Новости гипотеза рнк мира

Главная/Биология/Моделирование происхождения жизни: Новые доказательства существования "мира РНК". Эта работа подрывает так называемую «гипотезу мира РНК», которая утверждает, что РНК сформировала основу биосферы Земли задолго до того, как появились ДНК и другие молекулы, важные для жизни, хотя доказательств этого было недостаточно. Это предположение называется гипотезой РНК-мира и пользуется поддержкой среди современных учёных. Основной гипотезой о появлении ДНК и первых клеток в настоящее время является гипотеза РНК-мира, согласно которой сначала происходило образование молекул РНК.

Газета «Суть времени»

  • THE CONCEPT OF THE «RNA WORLD»: THEORY AND PRACTICE
  • Почему РНК не хватало
  • Комментарии
  • Рибозим со свойствами РНК-полимеразы синтезировал функциональные молекулы РНК — PCR News
  • Ученые обнаружили новые доказательства теории РНК-мира

СВЯЗАТЬСЯ С РЕДАКЦИЕЙ

  • Противоречия гипотезы мира РНК
  • Происхождение жизни, часть 2: РНК-мир
  • Подписка на дайджест
  • Найдено подтверждение гипотезы «РНК-мира»
  • Обнаружены новые доказательства РНК-мира
  • Содержание

ELife: ученые обнаружили спонтанное возникновение самовоспроизводящихся молекул

Тем не менее, современная наука не дает четкого ответа на вопрос, каким образом произошел переход от отдельных химических молекул к сложным формам жизни. Одна из научных гипотез предполагает, что первоначально на Земле существовали несвязанные молекулы РНК, возможно, вместе с белками и другими органическими веществами. Затем около четырех млрд лет назад эти молекулы начали самовоспроизводиться и развиваться от одиночной молекулы в разнообразные сложные системы. Ученые предполагали, что РНК могли развиваться в разных направлениях, накапливая мутации под воздействием внешних факторов. В процессе мутаций осуществлялся отбор наиболее устойчивых молекул, которые впоследствии сформировали ДНК. Это означает, что для достижения устойчивого разнообразия молекулы должны определить порядок использования различных ресурсов, — говорит Рё Мидзути, один из авторов исследования.

Кроме того, эта «репликация» заключается во всех моделях получения комплементарной цепи данной цепи, а не непосредственно идентичной цепи.

Только на второй стадии, когда комплементарная цепь реплицируется, фактически синтезируется цепь, идентичная полимеразе. Ни одна из предложенных моделей не предполагает, что полимераза в качестве агента предпочтительно реплицирует в качестве мишени цепи, которые идентичны самой себе. Присутствие полимеразы приводит к репликации всех цепей, присутствующих в растворе. В этих условиях, то селективное преимущество из аллели не состоит, в качестве агента в дублируя другие пряди более или менее быстро так как все выиграют от него , а скорее в качестве мишени в настоящее время дублированы более быстро. При сохранении его дублирования мощностей. Кроме того, группа тимина обозначенная в генетическом коде как T состоит из группы урацила U.

Роль тРНК заключается в транспортировке аминокислоты к рибосоме, где будет происходить связывание с другой аминокислотой, с образованием полипептида таким образом давая белок. Существует несколько тРНК, каждая с тремя нуклеотидами: антикодон. Антикодон комплементарен кодону , переносимому мРНК, которая определяет порядок сборки аминокислот рибосомой. Особенность тРНК в том, что, несмотря на свой небольшой размер, она частично состоит из множества нуклеотидов , которые не встречаются в других местах. Таким образом, эти «экзотические» нуклеотиды имели пребиотическое происхождение, остатки мира РНК. Таким образом, эти компоненты присутствуют во всех трех сферах жизни.

Для Мари-Кристин Морель «последние играют фундаментальную роль в жизни, и их старшинство не вызывает сомнений». Еще одна удивительная структура: в вирусе TYMV вирус желтой мозаики турнепса инициация трансляции вирусного генома в белок осуществляется через структуру типа тРНК, которая инициирует собственную трансляцию и фиксирует аминокислоту. Структура вируса PSTV. РНК и наследственность РНК играет роль в передаче активности генов: такой механизм называемый эпигенетикой не связан с ДНК и может служить доказательством способности РНК участвовать в « наследственности». В результате использование ДНК в качестве опоры для генетической информации позволило уменьшить количество ошибок при дублировании генов и, следовательно, увеличить их длину и, следовательно, сложность связанного с ними метаболизма. Однако не способность разрешать сложный метаболизм может составлять селективное преимущество для этого перехода, поскольку начальный переход требует установления метаболических путей, связанных с ДНК, что изначально влечет за собой затраты, которые не сразу компенсируются преимуществом, заключающимся в том, что может обеспечить более сложный метаболизм.

Некоторые ученые например, вирусолог Патрик Фортерр из Института генетики и микробиологии в Орсе полагают, что именно вирусы являются «изобретателями» ДНК. Фактически известно, что некоторые современные вирусы изменяют свою ДНК, чтобы сделать ее устойчивой к нуклеазным ферментам своего хозяина путем метилирования, гидроксиметилирования и т.

Впоследствии эту идеи развили другие ученые. Так возникла гипотеза «РНК-мира». Ученым из США удалось получить ее первое подтверждение.

Генетическая информация в виде цепочек ДНК копируется и передается от поколения к поколению. Но как обстояло дело до появления клеток и ДНК? В 1968 году химик Лесли Орджел опубликовал статью, в которой описал возможность существования жизни на Земле исключительно в виде рибонуклеиновых кислот, которые были способны передавать информацию безо всяких белков.

