Пери́од — строка периодической системы химических элементов, последовательность атомов по возрастанию заряда ядра и заполнению электронами внешней электронной оболочки. Период в химии — это одна из основных характеристик химического элемента, которая связана с расположением элементов в периодической системе.
Характеристика натрия
Например, первая строка таблицы содержит водород, который имеет атомный номер 1, и гелий с атомным номером 2. Однако они расположены на противоположных краях, так как принадлежат к разным группам. Узнайте о группах, которые включают в себя элементы со схожими физическими и химическими свойствами. Элементы каждой группы располагаются в соответствующей вертикальной колонке. Как правило, они обозначаются одним цветом, что помогает определить элементы со схожими физическими и химическими свойствами и предсказать их поведение.
Все элементы той или иной группы имеют одинаковое число электронов на внешней оболочке. Водород можно отнести как к группе щелочных металлов, так и к группе галогенов. В некоторых таблицах его указывают в обеих группах. В большинстве случаев группы пронумерованы от 1 до 18, и номера ставятся вверху или внизу таблицы.
Номера могут быть указаны римскими например, IA или арабскими например,1A или 1 цифрами. При движении вдоль колонки сверху вниз говорят, что вы «просматриваете группу». Узнайте, почему в таблице присутствуют пустые ячейки. Элементы упорядочены не только в соответствии с их атомным номером, но и по группам элементы одной группы обладают схожими физическими и химическими свойствами.
Благодаря этому можно легче понять, как ведет себя тот или иной элемент. Однако с ростом атомного номера не всегда находятся элементы, которые попадают в соответствующую группу, поэтому в таблице встречаются пустые ячейки. Например, первые 3 строки имеют пустые ячейки, поскольку переходные металлы встречаются лишь с атомного номера 21. Элементы с атомными номерами с 57 по 102 относятся к редкоземельным элементам, и обычно их выносят в отдельную подгруппу в нижнем правом углу таблицы.
Каждая строка таблицы представляет собой период. Все элементы одного периода имеют одинаковое число атомных орбиталей, на которых расположены электроны в атомах. Количество орбиталей соответствует номеру периода. Таблица содержит 7 строк, то есть 7 периодов.
Например, атомы элементов первого периода имеют одну орбиталь, а атомы элементов седьмого периода - 7 орбиталей. Как правило, периоды обозначаются цифрами от 1 до 7 слева таблицы. При движении вдоль строки слева направо говорят, что вы «просматриваете период». Научитесь различать металлы, металлоиды и неметаллы.
Вы лучше будете понимать свойства того или иного элемента, если сможете определить, к какому типу он относится. Для удобства в большинстве таблиц металлы, металлоиды и неметаллы обозначаются разными цветами. Металлы находятся в левой, а неметаллы - в правой части таблицы. Металлоиды расположены между ними.
Часть 2 Обозначения элементов Каждый элемент обозначается одной или двумя латинскими буквами. Как правило, символ элемента приведен крупными буквами в центре соответствующей ячейки. Символ представляет собой сокращенное название элемента, которое совпадает в большинстве языков. При проведении экспериментов и работе с химическими уравнениями обычно используются символы элементов, поэтому полезно помнить их.
Обычно символы элементов являются сокращением их латинского названия, хотя для некоторых, особенно недавно открытых элементов , они получены из общепринятого названия. К примеру, гелий обозначается символом He, что близко к общепринятому названию в большинстве языков. В то же время железо обозначается как Fe, что является сокращением его латинского названия. Обратите внимание на полное название элемента, если оно приведено в таблице.
Это «имя» элемента используется в обычных текстах. Например, «гелий» и «углерод» являются названиями элементов. Обычно, хотя и не всегда, полные названия элементов указываются под их химическим символом. Иногда в таблице не указываются названия элементов и приводятся лишь их химические символы.
Найдите атомный номер. Обычно атомный номер элемента расположен вверху соответствующей ячейки, посередине или в углу. Он может также находиться под символом или названием элемента. Элементы имеют атомные номера от 1 до 118.
Атомный номер всегда является целым числом. Помните о том, что атомный номер соответствует числу протонов в атоме. Все атомы того или иного элемента содержат одинаковое количество протонов. В отличие от электронов, количество протонов в атомах элемента остается постоянным.
