это в два раза больше, чем в модели Зенина. До сих пор эксперименты с использованием реальных молекул воды для проверки второй критической точки «суперохлаждения» воды не могли дать однозначных доказательств его существования.
Обнаружено новое фазовое состояние нанолокализованной воды
В расчетах использовались две наиболее распространенные в настоящее время модели воды: трехцентровая SPC/E и четырехцентровая TIP4P. Используя данные Стратосферной обсерватории инфракрасной астрономии НАСА (SOFIA), ученые Юго-Западного научно-исследовательского института впервые обнаружили молекулы воды на поверхности астероида. В молекуле воды кроме направлений ОН (две наи^ более вытянутые орбиты) выделяют направления орбит двух неподеленных пар электронов атома кислорода (менее вытянутые орбиты), которые расположены в плоскости, перпендикулярной плоскости протонов и. Многие необычные характеристики воды объясняются тем, что ее молекулы связаны между собой особым типом нековалентных связей, получившем название водородной связи.
Фото и Изображения - Молекула воды
Строение молекулы воды [1] а - угол между связями O-H; б - расположение полюсов заряда; в - внешний вид электронного облака молекулы воды При испарении рвутся все оставшиеся связи. Для разрыва связей требуется большое количество энергии, отсюда высокая температура, удельная теплота плавления и кипения, высокая теплоёмкость. Вязкость воды обусловлена тем, что водородные связи мешают молекулам воды двигаться с разными скоростями. Строение электронного облака молекулы воды таково, что во льду каждая молекула связана четырьмя водородными связями с ближайшими к ней молекулами, координационное число молекул в структуре льда равно четырем. Тенденция каждой молекулы воды к окружению четырьмя ближайшими молекулами и к образованию с ними водородных связей сохраняется и в жидкости, исследования показали, что в воде сохраняется ближняя упорядоченность, свойственная структуре льда. Свойственное среднее расположение ближайших молекул ведет к очень рыхлой, ажурной структуре.
Именно с этим связаны аномалии воды.
В слоях с высокой концентрической ориентацией орбитальные тела движутся без сопротивления. Это разрешённые орбиты.
В слоях с преимущественно радиальной ориентацией силовых линий поля орбитальные тела испытывают сопротивление, что сопровождается излучением волновой энергии и переходом на низлежащую разрешённую орбиту с меньшим уровнем потенциальной энергии. Они удалены друг от друга на расстояние 154 пм. Это расстояние предопределено с одной стороны силами микротяготения между ядрами атомов водорода и с другой стороны наличием разрешённых орбит в атомах водорода, расположенных на удалении 76,8 пм от их ядер см.
При оценке размеров молекулы воды необходимо учитывать не только реальную поверхность атомов кислорода и водорода, но также радиус поверхности вращения 204 пм, определяемый выступами атомов водорода. На положение поверхности вращения влияет также расположение центра масс, относительно которого происходит вращение молекулы. Он несколько сдвинут в сторону атомов водорода.
Адекватность представленной модели молекулы воды также подтверждается данными по её динамике. Для воды характерны три частоты поглощения в инфракрасной области 1595, 3657 и 3756 см-1.
Ученые испарили воду светом без использования тепла Помощь в климатологии и промышленности Исследователи из Массачусетского технологического института сделали новое открытие: свет может испарять воду без тепла. Этот «фотомолекулярный эффект» может произвести революцию в нашем понимании изменения климата и промышленных процессов. Это новое открытие проливает свет на важнейший недостающий фрагмент головоломки. Команда провела эксперименты, показав, что свет, падающий на поверхность воды, может непосредственно высвобождать молекулы воды, вызывая испарение независимо от температуры.
Природа зарядовой асимметрии процесса конденсации изучалась Русановым [10] с феноменологической химической точки зрения. Здесь мы попытаемся описать конденсацию пара на каплях и их испарение, опираясь на микромоделирование взаимодействий с участием молекул воды. При этом будет уделяться внимание зарядовой асимметрии этих процессов. В основу положена феноменологическая модель "растворенного" пара. Далее предпринимается попытка воспроизвести указанную зависимость и ее подгоночные параметры как результат микромоделирования взаимодействий с участием молекул воды. Молекулы в кластерах мы будем считать плотно упакованными и находящимися на фиксированных расстояниях от ближайших соседей. Формально это соответствует потенциалу типа Ленарда—Джонса с очень большой константой связи. Успешный исход дает возможность применить модель молекулы для изучения взаимодействий с ионами. Результаты численного эксперимента с ионами описываются более простой моделью молекулы воды, представляющей собой электрический диполь, сдвинутый от центра молекулы. Настройка параметров этой модели по результатам численного эксперимента позволяет затем проводить описание в более грубых терминах сплошной среды. Таким способом решение поставленной задачи доводится до конца. Авторы выполнили моделирование кластера, состоящего из 55 молекул воды [11]. Избыточный отрицательный заряд в количестве двух электронов находится в центре треугольника. Дипольный момент такой молекулы 1. Молекулы плотно упакованы, и радиус Д соответствует плотной упаковке. Кластер состоит из центральной молекулы, ее окружения из 12 молекул и 42 молекул, соприкасающихся с окружением. В начальном состоянии молекулы были ориентированы случайным образом. Специальная программа градиентного спуска в 165-мерном пространстве приводила кластер к минимуму электростатической энергии. Работа программы заключалась в повороте каждой молекулы вокруг всех трех осей.