Гипотеза РНК-мира для ЕГЭ по биологии

Более того, ископаемые остатки этих «прохладных» жерл содержали нечто странное: минерал пирит, состоящий из железа и серы, сформировался в трубочках диаметром 1 мм. Работая в лаборатории, Расселл обнаружил, что пирит также может формировать сферические капли. И предположил, что первые сложные органические молекулы могли образоваться внутри этих простых пиритовых структур. Железный пирит Примерно в это же время Вахтершаузер начал публиковать свои идеи, в основе которых был поток горячей химически обогащенной воды, протекающей через минералы. Он даже предположил, что в этом процессе участвовал пирит. Расселл сложил два плюс два. Он предположил, что гидротермальные источники на глубине моря, достаточно холодные, чтобы позволить образоваться пиритовым структурам, приютили прекурсоры организмов Вахтершаузера. Если Расселл был прав, жизнь началась на дне моря — и сначала появился метаболизм. Расселл собрал это все в статье, опубликованной в 1993 году, 40 лет спустя после классического эксперимента Миллера. Она не вызвала такого же ажиотажа в СМИ, но была, возможно, более важной.

Расселл объединил две, казалось бы, отдельные идеи — метаболические циклы Вахтершаузера и гидротермальные источники Корлисса — в нечто по-настоящему убедительное. Расселл даже предложил объяснение того, как первые организмы получали свою энергию. То есть он понял, как мог бы работать их метаболизм. Его идея опиралась на работу одного из забытых гениев современной науки. Питер Митчелл, нобелевский лауреат В 1960-х годах биохимик Питер Митчелл заболел и был вынужден уйти в отставку из Университета Эдинбурга. Вместо этого он создал частную лабораторию в отдаленном поместье в Корнуолле. Изолированный от научного общества, он финансировал свою работу за счет стада молочных коров. Многие биохимики, в том числе и Лесли Оргел, чью работу по РНК мы обсудили во второй части, считали идеи Митчелла совершенно нелепыми. Спустя несколько десятков лет Митчелла ждала абсолютная победа: Нобелевская премия по химии 1978 года.

Он не стал знаменитым, но его идеи сегодня в каждом учебнике по биологии. Свою карьеру Митчелл провел, выясняя, что организмы делают с энергией, которую получают из пищи. По сути, он задавался вопросом, как всем нам удается оставаться в живых каждую секунду. Он знал, что все клетки хранят свою энергию в одной молекуле: аденозинтрифосфате АТФ. К аденозину крепится цепочка из трех фосфатов. Добавление третьего фосфата требует много энергии, которая затем запирается в АТФ. Может ли искусственный интеллект уничтожить человечество уже к 2035 году? Когда клетка нуждается в энергии — например, когда сокращается мышца — она разбивает третий фосфат в АТФ. Митчелл хотел узнать, как клетка вообще создает АТФ.

Как она накапливает достаточно энергии в АДФ, чтобы прикрепить третий фосфат? Митчелл знал, что фермент, образующий АТФ, находится в мембране. Поэтому предположил, что клетка закачивает заряженные частицы протоны через мембрану, поэтому много протонов находится по одну сторону, а по другую — нет. Затем протоны пытаются просочиться обратно через мембрану, чтобы уравновесить число протонов по каждую сторону — но единственное место, через которое они могут пройти, это фермент. Поток текущих протонов, таким образом, обеспечивал фермент энергией, необходимой для создания АТФ. Впервые Митчелл изложил свою идею в 1961 году. Следующие 15 лет он провел, защищая ее со всех сторон, пока доказательства не стали неопровержимыми. Теперь мы знаем, что процесс Митчелла используется каждым живым существом на Земле. Прямо сейчас он протекает в ваших клетках.

Как и ДНК, он лежит в основе известной нам жизни. Расселл позаимствовал у Митчелла идею протонного градиента: наличие большого количества протонов на одной стороне мембраны и немногого — на другой. Все клетки нуждаются в протонном градиенте, чтобы хранить энергию. Современные клетки создают градиенты, откачивая протоны через мембраны, но для этого нужен сложный молекулярный механизм, который просто не мог появиться сам по себе. Поэтому Расселл сделал еще один логический шаг: жизнь должна была сформироваться где-то с естественным протонным градиентом. Например, где-то у гидротермальных источников. Но это должен быть особенный тип источника. Когда Земля была молодой, моря были кислыми, а в кислой воде много протонов. Чтобы создать протонный градиент, вода из источника должна быть с низким содержанием протонов: она должна быть щелочной.

Источники Корлисса не подходили. Они не только были слишком горячими, но еще и кислыми. Но в 2000 году Дебора Келли из Вашингтонского университета обнаружила первые щелочные источники. Ее отец умер, когда она заканчивала среднюю школу, и она была вынуждена работать, чтобы остаться в колледже. Но справилась и выбрала предметом своего интереса подводные вулканы и обжигающие горячие гидротермальные источники. Эта пара и привела ее в центр Атлантического океана. В этом месте земная кора треснула и с морского дна поднялся хребет гор. На этом хребте Келли обнаружила поле гидротермальных источников, которое назвала «Потерянным городом». Они не были похожи на обнаруженные Корлиссом.

Вода вытекала из них при температуре 40-75 градусов по Цельсию и была слегка подщелоченной. Карбонатные минералы из этой воды слипались в крутые белые «столбы дыма», которые поднимались с морского дна подобно трубам органа. На вид они жуткие и призрачные, но это не так: в них обитает множество микроорганизмов. Эти щелочные жерла идеально вписывались в идеи Расселла. Он твердо поверил в то, что жизнь появилась в таких «потерянных городах». Но была одна проблема. Будучи геологом, он знал не так много о биологических клетках, чтобы убедительно представить свою теорию. Столб дыма «черной курилки» Поэтому Расселл объединился с биологом Уильямом Мартином. В 2003 году они представили улучшенный вариант прежних идей Расселла.

