Новости термоядерная физика

Если учёным действительно удалось провести реакцию ядерного синтеза с указанными выше условиями, это сулит революцию в энергетике.

Можно и быстрее

  • Международный экспериментальный термоядерный реактор — Википедия
  • Вестник РАН, 2021, T. 91, № 5, стр. 470-478
  • Искусственное солнце: как первый в мире термоядерный реактор изменит мир // Новости НТВ
  • Российский ученый раскрыл секреты искусственного солнца, которое зажгли в Китае

Главная тема

  • Отсюда • «Это надо делать быстро!». Сводка термоядерных новостей
  • Термоядерный запуск. Как Мишустин нажал на большую красную кнопку | Аргументы и Факты
  • Термоядерную установку, у которой нет аналогов в мире, запустили в Курчатовском институте
  • Как работает изобретенный китайцами токамак и зачем он нужен | 360°
  • Мирный термояд – ​почти реальность

Американские физики повторно добились термоядерного зажигания

Концептуальный термоядерный синтез Термоядерный реактор работает на топливе, состоящем из смеси дейтерия и трития. В течение четверти века он работал в областях физики плазмы и производства нейтронов, связанных с разработками в области термоядерной энергии. Случайное открытие физиков позволяет стабилизировать реакции термоядерного синтеза 5.5. Концептуальный термоядерный синтез Термоядерный реактор работает на топливе, состоящем из смеси дейтерия и трития.

Поддерживаемый Биллом Гейтсом стартап по термоядерному синтезу превзошел температуру Солнца

В своей работе он имитирует реакцию ядерного синтеза, питающую настоящее Солнце. Первый пуск EAST состоялся в 2006 году. Установку построили на основе модифицированного реактора HT-7. Радиус ее внешнего корпуса составляет 1,7 метра. В мае 2021 года ученым удалось установить первый рекорд. Тогда реактор нагрелся до 120 миллионов градусов по Цельсию, но проработал всего 101 секунду 1,6 минуты.

Ученые считают, что с помощью токамака удастся получить источник неограниченной чистой энергии, так как водород и дейтерий в изобилии присутствуют на Земле. Но для этого необходимо добиться того, чтобы установка могла стабильно работать при высокой температуре длительное время. Эксперимент китайских ученых продлится до июня. По словам инженера-физика, если речь идет о единичном научном приборе, то его сооружение, эксплуатация и обращение с радиоактивными отходами может осуществляться контролируемо.

В программах термоядерных исследований всех технологически развитых стран в качестве горючего сегодня рассматривается дейтерий-тритиевая смесь. Планируется, что полномасштабная реализация процессов горения термоядерной плазмы в ИТЭР будет достигнута во второй половине 2030-х гг. Но потребуется еще около 15 лет, чтобы построить термоядерный реактор ДЕМО , где будет генерироваться электрическая и тепловая энергия» Институт ядерной физики им. Порт-плаг одновременно служит и «окном» в горячую область, так как является носителем многочисленных диагностических устройств, и «пробкой» на пути потока нейтронов, генерируемых в плазме. В защитных модулях порт-плагов разместят диагностические системы, поставляющие информацию о состоянии вещества на центральный пульт. В 2019 г. Интеграционная площадка для сборки порт-плагов уже готовится. Это будет «чистое» помещение, где содержание пыли, микроорганизмов, аэрозольных частиц и химических паров будет постоянно контролироваться и поддерживаться на определенном уровне. Поэтому все работы должны быть закончены уже к 2023 г. И сейчас у института горячее время, а через год станет еще горячее. К примеру, итоговый вариант экваториального порт-плага, за производство которого взялся ИЯФ, разительно отличался от первоначального. Уже в процессе работы стало очевидно, что придется искать новые материалы и технологии. Так, для работы над проектом в институте освоили технологию глубокого сверления. В классическом варианте вращается деталь, а сверло неподвижно. А для того, чтобы убрать стружку, которая забивает полость сверления, в сквозное отверстие самого сверла пускают охлаждающую жидкость под большим давлением. Но если деталь большая и неподвижная, как в нашем случае, то вращаться должно сверло, и направить жидкость в полость сверления гораздо сложнее. Подобной технологии в ИЯФ не было, поэтому институт купил и модернизировал под свои нужды соответствующее оборудование. Теперь мы можем сверлить на два метра с двух сторон с хорошей точностью. Одна из особенностей этого материала — тщательно контролируемый химический состав, обеспечивающий нужный уровень примесей и легирующих элементов. Пока сделан полномасштабный опытный образец элемента диагностического защитного модуля, другими словами, верхняя крышка. Работа ведется, можно сказать, по методу последовательного приближения: сначала создается макет, а затем по результатам испытаний происходит корректировка проекта вплоть до стадии прототипирования и постановки на производство. Такой регламент очень важен, так как любой инженерный просчет ставит под угрозу весь проект» В работе по проекту ИТЭР новые технологии требуются буквально на каждом этапе.