Вода необычной формы может быть самой распространенной во Вселенной
В качестве такого временного детектора использовался тот самый Оже-электрон, вылетевший через приблизительно 8 фемтосекунд после ионизации. Оказалось, что сверхбыстрый поворот молекулы приводит к зависящему от времени Допплеровскому сдвигу Оже-резонанса и характерной ассиметрии спектральной формы этого резонанса см. Рисунок 3. Варьируя энергию рентгеновского фотона, а, следовательно, и скорость индуцированного вращения, удалось визуализировать динамику этого вращения». Группу теоретиков возглавил профессор Фарис Гельмуханов. Следующий этап исследований был посвящен изучению локальной структуры жидкой воды. Pезультаты этой работы опубликованы в престижном журнале Proceedings of the National Academy of Sciences of the United States of America, vol. По словам Фариса Гельмуханова, «общепринято, что вода состоит из молекул Н2О, объединенных в группы так называемыми водородными связями ВС. Часто водородную связь рассматривают как электростатическое взаимодействие, усиленное небольшим размером водорода, которое разрешает близость взаимодействующих диполей. Особенностями водородной связи, по которым её выделяют в отдельный вид, является её не очень высокая прочность, её распространенность и важность, особенно в органических соединения.
Для возникновения водородных связей важно, чтобы в молекулах вещества были атомы водорода, связанные с небольшими, но электроотрицательными атомами, например: O, N, F». Суть исследований помог понять профессор Гельмуханов: «Существует две модели жидкой воды. Несмотря на это, многие ученые думают, что вода есть флуктуирующая смесь кластеров двух типов, в одном их которых молекулы связаны друг с другом водородной связью как во льду, а в другом связи нарушены. Благодаря чему эти кластеры более плотные. Наши недавние теоретические и экспериментальные исследования показали, что жидкая вода все-таки является однородной». Как сообщил Фарис Гельмуханов, «было проведено два типа экспериментов: во-первых, измерение рентгеновских спектров поглощения RSP газообразной воды, жидкой воды и льда в широком диапазоне энергии. Измерение RSP вдали от порога ионизации 1S электрона атома кислорода в воде было необходимо, чтобы откалибровать по интенсивности RSP паров воды, жидкой воды и льда в этой области RSP всех трёх фаз воды строго совпадают. Измерение RSP до порога ионизации позволило нам количественно сравнить вероятность перехода 1S электрона на первую незанятую молекулярную орбиталь. Сравнение вероятности этого перехода в газе, жидкой воде и во льду было ключевым моментом нашего эксперимента.
Из этого сравнения мы извлекли такой фундаментальный параметр жидкой воды, как среднее число водородных связей, приходящееся на одну молекулу. Это число оказалось равным 3. Тем самым мы показали, что локальная структура воды очень близка к структуре льда. Данный эксперимент был выполнен на пучке жестких рентгеновских фотонов «ID20» синхротрона European Synchrotron Radiation Facility, в Гренобле, Франция.
Сама молекула воды очень устойчива. А множество молекул друг относительно друга из-за сложной формы и наличия электрического заряда могут располагаться по-разному. Секрет крылся в структуре, в которую самоорганизуются молекулы жидкой воды. Он долгое время оставался неразгаданным. Только в последнее время ученым удалось объяснить аномальные свойства воды существованием в воде двух типов структур, в которые самоорганизуются молекулы жидкости. Ученые выяснили, что существовавшие до сих пор представления о молекулярной структуре воды были неверными - оказалось, что её молекулы формируют не одну структуру, а одновременно два типа структур,-сосуществующих в жидкости вне зависимости от температуры.
Один тип структуры формируется в виде сгустков - кластеров, из сотен молекул, структура которых напоминает структуру льда. Второй тип структуры, окружающей сгустки, гораздо менее упорядочен, рис. Оба типа структур непрерывно взаимодействуют друг с другом, обмениваясь отдельными молекулами воды. Структура воды Увеличение температуры вплоть до точки кипения воды приводит к некоторому искажению структуры сгустков и уменьшению их количества и доминированию разупорядоченной структуры. Это, в частности, объясняет нелинейную зависимость плотности воды от температуры - упорядоченные скопления молекул имеют меньшую плотность, чем неупорядоченные, и она мало меняется с изменением температуры. Модель структурированной воды определяет почти все её аномальные свойства, имеющие огромное практическое значение - вода самое аномальное из всех известных природе веществ. Исходя из этого, следует предположить, что внутри воды должны быть пустоты, где нет молекул Н20, то есть воде присуща особая структура. Несмотря на то, что разные модели предлагают отличающиеся по своей геометрии кластеры, все они постулируют, что молекулы воды способны объединяться с образованием полимеров. А если в воде есть полимеры воды, то даже слабые воздействия на абсолютно чистую воду, а тем более ее растворы, могут иметь важные последствия. До разработки моделей структурированной модели воды было совершенно непонятно, почему после определенных воздействий на воду её свойства могут меняться и сохраняться в измененном виде в течение длительного времени после прекращения воздействия, то есть вода «помнит», что с ней происходило До сих пор ещё никто не знает, что происходит с водой, протекающей сквозь сильное магнитное поле.