И это, наверное, самая лучшая теория появления жизни на данный момент. Благодаря Келли, теперь они знали, что породы щелочных источников были пористыми: они были усеяны крошечными отверстиями, наполненными водой. Эти крошечные кармашки, предположили они, действовали в качестве «клеток». В каждом кармашке находились основные химические вещества, в том числе и пирит. В сочетании с естественным протонным градиентом от источников, они были идеальным местом для начала метаболизма. После того, как жизнь научилась использовать энергию вод источников, говорят Расселл и Мартин, она начала создавать молекулы вроде РНК. В конце концов, она создала себе мембрану и стала настоящей клеткой, сбежав из пористой породы в открытую воду. Такой сюжет в настоящее время рассматривается в качестве одной из ведущих гипотез о происхождении жизни. Клетки бегут из гидротермального источника В июле 2016 года он получил поддержку, когда Мартин опубликовал исследование, реконструирующее некоторые детали « последнего универсального общего предка » LUCA.

Это организм, который жил миллиарды лет назад и от которого произошла вся существующая жизнь. Едва ли мы когда-нибудь найдем прямые окаменевшие доказательства существования этого организма, но тем не менее вполне можем делать обоснованные предположения о том, как он выглядел и чем занимался, изучая микроорганизмы наших дней. Это и проделал Мартин. Он исследовал ДНК 1930 современных микроорганизмов и идентифицировал 355 генов, которые были почти у всех. Это убедительно говорит о передаче этих 355 генов, через поколения и поколения, от общего предка — примерно того времени, когда жил последний универсальный общий предок. Эти 355 генов включают некоторые для использования протонного градиента, но для генерации оного — нет, как и предсказывали теории Расселла и Мартина. Более того, LUCA, похоже, был адаптирован к присутствуют химических веществ вроде метана, что наводит на мысли, что он населял вулканически активную среду — по типу жерла. Сторонники гипотезы «мира РНК» указывают на две проблемы в этой теории. Одну можно поправить; другая может быть фатальной.

Гидротермальные источники Первая проблема в том, что экспериментальных доказательств описанных Расселлом и Мартином процессов нет. У них есть пошаговая история, но ни один из этих шагов не наблюдался в лаборатории. Он построил «реактор происхождения жизни», который имитирует условия внутри щелочного источника. Он надеется увидеть метаболические циклы, а может даже и молекулы вроде РНК. Но пока еще рано. Вторая проблема заключается в расположении источников в глубоком море. Как отмечал Миллер в 1988 году, длинноцепочечные молекулы вроде РНК и белков не могут формироваться в воде без вспомогательных ферментов. Для многих ученых это фатальный аргумент. И все же Расселл и его союзники остаются оптимистами.

И только в последнее десятилетие на первый план вышел третий подход, подкрепленный серией необычных экспериментов. Он обещает нечто, чего не удалось добиться ни «миру РНК», ни гидротермальным источникам: способ создать целую клетку с нуля. Часть пятая: так как же всё-таки создать клетку? К началу 2000-х годов ученые выделили две ведущие идеи о том, как могла появиться жизнь. Сторонники «РНК-мира» были убеждены, что жизнь началась с самовоспроизводящейся молекулы. В то же время ученые в лагере «сначала метаболизм» считают, что жизнь могла появиться в гидротермальных жерлах на дне океана. И все же на передний план вышла третья идея. Каждое живое существо на Земле состоит из клеток. Каждая клетка — это по сути мягкий шарик, мешочек, с жесткой внешней стенкой, или «мембраной».

Задача клетки — удерживать все предметы первой необходимости вместе. Если наружная стенка порвется, внутренности выльются наружу и клетка умрет — так же, как и выпотрошенный человек. Человечество изменило сушу до неузнаваемости. Но что насчет воды? Наружная стенка клетки настолько важна, что некоторые исследователи происхождения жизни даже считают, что она появилась прежде всего. Они считают, что подходы «сперва генетика», который мы обсудили во второй части, и «сперва метаболизм», который мы обсудили в четвертой части, ошибочны. Все живые предметы состоят из клеток Идея Луизи проста, и с ней трудно спорить. Каким образом вы собрались создавать рабочую метаболическую систему или самовоспроизводящуюся РНК, каждый из которых опирается на наличие большого количества химических веществ в одном месте, если вы сначала не сделаете контейнер, который удерживает все молекулы вместе. Если вы с этим согласны, есть только один способ, с которого могла начаться жизнь.

Каким-то образом, в жаре и буре ранней Земли, неколько сырых материалов сложились в грубые клетки, или «протоклетки». Осталось только повторить это в лаборатории: создать простую живую клетку. Идеи Луизи можно проследить аж до Александра Опарина и рассвета науки о происхождении жизни в СССР, которых мы обсудили в первой части. Опарин подчеркнул тот факт, что некоторые химические вещества образуют сгустки — коацерваты — которые могут держать другие вещества внутри. Он предположил, что коацерваты были первыми протоклетками. Любое жирное или маслянистое вещество будет образовывать сгустки или пленки в воде. Эти химические вещества известны в общем как липиды. Соответственно, гипотезу о том, что с них начала жизнь, назвали «липидным миром». Но просто сформировать сгустки недостаточно.

Они должны быть стабильными, уметь делиться на «дочерние» сгустки и хоть немного контролировать, что проходит внутрь и выходи наружу — и все это без сложных белков, которые используют современные клетки для этих задач. Появилась задача собрать такие протоклетки из всего необходимого материала. Несмотря на множество попыток за много лет, Луизи так и не сделал ничего хоть мало-мальски убедительного. И тогда, в 1994 году, он осмелился сделать дерзкое предположение. Он предположил, что первые протоклетки должны были содержать РНК. Более того, эта РНК должна была уметь воспроизводиться внутри протоклетки. Как-то клетка все же появилась И вот, его гипотеза стала очень сложной и отошла от чистого подхода «сперва компартментализация». Но у Луизи были веские доводы. Клетка с внешними стенками, но без внутренностей, мало что может.