Это позволит решить одну из серьёзных проблем термоядерного синтеза — защитить стенку термоядерного реактора от воздействия раскалённой до миллионов градусов плазмы, не допустив при этом попадания в неё ненужных примесей. По словам учёных, методика позволяет создавать покрытие из тугоплавкого вольфрама, лишённое пор. Оно наносится на медную подложку, которая позволяет отводить тепло от стенки реактора с участием лёгкого металла лития. Термоядерная установка «Глобус-М», сооружённая в Физико-техническом институте им. Изобретение уже получило патент. Разработка позволит решить одну из основных задач в области термоядерного синтеза — уберечь стенку термоядерного реактора от воздействия раскалённой до миллионов градусов плазмы, заключённой внутри него.

Прорыв уже широко обсуждался учеными, добавили источники. Если результаты подтвердятся, это будет означать, что исследователями из Ливерморской лаборатории удалось добиться цели, недостижимой в течение десятилетий. Ранее в этом году, в ходе оглашения стратегии развития термоядерной энергии, один из американских конгрессменов заявил, что технология является «святым граалем» чистой энергетики и потенциально способна избавить большее число людей от бедности, чем открытие огня. Большинство исследований пока связаны с т. Если ранее термоядерной энергетикой занимались преимущественно государственные учреждения, то в последнее время инвестиции в соответствующую отрасль потекли и в частные компании, обещающие создать работоспособные технологии к 2030-м годам. Хотя многие учёные считают, что до появления термоядерных электростанций пройдут ещё десятилетия, новости невозможно игнорировать.

Главные новости

  • Вестник РАН. T. 91, Номер 5, 2021
  • ˜˜˜˜˜: истории из жизни, советы, новости, юмор и картинки — Горячее | Пикабу
  • Физики впервые запустили самоподдерживающийся термоядерный синтез, но не смогли это повторить
  • Академик В.П. Смирнов: термояд — голубая мечта человечества

ядерная физика

Внутри них циркулирует вода. Вырывающиеся из плазмы свободные нейтроны попадают в эти бланкеты и тормозятся водой. Из-за чего она нагревается. Сами бланкеты защищают всю остальную махину от теплового, рентгеновского и уже упомянутого нейтронного излучения плазмы. Такая система необходима для того, чтобы продлить срок работы реактора. Каждый бланкет весит порядка 4,5 тонны, их будет менять роботизированная рука примерно раз в 5—10 лет, так как этот первый ряд обороны будет подвержен испарению и нейтронному излучению. Но это далеко не все. К камере присоединяется внутрикамерное оборудование, термопары, акселерометры, уже упомянутые 440 блоков бланкетной системы, системы охлаждения, экранирующий блок, дивертор, магнитная система из 48 элементов, высокочастотные нагреватели плазмы, инжектор нейтральных атомов и т. И все это находится внутри огромного криостата высотой 30 метров, имеющего такой же диаметр и объем 16 тыс. Криостат гарантирует глубокий вакуум и ультрахолодную температуру для камеры токамака и сверхпроводящих магнитов, которые охлаждаются жидким гелием до температуры —269 градусов по Цельсию.

