Искусственный интеллект доработал знаменитое фото сверхмассивной черной дыры в центре галактики Messier 87 (M 87). На изображении, опубликованном четыре года. Новые наблюдения галактики M87 показывают, как вокруг чудовищной черной дыры формируется мощный джет. Наблюдаемый от черной дыры M87* свет был поляризован местами на 30%, что означает достаточно сильное и структурированное магнитное поле (рис. 6). Сравнение двух снимков сверхмассивной чёрной дыры в центре М 87, сделанных в 2017 и 2018 годах. черная дыра в центре галактики М87.
Первый снимок черной дыры
Средство массовой информации, Сетевое издание - Интернет-портал "Общественное телевидение России". Главный редактор: Игнатенко В. Адрес электронной почты Редакции: internet otr-online.
Технология PRIMO основана на методе, который позволяет компьютерам генерировать правила при помощи обучающего материала. Например, если компьютеру показывают несколько разных фотографий бананов, после обучения он сможет определить, изображены ли на картинке фрукты.
В целом PRIMO позволяет компенсировать недостающую информацию о наблюдаемом объекте, что машина и сделала, проанализировав 30 000 изображений чёрных дыр. Эти данные позволят учёным серьёзно переработать свои теоретические модели и тесты гравитации, а также лучше понять не только М87, но и нашу собственную чёрную дыру в центре галактики Млечный Путь. Самым загадочным явлением сейчас выступают интенсивные струи энергии, которые извергает М87.
Оно представляет собой кольцеобразную структуру с темной центральной областью. Революционные результаты наблюдений представлены в серии из шести статей, опубликованных в специальном выпуске журнала The Astrophysical Journal Letters.
Исследователи сравнили полученные результаты с обширной коллекцией компьютерных моделей, отражающих физические особенности искривленного пространства, нагретого до сверхвысоких температур вещества и сильных магнитных полей. Многие свойства полученного изображения неожиданно хорошо соответствуют теоретическим представлениям. Это дает уверенность в правильности интерпретации наблюдений, в том числе и оценок массы черной дыры. Галактика M 87 из скопления галактик в созвездии Девы была выбрана для наблюдений не случайно. Размеры горизонта событий черной дыры пропорциональны ее массе, поэтому, чем массивнее черная дыра, тем больше ее тень.
Благодаря своей огромной массе 6,5 миллиардов солнечных масс и относительной близости к Земле она находится от нас на расстоянии 55 миллионов световых лет черная дыра в центре галактики M 87 для земного наблюдателя является одной из крупнейших по своим угловым размерам, что и сделало ее идеальной мишенью для исследования. Поперечник её тени немного меньше 40 миллиардов километров.
Но что могло — то поменялось. В частности, самая яркая часть кольца за год переместилась на 30 градусов против часовой стрелки.
Излучение вокруг черной дыры, которое и видно на картинке, складывается из тонкого фотонного кольца и более размытого гравитационно-линзированного излучения. Первое более-менее однородное по яркости, а вот второе отражает реальное движение вещества вокруг черной дыры, поэтому распределение яркости в кольце может меняться со временем. Теперь мы смогли увидеть это напрямую, хотя указания на такие перемещения были и в более ранних данных, до EHT. Что еще можно увидеть в интерферометр?
А значит, мы можем рассмотреть линейную и круговую поляризацию излучения. Линейная поляризация скажет, какова конфигурация и напряженность магнитного поля в аккреционном диске, а круговая поможет различить фотонное кольцо на фоне остального излучения. Пока данные 2018 года проходили первичную обработку, мы выжали все из показаний 2017-го. В частности, узнали, что магнитное поле должно пронизывать аккреционный диск насквозь, а увлечение системы отсчета вращающейся черной дырой в М87 — его закручивать.
Именно такие условия нужны для запуска черной дырой релятивистского джета. Хотя поле там оказалось на удивление маленьким: от 1 до 30 Гаусс, — меньше, чем у магнита на холодильнике. В некоторых квазарах магнитные поля в тысячу раз сильнее. Еще мы поняли, что с круговой поляризацией работать и работать.
Синхротронное излучение в ней выглядит в 100—1000 раз слабее, чем в неполяризованном свете. А реальный сигнал сложно выделить на фоне инструментальных помех. Поэтому нам нужно больше чувствительных телескопов. Ученые просто подтвердили результат?
Непросто, но да. Неужели осталось еще что-то не открытое? О, да! По теням черных дыр у EHT три большие задачи: 1.