Физики-теоретики совершенно уверены, что ничего с ней при этом происходить не может и не происходит. Из их теоретических расчетов следует, что после прекращения действия магнитного поля вода должна мгновенно вернуться в прежнее состояние и остаться такой, какой была. А опыт показывает, что она изменяется и становится другой. И эту до сих пор необъясненную особенность воды «помнить» магнитную обработку широко используют в промышленности. Из обычной воды в паровом котле растворённые соли, выделяясь, отлагаются плотным и твёрдым, как камень, слоем на стенках котельных труб, а из омагниченной воды так её теперь стали называть в технике выпадают в виде рыхлого осадка, взвешенного в воде. Во многих промышленных процессах например, на тепло- и электростанциях используется магнитная подготовка воды, а как и почему этот способ «работает», не знают ни инженеры, ни учёные. Кроме того, на опыте подмечено, что после магнитной обработки воды в ней ускоряются процессы кристаллизации, растворения, адсорбции, изменяется смачивание. Эффекты невелики, но они есть. Действие магнитного поля на воду обязательно быстротекущую длится малые доли секунды, а «помнит» вода об этом десятки часов. Почему - неизвестно.
В этом вопросе практика далеко опередила науку. Ведь даже неизвестно, на что именно действует магнитная обработка - на воду или на содержащиеся в ней примеси. Чистой-то воды ведь не бывает. Память" воды не ограничивается только сохранением последствий магнитного воздействия. В науке существуют и постепенно накапливаются многие факты и наблюдения, показывающие, что вода «помнит» о том, что она раньше была заморожена. Талая вода, недавно получившаяся при таянии куска льда, отличается от той воды, из которой этот кусок льда образовался. В талой воде быстрее и лучше прорастают семена, быстрее развиваются ростки; даже, как утверждают очевидцы, быстрее растут и развиваются цыплята, которые получают талую воду. Кроме удивительных свойств талой воды, установленных биологами, известны и чисто физико-химические отличия. К примеру, талая вода отличается по вязкости, по значению диэлектрической проницаемости. Вязкость талой воды принимает своё обычное для воды значение только через 3-6 суток после плавления.
Почему это так, тоже никто не знает. Большинство исследователей называют эту область явлений «структурной памятью» воды, считая, что все эти странные проявления влияния предыдущей истории воды на её свойства объясняются изменением её структуры. Может быть это и так, но... По-прежнему в науке существует важная проблема: почему и как вода «помнит», что с нею было. Одним из объяснений «памяти» воды может быть следующее. Взаимное расположение молекул воды в кластерах хранит информацию о внешнем воздействии, приведшем к его образованию. Кластеры разной структуры, в зависимости от глубины локальной энергетической выгоды их образования, могут сохраняться надолго или быстро разрушиться. Если следующее воздействие окажется энергетически сильнее связей внутри кластера, то старый кластер разрушается и образуется новый. В различных взаимных зафиксированных расположениях групп молекул и заключается память воды. Размеры этих кластеров - примерно одна миллиардная доля метра.
И их структуры теперь можно изучать нанометодами. Активированная вода Что такое активированная вода? Это вода, подвергнутая какому-либо воздействию, не изменяющему её химического состава, но изменяющему, не до конца понятным образом, электрохимические и биологические свойства воды. На языке термодинамики активированная вода - это вода, находящаяся в метастабильном неравновесном состоянии. В течение определенного времени, зависящего от характера и интенсивности активирующего воздействия, свойства активированной воды изменяются и вода становится не активированной. Воздействия могут быть разные, например, как уже упоминалось - с помощью магнитного поля, так называемая магнитная активация. Активированную воду можно получить также облучением ультрафиолетовым светом, с помощью ультразвука, замораживанием и размораживанием воды и многими другими способами. В настоящее время, наиболее разработанным и воспроизводимым способом воду активируют с помощью электрохимической активации, в специальных электрохимических реакторах. Раствор в анодной камере в популярной русскоязычной литературе именуется «мертвой» водой, а в русскоязычной научной и медицинской литературе - анолитом или электроактивированным раствором анолита. Раствор в катодной камере в популярной русскоязычной литературе именуется «живой» водой, а в русскоязычной научной и медицинской литературе - католитом или электроактивированным раствором католита.