Возможно, она могла бы делиться на дочерние клетки, но не передавала бы никакой информации о себе потомству. Она могла начать развиваться и становиться более сложной только при наличии некоторых генов. Вскоре эта идея обрела сильного сторонника в лице Джека Шостака, работу которого на тему «мира РНК» мы изучили в третьей части. Луизи был членом лагеря «сперва компартментализация», Шостак поддерживал «сперва генетику», и много лет они не встречались с глазу на глаз. Почти вся жизнь одноклеточная «Мы встречались на собраниях на тему происхождения жизни и затевали эти длинные дискуссии на тему того, что было важнее и что пришло первым», вспоминает Шостак. Мы пришли к общему мнению, что для возникновения жизни важно иметь и компартментализацию, и генетическую систему». В 2001 году Шостак и Луизи изложили свое видение этого единого подхода. В работе, опубликованной в Natire, они заявили, что должно быть возможность создать простую живую клетку с нуля, разместив реплицирующуюся РНК в обычной капле жира. Очень скоро Шостак решил полностью посвятить себя ей.

Рассудив, что «мы не можем излагать эту теорию, ничем ее не подкрепив», он решил начать экспериментировать с протоклетками. Спустя два года Шостак и двое его коллег объявили о большом успехе. Везикулы — это простые контейнеры, состоящие из липидов Они экспериментировали с везикулами: сферическими каплями с двумя слоями жирных кислот на внешней стороне и центральным жидким ядром. Пытаясь найти способ ускорить создание везикул, они добавили малые частички глины под названием монтмориллонит. Везикулы начали формироваться в 100 раз быстрее. Поверхность глины выступили катализатором, как некий фермент. Более того, везикулы могли поглощать как частицы монтморрилонита, так и цепи РНК с поверхности глины. Теперь эти протоклетки уже содержали гены и катализатор, и все из одной простой добавки. Решение добавить монтмориллонит было принято не просто так.

За несколько десятилетий много работ предположили, что монтмориллонит и подобные ему глины могли иметь важное значение для происхождения жизни. Кусок монтмориллонита Монтмориллонит — это обычная глина. В настоящее время она используется для самых разных дел, из нее даже кошачий наполнитель делают. Образуется она, когда вулканический пепел расщепляется погодой. Поскольку ранняя Земля изобиловала вулканами, кажется вероятным, что на ней было и много монтмориллонита. Еще в 1986 году химик Джеймс Феррис показал, что монтмориллонит выступает катализатором, который помогает формироваться органическим молекулам. Позже он обнаружил, что глина также ускоряет формирование малых РНК. Заходите в наш специальный Telegram-чат. Там всегда есть с кем обсудить новости из мира высоких технологий.

И тогда Феррис предположил, что эта невзрачная глина могла быть местом зарождения жизни. Шостак принял эту идею и включил ее в работу, используя монтмориллонит для строительства своих протоклеток. Годом спустя Шостак обнаружил, что его протоклетки могут расти сами по себе. Чем больше молекул РНК оказывалось в протоклетке, тем выше было давление на наружную стенку. Похоже, желудок протоклетки был забит и она была готова сходить по-большому. Чтобы компенсировать это, протоклетка приняла больше жирных кислот и включила их в стенки, благодаря чему раздулась еще больше и ослабила напряжение. Что важно, она взяла жирные кислоты из других протоклеток, в которых было меньше РНК, заставив их сократиться. Будто бы протоклетки соперничали и та, у которой было больше РНК, побеждала. Но если протоклетки могут расти, может они и делиться могут?

Сможет ли протоклетка Шостака воспроизвести себя? Клетки делятся на два Первые эксперименты Шостака показали, что способ деления протоклеток действительно есть. Если сжать ее в небольшом отверстии и вытянуть в трубочку, протоклетка разрывается, формируя «дочерние» протоклетки. Эта идея была неплохой, потому что в ней не участвовал никакой клеточный механизм: просто давление. Но такое решение было не самым лучшим, поскольку протоклетки теряли часть содержимого в этом процессе. Это также означало, что первые клетки могли делиться лишь проталкиваясь через крошечные отверстия. Существует множество способов заставить везикулы делиться. Например, можно добавить сильный поток воды. Осталось только заставить протоклетки делиться и не терять кишки.

В 2009 году Шостак и его студент Тинг Чжу нашли решение. Они сделали немного более сложные протоклетки с наружными стенками в несколько слоев, напоминающие слои лука. Несмотря на такую сложность, эти протоклетки все еще было просто создать. Когда Чжу кормил их жирными кислотами, протоклетки росли и меняли форму, вытягиваясь в длинные канатоподобные цепочки. После того, как протоклетка становилась достаточно длинной, легкой приложенной силы достаточно, чтобы разбить ее на десятки мелких дочерних протоклеток. Более того, протоклетки могли повторять цикл постоянно, дочерние протоклетки росли и делились. Эту часть проблему, похоже, решили. В последующих экспериментах Чжу и Шостак нашли еще больше способов заставить протоклетки делиться. Но все равно протоклеткам многого недоставало.

Чтобы показать, что его протоклетки могли быть первой жизнью на Земле, Шостаку нужно было заставить РНК внутри них воспроизводиться. В будущем мир ожидает спад рождаемости. Что это значит для человечества? Это было нелегко, поскольку, несмотря на десятилетия попыток — изложенных в третьей части, — никто так и не смог заставить РНК самовоспроизводиться. Эта же проблема загнала Шостака в угол в ходе его первых работ над «миром РНК», и никому другому не удалось ее решить. Поэтому он вернулся и перечитал работу Лесли Оргела, который так долго работал над гипотезой РНК-мира. В этих пыльных бумагах обнаружились ценные подсказки. Оргел провел много времени с 1970-х по 1980-е, изучая копирование цепей РНК. Первая клетка должна была вмещать химию жизни По сути все просто.

Возьмите одну цепь РНК и набор свободных нуклеотидов. Затем, используя эти нуклеотиды, соберите вторую цепь РНК, комплементарную первой. Сделав это дважды, вы получите копию оригинальной «CGC», только окольным путем. Оргел обнаружил, что при определенных обстоятельствах цепи РНК могут копироваться таким образом без какой-либо помощи ферментов. Возможно, именно так первая жизнь создала копии своих генов.