В противном случае получился бы другой химический элемент!
Калий — щелочной металл, проявляющий в соединениях валентность I. Это вполне согласуется со следующим строением его атома. Как элемент 4-го периода, атом калия имеет 4 электронных слоя. На последнем четвертом электронном слое калия находится 1 электрон, общее количество электронов в атоме калия равно 19 порядковому номеру этого элемента рис. Схема строения атома калия За калием следует кальций. У атома кальция на внешнем электронном слое будут располагаться 2 электрона, как и у бериллия с магнием они тоже являются элементами II А подгруппы. Следующий за кальцием элемент — скандий. Это элемент побочной В подгруппы.
Все элементы побочных подгрупп — это металлы. Особенностью строения их атомов является наличие не более 2-х электронов на последнем электронном слое, т. Так, для скандия можно представить следующую модель строения атома рис. Схема строения атома скандия Такое распределение электронов возможно, т. У десяти элементов побочных подгрупп 4-го периода от скандия до цинка последовательно заполняется третий электронный слой. Схему строения атома цинка можно представить так: на внешнем электронном слое — два электрона, на предвнешнем — 18 рис. Схема строения атома цинка Следующие за цинком элементы относятся к элементам главной подгруппы: галлий, германий и т. В атомах этих элементов последовательно заполняется 4-й т. В атоме инертного газа криптона будет октет на внешней оболочке, т.
На этом уроке вы узнали, как устроена электронная оболочка атома и как объяснить явление периодичности.
Шестой и седьмой периоды имеют двойные вставки элементов. За элементом Ва расположены десять d—элементов от лантана La — до ртути Hg , а после первого переходного элемента лантана La следуют 14 f—элементов — лантаноидов Се — Lu. После ртути Hg располагаются остальные 6 основных р-элементов шестого периода Тl — Rn. В седьмом незавершенном периоде за Ас следуют 14 f—элементов- актиноидов Th — Lr. В последнее время La и Ас стали причислять соответственно к лантаноидам и актиноидам. Лантаноиды и актиноиды помещены отдельно внизу таблицы. В Периодической системе каждый элемент расположен в строго определенном месте, которое соответствует его порядковому номеру. Элементы в Периодической системе разделены на восемь групп I — VIII , которые в свою очередь делятся на подгруппы — главные, или подгруппы А и побочные, или подгруппы Б.
Внутри каждой подгруппы элементы проявляют похожие свойства и схожи по химическому строению. А именно: В главных подгруппах сверху вниз усиливаются металлические свойства и ослабевают неметаллические. В зависимости от того, какая энергетическая орбиталь заполняется в атоме последней, химические элементы можно разделить на s-элементы, р-элементы, d- и f-элементы. У атомов s-элементов заполняются s-орбитали на внешних энергетических уровнях. К s-элементам относятся водород и гелий, а также все элементы I и II групп главных подгрупп литий, бериллий, натрий и др. У p-элементов электронами заполняются p-орбитали. У d-элементов заполняются, соответственно, d-орбитали. К ним относятся элементы побочных подгрупп. Из строения атомов и электронных оболочек вытекают следующие закономерности: Номер периода соответствует числу заполняемых энергетических уровней.
Углерод и кремний обладают всеми свойствами неметаллов, германий и олово занимают промежуточную позицию, а свинец имеет выраженные металлические свойства. Углерод образует несколько аллотропных модификаций — вариантов простых веществ, отличающихся по своему строению, а именно: графит, алмаз, фуллерит и другие. Большинство элементов подгруппы углерода — полупроводники проводят электричество за счёт примесей, но хуже, чем металлы. Графит, германий и кремний используют при изготовлении полупроводниковых элементов транзисторы, диоды, процессоры и так далее. Подгруппа азота Пятую группу главную подгруппу VA называют пниктогенами или подгруппой азота. В ходе реакций эти элементы могут как отдавать электроны, так и принимать их, завершая внешний энергетический уровень.
Физические свойства элементов подгруппы азота различны. Азот является бесцветным газом. Фосфор, мягкое вещество, образует несколько вариантов аллотропных модификаций — белый, красный и чёрный фосфор. Мышьяк — твёрдый полуметалл, способный проводить электрический ток. Висмут — блестящий серебристо-белый металл с радужным отливом. Азот — основное вещество в составе атмосферы нашей планеты.