Mы детектировали это вращение, измеряя энергию испущенного Оже-электрона см. Вращение молекулы сдвигает энергию Оже-электрона в сторону увеличения или уменьшения. Это зависит от направления вращения. Taк как у нас половина молекулы крутится в одну сторону, а другая половина в противоположную сторону, то Оже-резонанс расщепляется на два пика см. Второй ключевой момент работы, по словам Фариса Гельмуханова, заключается «в детектировании этого угла поворота. В качестве такого временного детектора использовался тот самый Оже-электрон, вылетевший через приблизительно 8 фемтосекунд после ионизации.
Оказалось, что сверхбыстрый поворот молекулы приводит к зависящему от времени Допплеровскому сдвигу Оже-резонанса и характерной ассиметрии спектральной формы этого резонанса см. Рисунок 3. Варьируя энергию рентгеновского фотона, а, следовательно, и скорость индуцированного вращения, удалось визуализировать динамику этого вращения». Группу теоретиков возглавил профессор Фарис Гельмуханов. Следующий этап исследований был посвящен изучению локальной структуры жидкой воды. Pезультаты этой работы опубликованы в престижном журнале Proceedings of the National Academy of Sciences of the United States of America, vol.
По словам Фариса Гельмуханова, «общепринято, что вода состоит из молекул Н2О, объединенных в группы так называемыми водородными связями ВС. Часто водородную связь рассматривают как электростатическое взаимодействие, усиленное небольшим размером водорода, которое разрешает близость взаимодействующих диполей. Особенностями водородной связи, по которым её выделяют в отдельный вид, является её не очень высокая прочность, её распространенность и важность, особенно в органических соединения. Для возникновения водородных связей важно, чтобы в молекулах вещества были атомы водорода, связанные с небольшими, но электроотрицательными атомами, например: O, N, F». Суть исследований помог понять профессор Гельмуханов: «Существует две модели жидкой воды. Несмотря на это, многие ученые думают, что вода есть флуктуирующая смесь кластеров двух типов, в одном их которых молекулы связаны друг с другом водородной связью как во льду, а в другом связи нарушены.
Благодаря чему эти кластеры более плотные. Наши недавние теоретические и экспериментальные исследования показали, что жидкая вода все-таки является однородной». Как сообщил Фарис Гельмуханов, «было проведено два типа экспериментов: во-первых, измерение рентгеновских спектров поглощения RSP газообразной воды, жидкой воды и льда в широком диапазоне энергии. Измерение RSP вдали от порога ионизации 1S электрона атома кислорода в воде было необходимо, чтобы откалибровать по интенсивности RSP паров воды, жидкой воды и льда в этой области RSP всех трёх фаз воды строго совпадают. Измерение RSP до порога ионизации позволило нам количественно сравнить вероятность перехода 1S электрона на первую незанятую молекулярную орбиталь.
Оказалось, что энергия сильно зависит от температуры: ее среднее значение было на 50 процентов больше предсказанного электростатической моделью при низких температурах, и на 20 процентов - при комнатной температуре.
Внутри нанотрубок с диаметром 1,4 нанометра средняя энергия протонов оказалась на 30 процентов ниже, чем у воды, не помещенной в ограниченное пространство. Также исследователи проверили, как будут распределяться по энергиям протоны в воде, помещенной в особый мембранный материал Nafion, который используется для производства топливных элементов. Ученые показали, что средняя энергия была на 30 процентов выше, чем у воды в "обычном" состоянии. Авторы новой работы полагают, что, когда молекулы воды находятся на очень близком расстоянии друг от друга и "сдавлены" из-за маленького объема доступного пространства, протоны в них переходят в пока не описанное физиками квантовое состояние. Ученые отмечают, что квантово-механические свойства воды могут определять ее "поведение" в живых клетках, так как там расстояние между молекулами примерно соответствует тому расстоянию, на котором они находились в эксперименте.
3d-модель молекулы воды на черном фоне
Канницаро предложил точную химическую формулу воды как H2O. Бернала и Р. Мы знаем, что вода существует в жидком, газообразном и твердом виде. Но возможны и субструктуры, отличающиеся по свойствам в рамках одного и того же агрегатного состояния. Посмотрите на общую фазовую диаграмму воды: римскими цифрами показаны различные структурные модификации льда. Рисунок 1 - Фазовая диаграмма воды. В "тройной" точке на диаграмме может одновременно существовать вода во всех трех агрегатных состояниях. В "критической" точке все свойства жидкости и пара энергия, плотность, структура, характер движения частиц и т. В молекуле воды три атома: два водорода и один кислород.
Между собой они соединены ковалентной связью. Молекула является двойным симметричным донором и акцептором протонов. Атом кислорода имеет две неподеленные пары электронов. Это определяет структуру воды и ее строение в виде равнобедренного треугольника, в вершине которого расположен атом кислорода, а в основании - два водорода рисунок 2. Рисунок 2 - Электронная и геометрическая модель структуры молекулы воды. В стабильном энергетическом состоянии молекула воды имеет тетраэдрическую пространственную структуру. При изменении агрегатного состояния воды длина сторон и угол между ними меняются. Если бы мы увидели молекулу воды, то обнаружили, что она имеет сфероидальную форму с двумя выпуклостями рисунок 3.