Одна третья часть основания криостата. Всего этот «термос» будет состоять из 54 элементов А так выглядит криостат на рендере. Его производство поручено Индии. Внутри «термоса» соберут реактор Криостат уже собирают. Тут, например, вы можете видеть окошко, через которое в реактор будут забрасывать частицы для нагрева плазмы Производство всего этого оборудования разделено между странами-участницами. Например, над частью бланкетов работают в России, над корпусом криостата — в Индии, над сегментами вакуумной камеры — в Европе и Корее. Но это отнюдь не быстрый процесс. К тому же права на ошибку у конструкторов нет. Команда ITER сперва моделирует нагрузки и требования к элементам конструкции, их испытывают на стендах например, под воздействием плазменных пушек, как дивертор , улучшают и дорабатывают, собирают прототипы и опять тестируют перед тем, как выдать финальный элемент.

Первый корпус тороидальной катушки. Первый из 18 гигантских магнитов. Одну половину сделали в Японии, другую — в Корее 18 гигантских магнитов D-образной формы, расставленные по кругу так, чтобы образовать непроницаемую магнитную стену. Внутри каждого из них заключены 134 витка сверхпроводящего кабеля Каждая такая катушка весит примерно 310 тонн Но одно дело собрать. И совсем другое — все это обслуживать. Из-за высокого уровня радиации доступ к реактору заказан. Для его обслуживания разработано целое семейство роботизированных систем. Часть будет менять бланкеты и кассеты дивертора весом под 10 тонн , часть — управляться удаленно для устранения аварий, часть — базироваться в карманах вакуумной камеры с HD-камерами и лазерными сканерами для быстрой инспекции. И все это необходимо делать в вакууме, в узком пространстве, с высокой точностью и в четком взаимодействии со всеми системами.

Задачка посложнее ремонта МКС. Причем это только часть оборудования самого реактора. Добавьте сюда здание криокомбината, где будут вырабатывать жидкий азот и гелий, здание выпрямителей магнитной системы с трансформаторами, трубопроводы системы охлаждения диаметром по 2 метра , систему сброса тепла с 10 вентиляторными градирнями и многое-многое другое. На все это и идут миллиарды.

По словам учёных, методика позволяет создавать покрытие из тугоплавкого вольфрама, лишённое пор. Оно наносится на медную подложку, которая позволяет отводить тепло от стенки реактора с участием лёгкого металла лития. Термоядерная установка «Глобус-М», сооружённая в Физико-техническом институте им.

Изобретение уже получило патент. Разработка позволит решить одну из основных задач в области термоядерного синтеза — уберечь стенку термоядерного реактора от воздействия раскалённой до миллионов градусов плазмы, заключённой внутри него. Хотя плазма удерживается и сжимается при помощи магнитного поля, её потоки всё равно могут соприкасаться со стенкой реактора.

Глеб Курскиев: — В детстве я мечтал стать мореплавателем или космонавтом, и еще — исследователем. И, в какой-то степени, мечту осуществил!

Когда я был маленьким, главным примером для меня был мой дедушка, заведующий лабораторией в Ленинградском ЦКТИ. Когда мне еще не было 6 лет, он рассказывал мне все об устройстве окружающих вещей от двигателя внутреннего сгорания до ядерного реактора! К сожалению, деда рано не стало, и он многое не успел мне рассказать. И вот недавно я случайно узнал, что, в каком-то роде, пошел прямо по дедушкиным стопам!