Но и тут оставалась проблема, как именно это свойство сохранилось во время биохимической эволюции. Чтобы в этом разобраться, ученые разработали модель, которая имитирует случайные разрывы в простых молекулах РНК без ферментативной активности. В ходе эксперимента появились короткие цепочки РНК, которые действовали как праймеры — затравки для синтеза более длинных цепей РНК.

Из-за этого появлялось множество копий разрушенного полимера.

Чтобы в этом разобраться, ученые разработали модель, которая имитирует случайные разрывы в простых молекулах РНК без ферментативной активности. В ходе эксперимента появились короткие цепочки РНК, которые действовали как праймеры — затравки для синтеза более длинных цепей РНК. Из-за этого появлялось множество копий разрушенного полимера. Ученые сравнили такое явление с регенерацией червей, которых разрезают на сегменты.

Благодаря тРНК аминокислота фиксируется в каталитическом центре рибосомы, где она «пришивается» к синтезируемой белковой цепи. Из рассмотренной последовательности событий видно, что молекулы РНК играют ключевую роль в декодировании генетической информации и биосинтезе белка.

Этот процесс, названный обратной транскрипцией, используют в ходе своего развития многие вирусы, в том числе печально известные онкогенные вирусы и ВИЧ-1, вызывающий СПИД. Таким образом, выяснилось, что поток генетической информации не является, как первоначально считалось, однонаправленным — от ДНК к РНК. Роль ДНК как изначально главного носителя генетической информации стала подвергаться сомнению. Тем более что многие вирусы гриппа, клещевого энцефалита и другие вообще не используют ДНК в качестве генетического материала, их геном построен исключительно из РНК. А далее посыпались одно за другим открытия, которые заставили совершенно по-другому взглянуть на РНК. Прежде считалось, что катализировать реакции умеют только белки, ферменты. Ученые, например, никак не могли выделить ферменты, осуществляющие разрезание и сшивание некоторых РНК.

После длительных исследований выяснилось, что РНК прекрасно справляются с этим сами. Структуры РНК, действующие подобно ферментам, назвали рибозимами по аналогии с энзимами, белками-катализаторами. Вскоре было обнаружено множество разнообразных рибозимов. Особенно широко их используют для манипулирования своими РНК вирусы и другие простые инфекционные агенты. Таким образом, РНК оказались мастерами на все руки: они могут выступать в роли носителей наследственной информации, могут служить катализаторами, транспортными средствами для аминокислот, образовывать высокоспецифичные комплексы с белками. Окончательная уверенность в том, что «мир РНК» действительно существовал, наступила после выявления деталей строения кристаллов рибосом методом рентгеноструктурного анализа. Ученые рассчитывали обнаружить там белок, катализирующий сшивание аминокислот в белковую последовательность.

Каково же было их удивление, когда выяснилось, что в каталитическом центре рибосом белковых структур нет совсем, что он полностью построен из РНК! Оказалось, что все ключевые стадии биосинтеза белка осуществляются молекулами РНК. Точка в дискуссии о возможности существования «мира РНК» как особой стадии биологической эволюции была поставлена. Конечно, полную картину еще предстоит реконструировать — осталось много нерешенных вопросов. Например, в современной клетке активацию аминокислот и их присоединение к соответствующим тРНК осуществляют специфичные белки-ферменты. Возникают вопросы: могла ли эта реакция осуществляться без участия белков, только с помощью РНК? В общем-то, после открытия рибозимов такие потенциальные способности РНК уже не вызывали особых сомнений.

Но наука требует, чтобы гипотезы экспериментально подтверждались. Дарвиновская Эволюция в Пробирке Хороший метод зачастую позволяет осуществить революцию в науке. Именно так можно сказать о методе полимеразной цепной реакции ПЦР , который позволяет размножать нуклеиновые кислоты в неограниченных количествах. Кратко опишем суть метода. Затем, при охлаждении, с ними связываются праймеры, образуя короткие фрагменты спиральных структур. В результате реакции из одной двуцепочечной ДНК получается две. Если повторить процесс, получится четыре цепочки, а после n повторений — 2nмолекул ДНК.

Все очень просто. Изобретение ПЦР и разработка методов химического синтеза ДНК позволили создать потрясающую технологию молекулярной селекции. Принцип молекулярной селекции тоже прост: сначала синтезируется множество молекул, обладающих разными свойствами так называемая молекулярная библиотека , а затем из этой смеси отбираются молекулы с желаемым свойством. Библиотеки нуклеиновых кислот — это смеси молекул, имеющих одинаковую длину, но отличающихся последовательностью нуклеотидов. Поскольку обычно используются участки длиной 30—60 мономеров, то в результате синтеза получается от 430 до 460 разных молекул!

Кого Считать «Живым»?

  • Исследования по гипотезе РНК-мира: возникновение саморепликации –
  • Telegram: Contact @anthropogenes
  • 22-M. «Мир РНК» . ПРОСТЫЕ ДОКАЗАТЕЛЬСТВА СУЩЕСТВОВАНИЯ ТВОРЦА
  • Найдено подтверждение гипотезы "РНК-мира"
  • Приобщаем к делу пептиды

Обнаружены новые доказательства РНК-мира

Но и тут оставалась проблема, как именно это свойство сохранилось во время биохимической эволюции. Чтобы в этом разобраться, ученые разработали модель, которая имитирует случайные разрывы в простых молекулах РНК без ферментативной активности. В ходе эксперимента появились короткие цепочки РНК, которые действовали как праймеры — затравки для синтеза более длинных цепей РНК. Из-за этого появлялось множество копий разрушенного полимера.

Удивительно, что из четырех молекулярных оснований два были в форме, обнаруженной в ДНК, а два другие — в виде, существующем в РНК. Эта работа подрывает так называемую «гипотезу мира РНК», которая утверждает, что РНК сформировала основу биосферы Земли задолго до того, как появились ДНК и другие молекулы, важные для жизни, хотя доказательств этого было недостаточно.

Стоит отметить, что ученые, не участвовавшие в исследовании, ставят под сомнение достоверность условий, созданных для исследования. Фрэнсис Уэстолл, директор группы экзобиологии в Центре молекулярной биофизики французского Национального центра научных исследований в Орлеане, отмечает, что формирование оснований требует очень специфических условий.