Некоторые элементы подгруппы азота токсичны для человека фосфор, мышьяк, висмут. При этом азот и фосфор являются важными элементами почвенного питания растений, поэтому они входят в состав большинства удобрений. Азот и фосфор также участвуют в формировании важнейших молекул живых организмов — белков и нуклеиновых кислот. Подгруппа кислорода Халькогены или подгруппа кислорода — элементы шестой группы главной подгруппы VIA. Для завершения внешнего электронного уровня атомам этих элементов не хватает лишь двух электронов, поэтому они проявляют сильные окислительные неметаллические свойства. Однако, по мере продвижения от кислорода к полонию они ослабевают.
Кислород образует две аллотропные модификации — кислород и озон — тот самый газ, который образует экран в атмосфере планеты, защищающий живые организмы от жёсткого космического излучения. Кислород и сера легко образуют прочные соединения с металлами — оксиды и сульфиды. В виде этих соединений металлы часто входят в состав руд. Галогены Седьмая группа главная подгруппа VIIA представлена галогенами — неметаллами с семью электронами на внешнем электронном слое атома. Это сильнейшие окислители, легко вступающие в реакции. Галогены «рождающие соли» назвали так потому, что они реагируют со многими металлами с образованием солей.
Например, хлор входит в состав обычной поваренной соли. Самый активный из галогенов — фтор. Он способен разрушать даже молекулы воды, за что и получил своё грозное имя слово «фтор» переводится на русский язык как «разрушительный». А его «близкий родственник» — иод — используется в медицине в виде спиртового раствора для обработки ран. Они практически не способны участвовать в реакциях. Поэтому их иногда называют «благородными», проводя параллель с представителями высшего общества, которые брезгуют контактировать с посторонними.
ПЕРИОДИЧЕСКАЯ ТАБЛИЦА МЕНДЕЛЕЕВА
Периодический закон: основные свойства атомов химических элементов и их соединений и закономерности их изменений в рамках Периодического закона. Номер периода отображает общее число энергетических уровней химического элемента, а также число подуровней на внешнем энергетическом уровне. Получите определение периода в химии и узнайте, какое значение имеют периоды в периодической таблице элементов.
Что важно знать о марганце в химии ,состав, строение, характеристики
Характеристика натрия | Характеристика натрия по положению в Периодической системе химических элементов. |
Что такое период в химии определение. Что такое период в химии — domino22 | Элементы одного периода имеют близкие значения атомных масс, но разные физические и химические свойства, в отличие от элементов одной группы. |
Порядок реакции - Химия | В химии такое явление, т.е. существование одного и того же элемента в двух или более формах, называется аллотропия. |
Изменение свойств химических элементов для ЕГЭ 2022 | Химические свойства в периодах меняются с металлических через амфотерные на неметаллические. |
Что такое периодичность?
Периодическая таблица химических элементов устроена довольно необычно, поэтому понять, что такое период в химии сразу непросто даже для профессионалов. Современная форма Периодической системы химических элементов (в 1989 году Международным союзом теоретической и прикладной химии рекомендована длинная форма таблицы) состоит из семи периодов (горизонтальных последовательностей элементов. Что такое 14n в химии Азот (N) — это химический элемент 15 группы (или подгруппы V(a) короткой формы), 2-го периода таблицы Менделеева с атомным номером 7. Чистый азот N2 представляет безцветный газ, без вкуса и запаха, плохо растворимый в воде.
Периодическая система химических элементов Менделеева
Периодическая система химических элементов — это таблица, в которой все химические элементы расположены в порядке возрастания атомных номеров. Таблица включает в себя периоды и группы, то есть горизонтальные строчки и вертикальные столбцы. Период — это последовательность горизонтальный ряд в таблице элементов с возрастающими атомными номерами, начинающаяся щелочным металлом или водородом и заканчивающаяся благородным газом. Число электронных слоев в атомах данного периода равно номеру периода. В периодах с возрастанием атомного номера Z металлические свойства ослабевают, а неметаллические усиливаются.
