняя клетка получает по одной центриоли, которая удваивается к следующему делению. Удвоение центриолей происходит не делением, а путём синтеза новой структуры, перпендикулярной существующей. Центриоли, по-видимому, гомологичны базальным телам жгутиков и ресничек. Митохондрии[ ] Митохондрии — особые органеллы клетки, основной функцией которых является синтез АТФ — универсального носителя энергии.
Дыхание поглощение кислорода и выделение углекислого газа происходит также за счёт энзиматических систем митохондрий. Внутренний просвет митохондрий, называемый матриксом отграничен от цитоплазмы двумя мембранами, наружной и внутренней, между которыми располагается межмембранное пространство. Внутренняя мембрана митохондрии образует складки, так называемые кристы. В матриксе содержатся различные ферменты, принимающие участие в дыхании и синтезе АТФ. Центральное значение для синтеза АТФ имеет водородный потенциал внутренней мембраны митохондрии. Митохондрии имеют свой собственный ДНК - геном и прокариотические рибосомы, что безусловно указывает на симбиотическое происхождение этих органелл. В ДНК митохондрий закодированы совсем не все митохондриальные белки, большая часть генов митохондриальных белков находятся в ядерном геноме, а соответствующие им продукты синтезируются в цитоплазме, а затем транспортируются в митохондрии. Геномы митохондрий отличаются по размерам: например геном человеческих митохондрий содержит всего 13 генов. Самое большое число митохондриальных генов 97 из изученных организмов имеет простейшее Reclinomonas americana. Сопоставление про- и эукариотической клеток[ ] Основная статья: Сравнение строения клеток бактерий, растений и животных Наиболее важным отличием эукариот от прокариот долгое время считалось наличие оформленного ядра и мембранных органоидов.
Однако к 1970—1980-м гг. Некоторое время считалось, что цитоскелет свойственен только эукариотам, но в середине 1990-х гг. Именно наличие специфическим образом устроенного цитоскелета позволяет эукариотам создать систему подвижных внутренних мембранных органоидов. Кроме того, цитоскелет позволяет осуществлять эндо- и экзоцитоз как предполагается, именно благодаря эндоцитозу в эукариотных клетках появились внутриклеточные симбионты, в том числе митохондрии и пластиды. Другая важнейшая функция цитоскелета эукариот — обеспечение деления ядра митоз и мейоз и тела цитотомия эукариотной клетки деление прокариотических клеткок организовано проще. Различия в строении цитоскелета объясняют и другие отличия про- и эукариот — например, постоянство и простоту форм прокариотических клеток и значительное разнообразие формы и способность к её изменению у эукариотических, а также относительно большие размеры последних. Так, размеры прокариотических клеток составляют в среднем 0,5—5 мкм , размеры эукариотических — в среднем от 10 до 50 мкм. Кроме того, только среди эукариот попадаются поистине гигантские клетки, такие как массивные яйцеклетки акул или страусов в птичьем яйце весь желток — это одна огромная яйцеклетка , нейроны крупных млекопитающих, отростки которых, укрепленные цитоскелетом, могут достигать десятков сантиметров в длину. Анаплазия[ Разрушение клеточной структуры например, при злокачественных опухолях носит название анаплазии.