Рисунок 3 - Локальное распределение некомпенсированных зарядов в молекуле воды. Молекула воды полярна, то есть один ее конец имеет частичный положительный заряд, а другой - отрицательный. Это объясняется тем, что две пары электронов в ней - общие у двух атомов водорода и атома кислорода, а две другие пары неподеленных электронов собраны с противоположной стороны кислорода. Поэтому на атомах водорода проявляются частично нескомпенсированные положительные заряды, а на кислороде - отрицательные. Наличие неподеленных пар электронов у кислорода и смещение обобществленных электронных пар обуславливает возникновение водородных связей, что способствует ассоциации молекул воды в группы. Обладая значительным дипольным моментом, молекулы воды также сильно взаимодействуют с полярными молекулами других веществ. Идеально чистую воду практически невозможно получить. По факту, мы всегда будем иметь дело хоть и с очень разбавленными, но растворами.
Если из глубинной океанической воды, отвечающей стандарту SMOW Standard Mean Ocean Water удалить все тяжелые изотопы и заменить их на 1H216O, то масса 1 л такой воды станет меньше на 250 мг, то есть на четверть. Структура воды. Водородные связи. Структура - есть конкретное пространственное расположение атомов, ионов или молекул в соответствии с особенностями их взаимодействия между собой. Существует несколько базовых гипотез строения воды. Основной строительной единицей здесь является дигидроль. Отметим, что по этой гипотезе пар состоит преимущественно из моногидроля, а лед - из тригидроля. Самойлова, Дж.
Попла, Г. Зацепиной XX век. Вода, пар или лед состоят из простых молекул H2O, объединенных в группы или агрегаты с помощью водородных связей Дж. Бернал, Р. Фаулер 1933. Последователей второй гипотезы значительно больше, поэтому остановимся на ней подробнее. Электронная конфигурация молекулы H2O позволяет ей быть одновременно и донором и акцептором электронов. Этот факт является важной предпосылкой к образованию разветвленной сети водородных связей рисунок 4 , как уже было упомянуто ранее.
Лед в этом отношении совершенен. Рисунок 4 - Образование водородных связей между молекулами воды. Сплошные линии - ковалентные связи, точечные - направленные водородные связи. Расчетами установлено, что в любом объеме воды всегда найдется, по крайней мере, одна сплошная цепочка из водородных связей, пронизывающая весь объем. Если представить в виде этого объема мировой океан, то, согласно этого постулата, в нем точно найдется одна гигантская ассоциация молекул воды, опоясывающая земной шар. Известен афоризм И. Ленгмюра: "Океан - одна большая молекула". Сегодня достоверно установлено, что из каждых 10 молекул воды 8 по прежнему окружены соседями.
В ходе современных физико-химических исследований были выявлены характерные структурные агрегаты воды, формирующиеся с помощью водородных связей. Для формирования трехмерных структур необходимо, кроме способности молекул создавать водородные связи, выполнение еще двух условий. Этих связей должно быть не менее четырех на одну молекулу и геометрические размеры молекулы не должны противоречить оптимальным направлениям водородных связей. Вода удовлетворяет этим требованиям. Так, нагревая лед мы получаем смесь жидкой воды и кристаллов льда, температура которой останется неизменной до тех пор, пока все кристаллики не расплавятся.
При этом протону удается присоединиться к другой молекуле, а электрон выбивается. Воспроизведение этого нестабильного комплекса осуществляется лазерными операциями и лучевой терапией, что приводит к активизации многих химических реакций в организме человека. Благодаря данному комплексу возможно очищение питьевой воды от микробов.
Эти поверхности потенциальной энергии вводятся в модели МД для беспрецедентной степени точности при вычислении физических свойств систем конденсированной фазы. Другая классификация многих моделей тел основана на расширении лежащих в основе электростатических свойств, например, модель SCME одноцентровое многополюсное расширение Вычислительные затраты Вычислительные затраты на моделирование воды возрастают с увеличением количества точек взаимодействия в модели воды. Время ЦП примерно пропорционально количеству межатомных расстояний, которые необходимо вычислить. При использовании моделей жесткой воды в молекулярной динамике существуют дополнительные затраты, связанные с удержанием структуры в ограниченном состоянии с использованием алгоритмов ограничения хотя при ограниченной длине связей часто можно увеличить время шаг.
Ученые США и Швеции наблюдали взаимодействие между молекулами воды на атомном уровне Американские и шведские исследователи при помощи сверхбыстрой электронно-дифракционной камеры получили снимки движения водородных связей в молекулах воды. По их словам, эти связи обеспечивают жидкости ее необычные квантовые характеристики. Соавтор исследования Андерс Нильссон отметил, что хотя считалось, что в базе многих уникальных показателей воды находится ядерный квантовый эффект, их проект стал первым случаем его прямого наблюдения.