Дальнейшее усовершенствование техники упиралось в главное противоречие эпохи — противоречие между сравнительно высоким уровнем достигнутых к этому времени технологических знаний и резким отставанием теоретического естествознания. В начале 17 века появились крупные философские произведения, оказавшие существенное влияние на развитие естествознания. Английский философ Френсис Бэкон выдвинул тезис о том, что решающим доводом в научной дискуссии должен являться эксперимент.
Семнадцатый век в философии ознаменовался также возрождением атомистических представлений. Математик основатель аналитической геометрии и философ Рене Декарт, утверждал, что все тела состоят из корпускул различной формы и размеров; форма корпускул связана со свойствами вещества. В то же время Декарт считал, что корпускулы делимы и состоят из единой материи. Декарт отрицал представления Демокрита о неделимых атомах, движущихся в пустоте, не решаясь допустить существование пустоты. Корпускулярные идеи, весьма близкие к античным представлениям Эпикура, высказывал и французский философ Пьер Гассенди. Группы атомов, образующие соединения, Гассенди называл молекулами от лат. Корпускулярные представления Гассенди завоевали довольно широкое признание среди естествоиспытателей.
Инструментом разрешения противоречия между высоким уровнем технологии и крайне низким уровнем знаний о природе стало в 17 веке новое экспериментальное естествознание. Одним из следствий произошедшей во второй половине 17 века научной революции явилось создание новой научной химии. Создателем научной химии традиционно считается Роберт Бойль, который доказал несостоятельность алхимических представлений, дал первое научное определение понятия химического элемента и тем самым впервые поднял химию на уровень науки. Британский учёный Роберт Бойль являлся одним из крупнейших химиков, физиков и философов своего времени. В качестве основных научных достижений Бойля в химии можно отметить основание им аналитической химии качественный анализ , исследования свойств кислот, введение в химическую практику индикаторов, изучение плотностей жидкостей с помощью изобретённого им ареометра. Нельзя не упомянуть и открытый Бойлем закон, носящий его имя называемый также законом Бойля-Мариотта. Однако главной заслугой Бойля стала предложенная им новая система химической философии, изложенная в книге "Химик-скептик" 1661.
Книга была посвящена поискам ответа на вопрос, что именно следует считать элементами, исходя из современного уровня развития химии. Бойль писал: «Химики до сих пор руководствовались чересчур узкими принципами, не требовавшими особенно широкого умственного кругозора; они видели свою задачу в приготовлении лекарств, в получении и превращении металлов. Я смотрю на химию с совершенно иной точки зрения: не как врач, не как алхимик, а как должен смотреть на неё философ. Я начертал здесь план химической философии, который надеюсь выполнить и усовершенствовать своими опытами и наблюдениями». Книга построена в форме беседы между четырьмя философами: Фемистом, перипатетиком последователем Аристотеля , Филопоном, спагириком сторонником Парацельса , Карнеадом, излагающим взгляды "мистера Бойля", и Элевтерием, беспристрастно оценивающим аргументы спорщиков. Дискуссия философов подводила читателя к выводу, что ни четыре стихии Аристотеля, ни три принципа алхимиков не могут быть признаны в качестве элементов. Бойль подчёркивал: "Нет никаких оснований присваивать данному телу название того или иного элемента только потому, что оно похоже на него одним каким-либо легко заметным свойством; ведь с тем же правом я мог бы отказать ему в этом названии, поскольку другие свойства являются разными".
Исходя из опытных данных, Бойль показал, что понятия современной химии должны быть пересмотрены и приведены в соответствие с экспериментом. Элементы, согласно Бойлю — практически неразложимые тела вещества , состоящие из сходных однородных состоящих из первоматерии корпускул, из которых составлены все сложные тела и на которые они могут быть разложены. Корпускулы могут различаться формой, размером, массой. Корпускулы, из которых образованы тела, остаются неизменными при превращениях последних. Главную задачу химии Бойль видел в изучении состава веществ и зависимости свойств вещества от его состава. При этом понятие состава Бойль считал возможным употреблять только тогда, когда из элементов, выделенных из данного сложного тела, можно обратно восстановить исходное тело то есть он фактически принимал синтез за критерий правильности анализа. Бойль в своих трудах не назвал ни одного элемента в новом понимании этого понятия; не указал он и число элементов, отмечая лишь, что: "не будет абсурдом, если предположить, что число это много больше трёх или четырёх".