Получить видео тени черной дыры. Понаблюдать больше черных дыр: все они меньше и дальше, поэтому сложно их разглядеть. Зарегистрировать, наконец, джет в М87. Мне особенно интересно последнее.
На самом деле, уже есть изображение тени черной дыры вместе с джетом в М87. Здесь кольцо больше по диаметру, и пока непонятно, почему, ведь фотонные кольца ахроматические: их размер не зависит от частоты излучения и определяется только массой черной дыры.
Астрономы получили новый взгляд на черную дыру M87
Сверхмассивная черная дыра в самой удаленной галактике удивила ученых | Видео «полёта» к чёрной дыре. Сравнение чёрных дыр Стрелец A* и M87*. |
Там что-то движется: Учёные сравнили два снимка чёрной дыры и заметили странный объект | Однако наиболее интригующей целью проекта «Event Horizon Telescope», старт которому был дан в 2012 году, являлось получение снимка центральной сверхмассивной черной дыры Млечного Пути. |
3. Представлено первое фото черной дыры в центре нашей Галактики | Сверхмассивную черную дыру в центре галактики M87 сфотографировали в поляризованном свете, что позволило ученым впервые измерить поляризацию на самом краю – Самые лучшие и интересные новости по теме: Космос, лонгрид, м87 на развлекательном портале |
Первый снимок чёрной дыры в центре нашей Галактики | Наиболее масштабные черные дыры массой 2,5 млрд, 5,7 млрд и 66 млрд солнечных масс находятся соответственно в галактиках Лебедь А, M87 и TON-618. |
Опубликован первый снимок гигантской черной дыры в Млечном Пути | Как выглядит наша черная дыра и чем отличается от М87? Лишь недавно ученые обнаружили в рамках обзора неба AllBRICQS, что J0529 4351 представляет собой сверхмассивную черную дыру в далекой древней галактике. |
Опубликован первый в истории снимок черной дыры
Фото: freepik Астрономы утверждают, что сверхмассивная черная дыра, обнаруженная в сердце древней галактики, оказалась в пять раз больше, чем ожидалось, по количеству содержащихся в ней звезд. Как пишет The Guardian, исследователи обнаружили огромную черную дыру в галактике, известной как GS-9209, которая находится на расстоянии 25 миллиардов световых лет от Земли, что делает ее одной из самых удаленных из когда-либо наблюдавшихся и зарегистрированных. Команда из Эдинбургского университета использовала космический телескоп Джеймса Уэбба JWST для наблюдения за галактикой и выявления новых подробностей о ее составе и истории. Галактика GS-9209, напоминает The Guardian, была открыта в 2004 году Кариной Капути, бывшей аспиранткой Эдинбургского университета, которая в настоящее время является профессором наблюдательной космологии в Университете Гронингена в Нидерландах.
Пока данные 2018 года проходили первичную обработку, мы выжали все из показаний 2017-го. В частности, узнали, что магнитное поле должно пронизывать аккреционный диск насквозь, а увлечение системы отсчета вращающейся черной дырой в М87 — его закручивать.
Именно такие условия нужны для запуска черной дырой релятивистского джета. Хотя поле там оказалось на удивление маленьким: от 1 до 30 Гаусс, — меньше, чем у магнита на холодильнике. В некоторых квазарах магнитные поля в тысячу раз сильнее. Еще мы поняли, что с круговой поляризацией работать и работать. Синхротронное излучение в ней выглядит в 100—1000 раз слабее, чем в неполяризованном свете.
А реальный сигнал сложно выделить на фоне инструментальных помех. Поэтому нам нужно больше чувствительных телескопов. Ученые просто подтвердили результат? Непросто, но да. Неужели осталось еще что-то не открытое?
О, да! По теням черных дыр у EHT три большие задачи: 1. Получить видео тени черной дыры. Понаблюдать больше черных дыр: все они меньше и дальше, поэтому сложно их разглядеть. Зарегистрировать, наконец, джет в М87.
Мне особенно интересно последнее. На самом деле, уже есть изображение тени черной дыры вместе с джетом в М87. Здесь кольцо больше по диаметру, и пока непонятно, почему, ведь фотонные кольца ахроматические: их размер не зависит от частоты излучения и определяется только массой черной дыры. Скорее всего при 86 гигагерцах детектируется внешнее вещество аккреционного диска и не определяется внутреннее, ближайшее к черной дыре. Поэтому диаметр кольца получается больше.