Другие новости
Ученые США и Швеции наблюдали взаимодействие между молекулами воды на атомном уровне | Первые модели использовали упрощенную физику, продираясь сквозь квантовую природу реальных молекул. |
Квантово-механические свойства воды - Вода Квантовая механика Молекула » 2024 | Ниже представлена подборка изображений, изображающих молекулу воды. |
Структура молекул воды и их ассоциатов :: Живая вода | «Важно отметить, что, в отличие от изолированной молекулы воды с одной энергией взаимодействия О и Н, в жидкости имеется набор (распределение) таких энергий в силу многообразия ближайшего окружения молекулы воды. |
Модели молекул исследуемых жидкостей | Многие необычные характеристики воды объясняются тем, что ее молекулы связаны между собой особым типом нековалентных связей, получившем название водородной связи. |
Физики показали, что вода превращается в две жидкости при низких температурах
В рамках изучения специалисты создали слои воды толщиной 100 нм и заставили молекулы вибрировать благодаря инфракрасному лазеру, а потом разрушали их короткими импульсами высокоэнергетических электронов от SLAC MeV-UED. Как заявили авторы новой научной работы, их результаты приближают понимание свойств воды, которые играют главную функцию в ключевых химических и биологических процессах. Статья опубликована на страницах издания Nature.
Метастабильное состояние - состояние воды с аномальными физико-химическими свойствами. Исследования показали, что различия в свойствах только что полученных католита и анолита разбавленных водно-солевых растворов от их химических моделей-аналогов растворов стабильных щелочей или кислот не являются постоянными, стабильными во времени. С течением определенного времени — времени релаксации от минут до десятков и сотен часов свойства и реакционная способность анолита и католита, самопроизвольно изменяясь, становятся равными соответствующим параметрам их химических моделей, то есть в конечном итоге законы электролиза строго выполняются, но не сразу, а лишь по прошествии достаточно длительного времени - в общем случае от десятков минут до десятков и даже сотен часов. Различия между свойствами подвергнутого электрохимической обработке раствора в метастабильном и стабильном после окончания релаксации зависят от условий проведения обработки раствора.
Таким образом, метод ЭХА позволяет без применения химических реагентов направленно изменять в очень широких пределах физико-химические свойства разбавленных водных растворов и использовать такие метастабильные жидкости во многих случаях вместо традиционных лекарств и медицинских растворов. Открытию предшествовала трехлетняя работа по исследованию возможности электрохимического регулирования свойств буровых растворов, которую В. Ташкент вместе с У. Мамаджановым, а затем продолжил совместно с Ю. За период с 1972 по 1978 годы ими были созданы и защищены авторскими свидетельствами СССР на изобретения различные лабораторные и первые промышленные установки для электрохимической активации воды и буровых растворов. Началось широкое применение ЭХА воды энтузиастами, которые конструировали собственные электрохимические реакторы.
Раствор в анодной камере получил название - «мертвая» вода, а в раствор в катодной камере - «живая» вода. Применение ЭХА-воды в медицине Почему активированная вода так эффективна и применение её становится все более популярным? Потому что вода составляет основу жизни человека, а метод ЭХА позволяет без применения химических реагентов направленно изменять в очень широких пределах физико-химические свойства воды и использовать её вместо традиционных лекарств и медицинских растворов. Механизм действия активированной воды - электрохимический в отличие от действия, привычных лекарственных средств , более соответствующий окислительно-восстановительным реакциям, протекающим в живом организме. Электрохимическая активация воды не меняет её химического состава, но изменяет её физико-химические свойства и возможно структуру воды на какое-то время - время нахождения в метастабильном состоянии. Достижение необходимого эффекта без применения химических добавок, которые могли бы вызывать побочные явления, обеспечивает активированной воде несомненное преимущество перед обычными химическими лекарственными средствами там?
Другим важнейшим преимуществом активированной воды во многих случаях является способность к релаксации со временем к стабильному состоянию. Например, в отличие от обычных химических дезинфицирующих препаратов «мертвую» воду нет необходимости нейтрализовать или удалять после обработки. Она естественным способом в течение достаточно короткого времени теряет свои аномальные свойства и становится обычной водой. При смешивании «живой» и «мертвой» воды происходит взаимная нейтрализация и полученная вода теряет свою активность. Еще раз следует подчеркнуть, что активированная вода - это не искусственный, а натуральный продукт. В настоящее время электрохимически активированную воду рекомендуют применять при лечении более 35 недугов: хронический I епатит, диабет, аденома простаты, пиелонефрит, цистит, артриты и артрозы, аллергодерматит, язва желудка, гастриты и колиты, трофические язвы, гнойные раны, старческие переломы, пролежни, ожоги, пародонтиты и другие.