Для исследования лазерного термоядерного синтеза разработаны мишени прямого и непрямого облучения. Мишени прямого облучения представляют собой полую стеклянную или полимерную сферическую оболочку с высокой однородностью толщины, заполненную либо газообразной смесью дейтерий-тритий, либо дейтерием. Диаметр сферы от 200 до 1000 мкм, толщина стенки 0,5—15 мкм, давление газа внутри оболочки 1—100 атм. На внешнюю поверхность сферы может быть нанесено какое-либо покрытие. Мишени непрямого облучения представляют собой мишень прямого облучения, заключенную в сферический или цилиндрический кожух диаметром 1—4 мм из металла с высоким атомным номером. Мишень для исследования уравнения состояния в лазерных экспериментах представляет собой базовую пластину из алюминия или меди толщиной 40—60 мкм, на одну из сторон которой нанесены в виде ступеньки слои из материала базы и исследуемого материала толщиной 4—10 мкм. Ступеньки отстоят друг от друга на расстоянии 50—100 мкм. Другая сторона мишени, на которую воздействовал лазерный импульс, покрывалась слоем полипараксилилена толщиной 8—10 мкм. Шероховатость поверхности не превышала 80 нм для свинца, 50 нм для алюминия и 10 нм для меди и полипараксилилена. При диагностике лазерного излучения и исследованиях плазмы на мощных лазерных установках ИЛФИ "Искра-5", "Луч" для проведения с субнаносекундным временным разрешением временной, пространственно-временной и спектрально-временной регистрации используются фотохронограф с щелевой разверткой СЭР-4 — для видимого и ближнего ИК-излучения, рентгеновский фотохронограф с щелевой разверткой РФР-4 — для мягкого и сверхмягкого рентгеновского излучения. Инфракрасный многокадровый фоторегистратор КИТ-3М базируется на полупроводниковой камере ионизационного типа и многокадровой электронно-оптической камере.

Ядерный синтез: недавний эксперимент преодолевает два основных препятствия для работы

Концептуальный термоядерный синтез Термоядерный реактор работает на топливе, состоящем из смеси дейтерия и трития. Слишком часто разработчики термоядерных реакторов сталкивались с непредсказуемостью, завышенными оценками, новыми неприятными фактами из области физики плазмы. Физик объяснил важность создания прототипа российского термоядерного реактора. Двигатель на термоядерной тяге разгонит космический корабль до 800 000 километров в час. Для исследования лазерного термоядерного синтеза разработаны мишени прямого и непрямого облучения. Хотя об этом еще не было объявлено публично, эта новость быстро распространилась среди физиков и других ученых, изучающих термоядерный синтез.

Какие проблемы возникли на ИТЭР и почему задерживается энергопуск российского токамака

Управляемый термоядерный синтез — голубая мечта физиков и энергетических компаний, которую они лелеют не одно десятилетие. Заключить искусственное Солнце в клетку. Делается вывод о том, что термоядерные исследования способны выступать и уже выступают мощным драйвером научно-технологического прогресса, механизмом, стимулирующим. В Саровском ядерном центре создается аналогичная установка для экспериментов, позволяющих работать с управляемым термоядерным синтезом с инерциальным удержанием.

«Национальная поджигательная установка» резко повысила эффективность термоядерного синтеза

Статья автора «Канал Наука» в Дзене: 13 декабря 2022 года было объявлено: американским физикам удалось добиться, чтобы термоядерный синтез выработал на 50% больше энергии. Впервые термоядерная реакция произвела больше энергии, чем было затрачено на её поддержание. С середины прошлого века физики всего мира ищут возможность воспроизвести реакцию термоядерного синтеза, происходящую в центре звезд.

Самая грандиозная научная стройка современности. Как во Франции строят термоядерный реактор ITER

Хорошие новости продолжают поступать в области исследований ядерного синтеза. Статья автора «Канал Наука» в Дзене: 13 декабря 2022 года было объявлено: американским физикам удалось добиться, чтобы термоядерный синтез выработал на 50% больше энергии. Специалисты Института ядерной физики СО РАН уверены, что для Сибири термоядерный взрыв будет иметь катастрофические последствия.

Похожие новости:

Оцените статью
Добавить комментарий