А на высоких частотах диск видно вплоть до границы тени черной дыры, но не видно на больших удалениях, где для высоких частот излучение уже слишком слабое. Большее кольцо также может быть оболочкой джета в самом его начале. Тогда на более низких частотах излучение приходит из внешней его части, а на высоких — из внутренней. Посмотрите на этот красавец-джет. Мы хотим визуализировать его с помощью EHT, потому что все-таки угловое разрешение нашего телескопа в три раза выше и позволит понять, правда ли джет запускается самой черной дырой или же аккреционный диск тоже в деле.
В данных 2018 года джет не виден, но в 2021 и 2022 годах мы его наблюдали уже с одиннадцатью телескопами, и на этот раз должны заметить.
Она была первой черной дырой, которую удалось сфотографировать. Изображение получил телескоп Event Horizon Telescope EHT , состоящий из сети обсерваторий, разбросанных по четырем континентам, которые исследовали эту черную дыру в 2017 году на длине волны 1,3 миллиметра. Результаты обработки данных были обнародованы в 2019 году. Гравитация черной дыры искривляла лучи света, создавая форму кольца, как и ожидалось из общей теории относительности Альберта Эйнштейна. Но, хотя у астрофизиков были теории, не было четкого понимания — на основании только этого изображения — относительно происхождения излучения.
Другими словами, если в земле выкопать яму и что-то туда бросить, то чем глубже будет отверстие, тем больше скорость падающего объекта, то есть он будет выделять больше энергии. Результат на Нобелевскую премию Ведущий научный сотрудник Института ядерных исследований РАН Вячеслав Докучаев в беседе с «360» объяснил, что современная астрофизика считает черные дыры самыми важными объектами во вселенной. До сих пор ученые имели только косвенные доказательства, что эти черные дыры существуют. Сегодня произошло выдающееся событие. Впервые человечеству была предъявлена фотография реального изображения черной дыры. Физики ждали этого 100 лет. Эти объекты были предсказаны в теории Эйнштейна более 100 лет назад Вячеслав Докучаев. Докучаев уверен, что результат, полученный учеными, тянет на Нобелевскую премию, но ему обидно, что в таком значимом мероприятии не участвовала Россия. В том числе потому, что в стране нет ни одного мощного радиотелескопа. А это важно для осмысления нашего места во вселенной и смысла жизни не только отдельного человека, а всей цивилизации», — добавил Докучаев. Важны не фото, а свойства Вице-президент РАН Юрий Балега в разговоре с «360» не был так обрадован новостью о полученной фотографии. По его мнению, мы увидели то, что интересно широкому обывателю, но для физики важны физические свойства объектов, чтобы «мы могли написать картину мира». Информация сегодня в астрофизике получается не по фотографиям, а на основе спектров, которые позволяют получить физические характеристики объектов в космосе: температуру, размеры, скорость, химический состав. Фотография — это тень черной дыры. Сама черная дыра не видна, она очень мала, мы видим только окрестности Юрий Балега. Балега отметил, что важно изучить способ образования черных дыр, чтобы на основе этих данных узнать, когда они появились. На вопрос, зачем человечеству, которое вряд ли когда-нибудь встретится с черной дырой, знать об их происхождении и свойствах, вице-президент РАН ответил, что «смысл жизни человека является в познании мира, в котором мы живем».
Первое в истории изображение черной дыры уже стало мемом
Эта чудовищная черная дыра действительно вращается». Черные дыры обладают настолько мощным гравитационным притяжением, что ничто даже свет не может покинуть их пасть, но это не значит, что их нельзя увидеть. Это связано с тем, что активные черные дыры окружены аккреционными дисками — огромными шлейфами материала, извлеченного из газовых облаков и звезд, нагретыми до раскаленных температур в результате трения по спирали в устьях черных дыр. Как струи черных дыр приобретают огромную энергию, необходимую для этого, остается загадкой, но физики использовали общую теорию относительности Эйнштейна, чтобы предположить, что материал мог бы получить ее из магнитных полей космических монстров, если бы они быстро вращались вокруг своих осей. Черные дыры, вероятно, приобрели часть своего вращения с первых дней своего существования в качестве звезд, которые, когда они внезапно схлопнулись внутрь, стали подобны фигуристам, которые тянут руки, чтобы вращаться быстрее. Со временем это вращение, вероятно, стало ускоряться из-за эффекта падения материи со звезд, разорванных черными дырами, или из-за катастрофических столкновений с другими массивными объектами.