Активированные растворы обладают целым рядом свойств, которые делают эффективным использование анолитов и католитов при лечении многих заболеваний: анолит уничтожает бактерии и многие вирусы, грибковую флору, обладает противовоспалительным, антиаллергическим и противоотечным действиями. Католит обладает иммуностимулирующими и антиоксидантными свойствами, ускоряет заживление тканей репаративные свойства , при введении определенных минералов - помогает при диабете, гипертонии, остеопорозе и других заболеваниях. И главное: механизм действия активированных растворов имеет принципиально новый уровень - не химический, как привычные лекарственные средства, а электрохимический, более соответствующий окислительно-восстановительным реакциям, постоянно протекающим в живом организме. Эта вода совершенно не опасна как для внешнего, так и для внутреннего применения. Это еще в 1988 г. Такая вода сохраняет свои свойства 1 -2 недели при условии хранения в закрытых сосудах.
Анолит обладает антисептическими, антиал-лергическими, противовоспалительными, противозудными, противоотечными свойствами. Его используют для дезинфекции в лечебных учреждениях, им можно дезинфицировать воду, лечить тонзиллит, он обладает антиаллергическими свойствами и эффективен при лечении экземы, нейродермитов, аллерго-дерматитов имеются экспериментальные и клинические исследования, подтверждающие эффективность анолита в каждом из перечисленных случаев. Анолит, или мертвая вода: антисептик, дезинфектант, оказывает местное лечебное воздействие. Это значит, что он действует на бактерию или очаг воспаления только при непосредственном контакте. Поэтому при тонзиллите им полощут горло, при кожных заболеваниях делают примочки, а при сальмонеллезе пьют. При воспалении легких или других заболеваниях, где невозможен непосредственный контакт, анолит не помогает.
Согласно данным С. Ашбах в результате специальных исследовании было установлено, что 1 мл анолита в течение 1 минуты уничтожает 1 миллион бактерий любого из ниже перечисленных видов Группа стафилококков. У большинства людей стафилококки могут обитать на коже и слизистых оболочках носа или глотки, не вызывая заболеваний. При ослабленной иммунной системе стафилококки становятся возбудителями пневмоний, инфекций кожи и мягких тканей, костей и суставов. Стафилококки легко приобретают устойчивость ко многим препаратам, что создает большие трудности при лечении больных. Стафилококк золотистый S.
Способен поражать практически люоые ткани человека. Наиболее часто инфицирует кожу и тем самым вызывает тяжелые, хронические заболевания - от стафилококкового импетиго импетиго Бокхарта до тяжелых фолликулитов. Стафилококк эпидермальный S. Наиболее часто поражает гладкую кожу и поверхность слизистых оболочек. Очень часто является возбудителем инфекций при наличии протезов, катетеров, дренажей. Достаточно часто поражает мочевыводящую систему.
Стафилококк сапрофитный S. Поражает кожные покровы гениталий и слизистую оболочку уретры. Кишечная палочка. Обитает в кишечнике животных и человека. При этом одни из видов кишечной палочки совершенно безобидны и даже полезны для организма, а другие вызывают тяжелые кишечные заболевания, протекающие по типу холеры, дизентерии или геморрагического колита. Шигелла Флехнера.
Вызывает заболевание, известное под названием бактериальная дизентерия или просто дизентерия. Болезнь может протекать в острой и хронической форме. При тяжелых формах дизентерии больные могут даже умереть от инфекционно- токсического шока. Сальмонелла paratyphi А и В.
Для взаимодействия вода - алмаз учитывались взаимодействия атомов поверхностей только с сайтом О молекулы воды. Потенциал имеет ЛД вид 2. Экспериментально установлено, что алмаз имеет высокую гидрофильность [33]. Также отмечалось, что используемая в экспериментах слюда также гидрофильна. Для имитации этих условий в модели использовались следующие значения величин: , , отвечающих вдвое большему притяжению молекул воды к атомам углерода, чем друг к другу. Для гладких поверхностей в модели не включалось их непосредственное взаимодействие друг с другом. Молекула аргона Молекулы аргона моделировались упругими шарами, взаимодействие для которых имеет ЛД вид 2. Параметры в 2. Взаимодействие молекул аргона с атомами поверхностей считалось таким же, как и для воды. Значения силы сдвига изменялись в тех же пределах, что и для воды.