Первые результаты в этом направлении были получены в 1961 году, когда М. Ниренберг и Х. Матеи синтезировали упрощённую форму мРНК, состоящую из одинаковых нуклеотидов и обнаружили, что в её присутствии происходит образование длинной цепи белковоподобной молекулы, состоящей из аминокислот одного-единственного вида.

Искусственная мРНК представляла собой полинуклеотид поли-У, в котором все нуклеотиды содержали только одно основание - урацил. Когда поли-У добавляли к экстракту из клеток бактерии E. Так было обнаружено, что кодон УУУ соответствует фенилаланину. Этот первый успех указал путь, следуя которому в скором времени удалось установить кодоны и для ряда других аминокислот; требовалось только перепробовать различные формы синтетических мРНК. Тогда возник вопрос, каким образом некоторые синтетические мРНК, например поли-У, которые, конечно, не содержат таких кодонов, ухитряются как-то заставлять рибосомы синтезировать полипептиды?

Вероятно, это происходит по ошибке - из-за того, что рибосомы ведут себя «не по инструкции». Следовательно - ирония судьбы! Каковы же те обстоятельства, которые приводят к тому, что эти системы совершают «нужные» ошибки? Один из факторов был вскоре найден. Им оказалась высокая концентрация магния в бесклеточных системах.

Каким образом магний инициирует синтез? На этот вопрос нет однозначного ответа [25]. О различии молекулярных механизмов формирования морозоутойчивости озимой мягкой пшеницы и озимого ячменя Итак, концентрация магния. Установлено, чем больше содержится магния в рРНК, тем активнее синтезируют белок полифенилаланин рибосомы зародышей пшеницы в бесклеточной системе синтеза белка in vitro на искусственной матрице поли-У [42]. Вполне возможно, что концентрация катионов магния в клетке определяет интенсивность синтеза «ошибочных» полипептидов, предположительно расширяющих адаптационные свойства организмов [19, 20, 21, 25].

Вероятно, этим можно объяснить факт сортоспецифического усиления in vitro трансляционной активности полисом из проростков пшеницы и ячменя под влиянием закаливающей температуры [16, 25], тогда как в этих условиях длина поли-А-хвоста мРНК энхансера трансляции у пшеницы увеличивалась, а у ячменя сокращалась [2, 16]. Но ячмень содержит гораздо больше катионов магния по сравнению с пшеницей [12], что, возможно, и определяло увеличение трансляционной активности рибосом ячменя. Следовательно, увеличение трансляционной активности полирибосом может происходить как за счёт увеличения длины поли-А-хвоста мРНК как энхансера трансляции пшеница , так и за счёт увеличения содержания катионов магния в рРНК ячмень. Можно полагать, что озимый ячмень формирует морозоустойчивость на основе более древнего молекулярного механизма - адаптационного усиление трансляционной активности за счет вариации в содержании магния в рРНК [11, 13, 22]. Но озимая мягкая пшеница реагирует на закаливающие температуры сортоспецифическим усилением полиаденилирования мРНК [2, 16, 23].

Этот молекулярный механизм, вероятно, более поздний и является более прогрессивным по сравнению с вариациями содержания магния в рРНК. Отсюда, возможно, и более высокая морозоустойчивость озимой мягкой пшеницы по сравнению с озимым ячменём. Таким образом, есть основания полагать, что повышение морозостойкости сорта озимой мягкой пшеницы сопровождается стабилизацией мРНК и дестабилизацией рРНК. Предполагается, что стабилизация рРНК определяется укреплением молекулы за счёт катионов магния, в тоже время весьма вероятно, что катионы магния стимулируют укорочение терминальной поли-А-последовательности, определяющей стабильность и трансляционную активность мРНК, через усиление прочности определённых структур мРНК, определяющих скорость её деаденилирования. Эта принципиально важная гипотеза требует детальной экспериментальной проверки.

Об особенностях молекулярной биологии озимой мягкой пшеницы сорта Безостая 1 «Генотип должен превалировать над средой». Вавилов Одним из часто встречающихся, довольно досадным моментом при работе с РНК является их деградация в процессе хранения или манипулирования, даже в случае хорошо очищенных препаратов. Обычно это связывают с наличием РНКаз, занесенных с посудой и реактивами или попавших в препараты РНК в процессе выделения. Однако было показано, что применение мощного ингибитора РНКаз - диэтилпирокарбоната во время выделения РНК с последующей усиленной депротеинизацией полученных препаратов и использование растворов, реактивов и посуды, обработанной диэтилпирокарбонатом и протеиназой К, не приводит к полному предотвращению деградации РНК. Известно, что если все работы проводить с очищенным препаратом РНК при температуре 0-4оС, то указанной деградации не наблюдается.

В 90-е годы ХХ века было показано тождество закономерностей Mg-зависимого распада мРНК в живой клетке in vivo и в водных растворах in vitro [15, 16, 41]. На протяжении последних сорока лет многие исследователи отмечали способность выделенной из клетки РНК разрушаться в присутствии катионов металлов [15]. Но от внимания исследователей ускользал тот факт, что разрушение происходит по тем же законам, что и в живой клетке, отражая генетические особенности и физиологическое состояние организма. В фундаментальных науках всегда имел значение объект исследования. Удачность выбора объекта или случай определяет скорость и эффективность исследований, обширность и глубину полученной информации.

Как показали исследования, норма реакции на закаливающие температуры у сорта Безостая 1 на молекулярном уровне относительно узка по всем компонентам белоксинтезирующей системы - от амплитуды изменения трансляционной активности полирибосом, длины поли- А -хвоста мРНК, стабильности мРНК до амплитуды колебаний электрофоретического спектра рРНК [16, 23]. Это происходит на фоне относительно высокого содержания катионов магния в зерне Безостой 1 и соответствует реальному районированию сортов: высоко морозоустойчивый сорт Краснодарская 39 относительно низкое содержание магния в зерне способен давать урожай вплоть до Самарской области, в то время как средне морозоустойчивый сорт Безостая 1 давал и даёт великолепные урожаи, но в относительно узкой южной полосе. Особенности сорта Безостая 1 образно можно представить как глухонемого человека в группе пахарей. Товарищи отвлекаются на различные развлекательные и опасные аспекты жизни, а глухонемой пашет и пашет. Поэтому в конечном итоге выясняется, что он вспахал больше всех.