Наблюдения были сосредоточены с конца марта по середину апреля 2017 года. Будучи крупнейшим радиотелескопом в стране, «Тяньма» также участвовал в наблюдении европейской РСДБ-сети на длине волны 170 мм и наблюдении восточноазиатской РСДБ-сети на длинах волны 13 и 7 мм», — сказал Цзян У, младший научный сотрудник Шанхайской астрономической обсерватории Китайской академии наук. Сверхмассивная черная дыра в центре галактики M87 находится в 55 миллионах световых лет от Земли. Ее масса примерно в 6,5 миллиарда раз превышает массу Солнца.
Благодаря своей огромной массе 6,5 миллиардов солнечных масс и относительной близости к Земле она находится от нас на расстоянии 55 миллионов световых лет черная дыра в центре галактики M 87 для земного наблюдателя является одной из крупнейших по своим угловым размерам, что и сделало ее идеальной мишенью для исследования. Поперечник её тени немного меньше 40 миллиардов километров. Создание EHT было технической задачей величайшей сложности, решение которой потребовало создания и отладки всемирной сети из восьми уже существовавших радиотелескопов, установленных в труднодоступных высокогорных местностях: на вершинах вулканов на Гавайских островах и в Мексике, в горах Аризоны в США и Сьерра Невады в Испании, в чилийской высокогорной пустыне Атакама и в Антарктике. Работа EHT основана на применении метода интерферометрии со сверхдлинной базой, который предполагает синхронизацию всех телескопов сети и использует вращение нашей планеты для образования единого гигантского глобального телескопа размером с земной шар, работающего на волне 1,3 мм. Современные алгоритмы обработки позволили EHT достичь углового разрешения в 20 микросекунд дуги, что соответствует способности читать нью-йоркскую газету из парижского кафе. Петабайты полученных этими телескопами наблюдательных данных были суммированы высокоспециализированными суперкомпьютерами, установленными в Институте радиоастрономии Макса Планка Германия и обсерватории Хэйстек MIT, США. Эти данные после сложнейших процедур обработки с использованием новейших вычислительных методов, разработанных участниками коллаборации, преобразовывались в изображения. Создание EHT и наблюдения, результаты которых демонстрируются сегодня, являются кульминацией продолжавшихся в течение десятилетий наблюдательных, технических и теоретических работ. Это пример глобальной кооперации, которая потребовала тесной совместной работы исследователей всего мира.
Открытие галактики GS-9209, одной из самых удаленных от Млечного Пути, добавляет доказательств того, что большие черные дыры препятствуют звездообразованию, говорят астрономы. Фото: freepik Астрономы утверждают, что сверхмассивная черная дыра, обнаруженная в сердце древней галактики, оказалась в пять раз больше, чем ожидалось, по количеству содержащихся в ней звезд. Как пишет The Guardian, исследователи обнаружили огромную черную дыру в галактике, известной как GS-9209, которая находится на расстоянии 25 миллиардов световых лет от Земли, что делает ее одной из самых удаленных из когда-либо наблюдавшихся и зарегистрированных. Команда из Эдинбургского университета использовала космический телескоп Джеймса Уэбба JWST для наблюдения за галактикой и выявления новых подробностей о ее составе и истории.
Облегчили в сто раз: российские астрофизики определили массу «сфотографированной» чёрной дыры
Телескопы впервые сделали совместный снимок сверхмассивной черной дыры M87 и массивного джета | Наблюдения показали, что, возможно, сверхмассивная чёрная дыра находится не в центре М 87, а в стороне от него, на расстоянии 82 световых лет. |
3. Представлено первое фото черной дыры в центре нашей Галактики / Наука / Независимая газета | Сверхмассивная черная дыра в центре галактики M87 находится в 55 миллионах световых лет от Земли. |
Черную дыру M87 и ее массивный джет впервые в истории сфотографировали вместе
Новость Первый снимок черной дыры превратился в мемы фото Изображение было получено в рамках проекта Event Horizon Telescope в результате наблюдений, которые длились около недели в 2017 году. Одна часть диска кажется ярче, другая — более тусклой. Но зоны яркости заметно меняются с течением времени. Это явление в науке еще называют эффектом Доплера.
Рекордная масса и сравнительно небольшое расстояние ок. СправкаМ-87 -- не самая крупная из известных черных дыр. На сегодняшний день самой "увесистой" считается дыра в центре далекого квазара OJ 287, ее масса равна 18 млрд масс Солнца. Хотя черные дыры становятся объектом исследований ученых, а сам термин уже стал на научных конференциях и в СМИ достаточно обыденным, формально черные дыры до сих пор считаются гипотетическими небесными объектами. Возможность существования дыр вытекает из общей теории относительности, однако до сих пор об их свойствах судят по косвенным наблюдениям — влиянию на окружающие их объекты и свет. Увидеть дыру «До сих пор нет ни одного прямого доказательства существования черных дыр.