Чтобы пролить свет на эту фундаментальную проблему, авторы работы провели эксперимент с парами воды, где нет водородных связей. В ходе исследования они измерили спектр резонансного неупругого рассеяния изолированной молекулы. Эксперименты привели к неожиданному результату и показали, что точно такое же расщепление резонанса на два пика присутствует в рентгеновских спектрах рассеяний молекул воды в газовой фазе. Таким образом, исследование свидетельствует о динамической природе расщепления резонанса и опровергает структурный механизм, тем самым демонстрируя, что структура воды однородна. Второй не менее важный результат этой работы — получение детальной структурной информации о том, как влияют водородные связи на силу OH-связи. Колебательная инфракрасная ИК спектроскопия — общепринятый инструмент для исследования водородных связей в жидкостях. Но в них ИК-спектроскопия показывает лишь наиболее интенсивный переход в состояние с минимальной энергией колебаний, которое «слабо чувствует» межмолекулярное взаимодействие. Спектроскопия резонансного неупругого рассеяния воды качественно отличается от ИК-спектроскопии тем, что, получив энергию от рентгеновского фотона, электрон кислорода переходит с самой глубокой орбитали на первую незанятую. В результате молекула воды быстро диссоциирует. В процессе возбуждённый электрон переходит обратно на самый глубокий уровень, испуская рентгеновский фотон.
ABC: Появились доказательства того, что вода состоит из двух жидкостей
С учетом этого структура молекулы воды может отличаться количеством электронов в ней, и возникает необходимость дать названия этим структурам. РИА Новости, 26.08.2021. О сервисе Прессе Авторские права Связаться с нами Авторам Рекламодателям Разработчикам. "Используя наблюдения ALMA с высоким разрешением, мы изучили молекулярный газ в этой паре галактик и обнаружили молекулы воды и монооксида углерода в большей из них", – рассказал ведущий автор исследования Шривани Яругула (Sreevani Jarugula).
Объемная модель молекулы воды
H2o или молекула воды внутри клетки фуллерен c60. Ученые Юго-Западного исследовательского института заявили об интригующей находке — они обнаружили молекулы воды на поверхности космических камней. Модель молекулы воды имеет форму треугольника. Water molecule (молекула воды) - Download Free 3D.
Активированная вода
- Исследование подтверждает, что вода может принимать две различные жидкие формы
- Орбитальная модель молекулы воды
- Похожие товары
- Физики показали, что вода превращается в две жидкости при низких температурах
- Ученые обнаружили, что молекулы воды определяют материалы вокруг нас | DonbassWeb NEWS
- Water Molecule Model - Сток картинки
Учеными лаборатории SLAC впервые зафиксирована ионизация молекул H2O
Строение электронного облака молекулы воды таково, что во льду каждая молекула связана четырьмя водородными связями с ближайшими к ней молекулами, координационное число молекул в структуре льда равно четырем. Тенденция каждой молекулы воды к окружению четырьмя ближайшими молекулами и к образованию с ними водородных связей сохраняется и в жидкости, исследования показали, что в воде сохраняется ближняя упорядоченность, свойственная структуре льда. Свойственное среднее расположение ближайших молекул ведет к очень рыхлой, ажурной структуре. Именно с этим связаны аномалии воды. Почти шарообразная молекула воды имеет заметно выраженную полярность, так как электрические заряды в ней расположены асимметрично. Каждая молекула является миниатюрным диполем с высоким дипольным моментом. Полярность молекул, наличие в них частично нескомпенсированных электрических зарядов создает группировки молекул - ассоциаты.
Пути решения проблемы нехватки пресной воды Несмотря на предпринимаемые меры по рациональному использованию водных ресурсов и охране окружающей среды, в ряде регионов планеты остро стоит проблема нехватки пресной воды: Опреснение морской воды. Одним из перспективных направлений является опреснение соленых и морских вод с помощью специальных установок на основе обратного осмоса или дистилляции. Этот метод активно применяется в засушливых прибрежных районах например, на Ближнем Востоке , однако требует значительных затрат энергии.
Повторное использование сточных вод. Другое возможное решение - повторное применение очищенных сточных вод для технических нужд. Это позволит сократить забор воды из природных источников. Однако необходимо совершенствование методов очистки для получения качественной воды, пригодной для повторного использования. Искусственное пополнение запасов подземных вод. В ряде стран применяется закачка поверхностных вод в подземные пласты для пополнения запасов пресных подземных вод.
Так что же сокрыто в воде? Шаг за шагом мы узнаем все больше, пытаясь заглянуть в самую суть вещей. Поэтому пятиклассники обратились к основам и попробовали нарисовать модель молекулы воды в масштабе. На этом ребята не остановились и даже использовали 3D-печать! Моделирование оказалось совсем не простым; от пятого центра требовалось все их внимание и сосредоточенность.
Изображение помещёно в вашу корзину покупателя. Вы можете перейти в корзину для оплаты или продолжить выбор покупок. Перейти в корзину… удалить из корзины Размеры в сантиметрах указаны для справки, и соответствуют печати с разрешением 300 dpi.
Квантово-механические свойства воды - Вода Квантовая механика Молекула » 2024
water molecule model stock illustrations. Ниже представлена подборка изображений, изображающих молекулу воды. Так вот, загрузив все необходимые вводные данные в модель, ученые установили, что молекулы воды с повышенной плотностью формируют «топологически сложные структуры». молекула воды Строение молекулы воды (рисунок справа). Полученные с обсерватории SOFIA данные сигнализируют о наличии молекул воды, замеченных на астероидах Ирида и Массалия.