Но это только при условии относительно благоприятных обстоятельств. Этот вывод позволяет объективно понять природу феномена сорта Безостая 1 и, отталкиваясь от этих знаний, заложить основу понимания сакральных молекулярно-биологических процессов, лежащих в основе селекции и определяющих её будущие успехи. Таким образом, Безостая 1 фактом своего существования великолепно подтверждает вывод, сделанный Н. Вавиловым в 30-ых годах ХХ века: «Генотип должен превалировать над средой». Фундаментальные исследования молекулярной биологии РНК сорта Безостая 1 привели к прикладным исследованиям, способствовали формированию элементов молекулярных основ теории морозоустойчивости и возможности разработки простых методов оценки морозоустойчивости сортов озимой мягкой пшеницы по содержанию нуклеиновых кислот и катионов магния в зрелом зерне [9, 10, 20, 21].

Это событие в методологии способствовало созданию фундамента для развития новой главы в молекулярной физиологии сельскохозяйственных растений, так как новые шаги в методологии, как правило, ведут за собой длинную цепь новых фактов, которые дополняют и изменяют научное мировоззрение, предоставляют принципиально новые возможности для практики. Молекулярные маркеры ДНК-овые, белковые являются чрезвычайно эффективным инструментом генетических исследований растений. Однако их статичность не позволяет количественно оценить важнейшие свойства культурных злаков например, стрессоустойчивость и фотопериодизм. Как познание электричества и развитие электротехники стало возможным только с появлением электродинамики на основе электростатики, так и статичные молекулярные маркеры должны быть существенно дополнены молекулярно-кинетическими маркерами, способными количественно оценить экспрессию основных регуляторных генов или дать интегральную характеристику всех экспрессирующихся генов определенного генотипа в конкретных условиях роста. С практической точки зрения очень важным представляется использование этого показателя количество катионов магния для долгоживущей высокополимерной РНК зрелого зерна пшеницы в целях оценки степени морозостойкости сорта: чем выше содержание катионов магния, тем ниже морозостойкость сорта [11, 12, 21].

РНК-интерференция В настоящее время многие проблемы практики решаются путём активного вмешательства в метаболизм живых организмов при помощи методов генной инженерии на основе явления РНК-интерференции, регулирующего экспрессию генов через усиление распада мРНК определённых генов [8, 16, 17, 18, 25]. Сейчас очевидно, что перестало быть проблемой установление первичной структуры гена, но всё ещё остаётся проблема, как узнать его функцию и как ею управлять. Первое десятилетие ХХ1 века ознаменовано стремительным прорывом в важнейшую биологическую проблему -регуляцию экспрессии генов с помощью явления РНК-интерференции и основанных на этом явлении методов "нокаутов" - техники, позволяющей выводить из строя экспрессию заранее выбранного гена, а затем смотреть, как это скажется на организме. В 1998 году была обнаружена способность молекул двухцепочечных РНК дцРНК , инъецированных в организм нематоды Caenorhabditis elegans, эффективно подавлять экспрессию гомологичных по нуклеотидной последовательности генов явление РНК-интерференции. Впоследствии те же эффекты дцРНК были отмечены у других животных, а также у растений, грибов и простейших.

В 2006 году Нобелевская премия в области биологии по физиологии и медицине присуждена американским учёным Эндрю Файру и Крейгу Меллоу за открытие явления РНК - интерференции, представляющей собой молекулярный механизм, контролирующий в живой клетке поток генетической информации через закономерный распад специфических мРНК и предоставляющий принципиально новые возможности регуляции экспрессии генов в практических целях [39-40]. Суть явления, механизм которого пока изучен очень слабо, состоит в том, что короткие 20-30 нуклеотидов двуспиральные РНК определённой структуры вызывают распад мРНК мишени - гена, экспрессию которого необходимо подавить. Это широко распространённое в природе явление по-видимому, от бактерий до млекопитающих может эффективно использоваться для идентификации новых генов, выяснения их функциональной роли и управления их экспрессией in vitro и in vivo[8, 16, 25]. Исследования этого явления позволяют в настоящее время решать проблемы медицины новый класс лекарств и сельского хозяйства новые пути создания зерна злаков с высокими питательными свойствами. Работы по созданию высоколизиновых злаков на основе ряда мутаций, зерно которых отличалось повышенной питательной ценностью, потерпели неудачу.

Это объясняется плейотропным действием мутаций типа мутации регуляторного гена opaque-2 в зерне кукурузы, когда дифференциальный распад мРНК под действием повышенной активности РНКаз приводит с одной стороны к положительным эффектам повышенное содержание в зерне незаменимой аминокислоты - лизина , но с другой стороны к отрицательным эффектам - нарушение синтеза крахмала, определяющего физические свойства зерна прочность и урожай [16, 25]. РНК-интерференция позволяет целенаправленно уничтожать мРНК, белки которых снижают содержание лизина в зерне запасные белки, ферменты катаболизма аминокислот , не «задевая» при этом мРНК ферментов, ответственных за синтез крахмала. Такой первый трансгенный сорт кукурузы ЬУБ38 с повышенным содержанием лизина был выведен на рынок в 2005 году [33]. Однако негативное общественное мнение, озабоченность возможным вредным влиянием генно-модифицированных продуктов на здоровье человека сдерживает развитие этого направления выхода в практику. К тому же оказалось, что РНК-препараты слишком токсичны.