Никаких, абсолютно никаких наблюдательных проявлений. Просто все другие объяснения исключаются», -- добавил Гебхардт.
Однако они далеко не идентичны. Дыра в Млечном Пути более чем в 1000 раз меньше и менее массивна. Это затрудняет точную визуализацию газа, кружащегося вокруг дыры, поскольку он движется по орбите за считанные минуты, в то время как у М87 на это уходят дни или даже недели.
Непрерывные наблюдения за черной дырой продолжались в течение 10 суток в апреле 2017 года. При этом астрофизикам сопутствовала удача: во всех точках Земли, где стоят телескопы, была ясная погода. Каждый из телескопов собрал по 500 ТБ информации. На расшифровку и анализ полученных данных у ученых ушло два года. При изучении результатов наблюдений ученые прибегли к помощи суперкомпьютеров в обсерватории Хайстак Массачусетский технологический институт, США и Институте радиоастрономии имени Макса Планка в Бонне Германия.
Между тем в состав EHT в 2018 году добавился еще один телескоп GLT, миллиметровый телескоп в Гренландии, который серьезно увеличит базу интерферометра. Что хотели узнать астрофизики Предполагалось, что совместная работа телескопов поможет разглядеть тень черной дыры - это и удалось достичь. Измерения позволили протестировать общую теорию относительности и получить очередное доказательство существования черных дыр. Черные дыры прежде оставались гипотетическими объектами, хотя у астрономов и не оставалось сомнений в том, что они существуют.
Черные дыры: почему они черные, как их находят и при чем здесь квазары
Ученые, изучающие сверхмассивную черную дыру в центре галактики M87, раскрыли происхождение мощного джета и впервые сфотографировали и джет, и его источник вместе. Наблюдения показали, что, возможно, сверхмассивная чёрная дыра находится не в центре М 87, а в стороне от него, на расстоянии 82 световых лет. Ученые, изучающие сверхмассивную черную дыру в центре галактики M87, раскрыли происхождение мощного джета и впервые сфотографировали и джет, и его источник вместе. (Перенаправлено со сверхмассивной черной дыры M87*).
Первое в истории изображение черной дыры уже стало мемом
Однако наиболее интригующей целью проекта «Event Horizon Telescope», старт которому был дан в 2012 году, являлось получение снимка центральной сверхмассивной черной дыры Млечного Пути. Ученые полагают, что черная дыра M87* вращается благодаря гравитационному взаимодействию аккреционного диска и самой черной дыры. Исследователям пока не удалось выяснить, с какой скоростью вращается черная дыра. Астрофизики МГУ определили массу черной дыры в центре галактики М87 по рентгеновским данным с помощью инновационного метода, статья опубликована в журнале Astronomy and Astrophysics.
Впервые получен снимок черной дыры, испускающей мощный джет
Ученые использовали глобальную сеть телескопов, названную Event Horizon Telescope, для изучения сверхмассивной черной дыры, располагающейся в созвездии Стрельца на расстоянии 26 тысяч световых лет от Земли. Сверхмассивные чёрные дыры, чёрные дыры массой 106–1010 масс Солнца. К настоящему моменту получены убедительные доказательства существования. Астрофизики провели исследование черной дыры, расположенной в галактике М87 в созвездии Девы. Им удалось изучить структуру ее струй. Гигантская галактика М87 в созвездии Девы, находящаяся на расстоянии 55 миллионов световых лет от Земли, привлекает астрофизиков относительной близостью и сверхмассивной чёрной дырой в её центре, которая в 6,5 миллиардов раз массивнее Солнца. сверхмассиваная черная дыра Стрелец А* в центре нашей галактики Млечный путь и черная дыра еще больших размеров, спрятанная в центре сверхгигантской эллиптической галактики Messier 87 (М87) в созвездии Девы.
Получено новое изображение черной дыры M87*
Масса чёрной дыры в центре галактики М87 оказалась в 100 раз меньше заявленной. Как и черная дыра, обнаруженная внутри М87, Sgr A* изгибает весь свет вокруг себя. Чёрные дыры действительно поглощают вещество и могут разрывать целые. Астрономы получили новое изображение центральной сверхмассивной черной дыры M87*, которая находится в центре галактики Мессье 87 (M87) в скоплении галактик Девы на расстоянии 55 миллионов световых лет от Земли.