В конце концов, ему это удалось, но параллельно с открытием доменной структуры жизни Вёзе, всю жизнь изучавший РНК, пришел к неожиданному выводу. Вёзе писал: «Мои эволюционные интересы были сосредоточены в первую очередь на бактериях и археях, эволюция которых охватывает большую часть истории планеты. Используя последовательность рибосомной РНК в качестве единицы измерения эволюции, мы реконструировали филогенетическое древо обеих групп и, таким образом, предоставили обоснованную систему классификации безъядерных организмов.

Открытие архей фактически было продуктом этих исследований». Источник: On the evolution of cells И вот накопленные знания об РНК, ее свойствах и способности изменяться наталкивают Вёзе на мысль, что именно РНК была тем «посредником» между миром неорганических молекул и жизнью. В этом ему сильно помогает открытие у РНК способности к катализу — то, что раньше считалось только белковой привилегией, оказывается вовсе не редкостью для маленьких нуклеиновых кислот.

Вёзе приходит к идее РНК-мира — всё началось с РНК, которая самокопировалась в воде и в какой-то момент начала самостоятельно создавать пептиды небольшие белки. Но тогда это была всего лишь гипотеза. Обрастать плотью доказательств гипотеза стала позже, с приходом на мировую научную арену новых молекулярных биологов, в частности Уолтера Гилберта.

Он занимался разработкой методов секвенирования — расшифровки нуклеотидной последовательности и за это в 1980 году получил Нобелевскую премию вместе с Полом Бергом. Но, как любой крупный ученый, Гилберт интересовался многим и в 1986 году опубликовал статью, развивающую идеи Вёзе, — « Происхождение жизни. РНК-мир ».

Именно Гилберт придумал для гипотезы емкое название — РНК-мир. Все полученные данные об РНК неплохо укладывались в эту теорию. Нашлись и косвенные подтверждения гипотезы в самой молекулярной догме и процессах репликации то есть удвоения ДНК.

Дело в том, что если рассматривать всех участников молекулярной догмы, то можно заметить одну важную деталь: рибосомы для синтеза белка есть у всех и в целом очень похожи по строению — не важно, у кого мы будем брать рибосому, у архей, бактерий или эукариот. Та же ситуация с процессом снятия копии, то есть синтеза матричной РНК. А вот участники процесса репликации ДНК немного разнятся у разных царств, хотя процесс идейно похож.

Из этого наблюдения у ряда ученых родилось любопытное предположение: репликация ДНК появилась позже рибосом и системы синтеза РНК, хотя четких доказательств пока нет. Теоретически именно ДНК могла возникнуть как вспомогательный элемент догмы: нечто крупное и неповоротливое, что удобно хранить, поднимая время от времени нужные гены. Впрочем, оказалось, что РНК способна и к самокопированию, и даже к изменчивости, то есть накоплению мутаций и некоторого рода эволюции.

Эксперименты, показавшие эти ее свойства, были проведены еще в прошлом веке и тоже стали кирпичиком новой гипотезы. Одним из первых их провел британский молекулярный биолог Лесли Орджел, который, помимо своих научных исследований, известен забавным «правилом Орджела»: «Эволюция умнее, чем ты». К началу нового века гипотеза РНК-мира сформировалась окончательно.

Многократно самокопирующаяся РНК действительно могла породить всё живое на Земле, постепенно отграничив себя от пространства и сформировав протоклетку. Но, как это обычно случается в науке, возникли новые вопросы. В первую очередь ко второй части молекулярной догмы: как именно появилась крепкая связь между РНК и аминокислотами и как, наконец, появилась система синтеза белка?

Молекулы РНК появились на Земле раньше молекул ДНК и белков

Новости о недвижимости, экономики и финансах в России. Сторонники гипотезы «мира РНК» указывают на две проблемы в этой теории. Согласно гипотезе мира РНК, на заре жизни за Земле молекулы РНК были как носителями наследственной информации, так и ферментами (рибозимами). Проблемы гипотезы РНК-мира, по А.С. Спирину: КОГДА, ГДЕ И В КАКИХ УСЛОВИЯХ МОГ ВОЗНИКНУТЬ И ЭВОЛЮЦИОНИРОВАТЬ МИР РНК?

РНК у истоков жизни?

Суть гипотезы РНК-мира заключается в том, что первые формы жизни на Земле могли состоять из РНК-молекул, способных к самовоспроизведению без помощи белковых ферментов. Исследования в рамках гипотезы «мира РНК» показали, что эти макромолекулы способны и к полноценной химической эволюции. Полагаю, что и гипотезу «Мир-РНК», которая по принципу «на безрыбье и рак рыба» пока атеистам кажется убедительной, ждет такое же будущее. В новом прорыве, который может кардинально изменить наше понимание происхождения жизни на Земле, исследователи из Брукхейвенской национальной лаборатории обнаружили свидетельства гипотезы РНК-мира. Гипотеза РНК-мира заключается в том, что первые репликаторы на Земле представляли собой РНК-молекулы, которые могли инициировать собственное воспроизведение без помощи белковых ферментов. Гипотеза мира РНК утверждает, что первые жизненные формы могли появиться на основе РНК.

Американские ученые выявили новое объяснение возникновения жизни на Земле

Новости о недвижимости, экономики и финансах в России. Но окончательно гипотеза мира РНК смогла сформироваться лишь после открытия в 1981 году рибосомальной РНК из ресничного простейшего Tetrahymena, которая способна к автосплайсингу. Гипотеза мира РНК утверждает, что первые жизненные формы могли появиться на основе РНК.

Получено экспериментальное подтверждение гипотезы РНК-мира

Ученые из Брукхейвенской национальной лаборатории раскрывают новые доказательства гипотезы РНК-мира, согласно которой первые репликаторы на Земле были РНК-молекулами. Гипотеза РНК-мира — одна из самых популярных среди гипотез о происхождении жизни на Земле. Они предложили гипотезу "мира РНК", которая предполагает, что возникновение жизни на Земле произошло путем усложнения РНК-молекул и их преобразования в молекулы ДНК и белки.

Похожие новости:

Оцените статью
Добавить комментарий