Таким образом, книга "Химик-скептик" представляет собой не ответ на насущные вопросы химической философии, но постановку новой цели химии. Главное значение работы Бойля заключается в следующем: 1. Формулировка новой цели химии — изучения состава веществ и зависимости свойств вещества от его состава. Предложение программы поиска и изучения реальных химических элементов; 3. Введение в химию индуктивного метода; Представления Бойля об элементе как о практически неразложимом веществе быстро получили широкое признание среди естествоиспытателей. Однако создание теоретических представлений о составе тел, способных заменить учение Аристотеля и ртутно-серную теорию, оказалось очень сложной задачей. В последней четверти 17 века появились эклектические воззрения, создатели которых пытались увязать алхимические традиции и новые представления о химических элементах.
Большое влияние на современников оказали взгляды французского химика Николя Лемери, автора широко известного учебника "Курс химии". Учебник Лемери начинался с определения предмета химии: "Химия есть искусство, учащее, как разделять различные вещества, содержащиеся в смешанных телах. Я понимаю под смешанными телами те, которые образуются в природе, а именно: минералы, растительные и животные тела". Далее Лемери перечислял "химические начала", т. После некоего "универсального духа" который сам автор признаёт "несколько метафизичным" , Лемери на основании анализа посредством огня выделял пять основных материальных начал веществ: спирт иначе "ртуть" , масло иначе "сера" , соль, вода "флегма" и земля. Первые три начала — активные, вода и земля — пассивные. Лемери, однако, отмечал, что эти субстанции являются для нас "началами" лишь постольку, поскольку химики не смогли далее разложить эти тела; очевидно, эти "начала" могут быть в свою очередь разделены на более простые.
Таким образом, то, что принимается в качестве начал, — это субстанции, полученные в результате разделения смешанных тел и отделённые лишь настолько, насколько позволяют это сделать средства, которыми располагают химики. На рубеже 17-18 веков научная химия находилась лишь в самом начале своего пути; важнейшими препятствиями, которые лишь предстояло преодолеть, являлись сильные ещё алхимические традиции ни Бойль, ни Лемери не отрицали принципиальную возможность трансмутации , ложные представления об обжиге металлов как о разложении и спекулятивный умозрительный характер атомизма. Философия 18 века - это философия ума, разума, научной мысли. Человеческий разум пытается понять окружающий мир с помощью научных знаний, соображений, наблюдений и логических выводов в противовес средневековой схоластике и слепому следованию церковным догмам. Это отразилось и на химии. Стали появляться первые теории научной химии. Первая теория научной химии — теория флогистона — в значительной степени основывалась на традиционных представлениях о составе веществ и об элементах как носителях определённых свойств.
Тем не менее, именно она стала в 18 веке главным условием и основной движущей силой развития учения об элементах и способствовала полному освобождению химии от алхимии. Именно во время почти столетнего существования флогистонной теории завершилось начатое Бойлем превращение алхимии в химию. Флогистонная теория горения была создана для описания процессов обжига металлов, изучение которых являлось одной из важнейших задач химии конца 18 века. Металлургия в это время столкнулась с двумя проблемами, разрешение которых было невозможно без проведения серьёзных научных исследований — большие потери при выплавке металлов и топливный кризис, вызванный почти полным уничтожением лесов в Европе. Основой для теории флогистона послужили традиционные представления о горении как о разложении тела. Феноменологическая картина обжига металлов была хорошо известна: металл превращается в окалину, масса которой больше массы исходного металла; кроме того, при горении имеет место выделение газообразных продуктов неизвестной природы. Целью химической теории стало рациональное объяснение этого феномена, которое можно было бы использовать для решения конкретных технических задач.
Последнему условию не отвечали ни представления Аристотеля, ни алхимические взгляды на горение. Бехер в книге "Подземная физика" изложил свои очень эклектичные взгляды на составные части тел. Таковыми, по его мнению, являются три вида земли: первая — плавкая и каменистая terra lapidea , вторая — жирная и горючая terra pinguis и третья — летучая terra fluida s. Горючесть тел, по мнению Бехера, обусловлена наличием в их составе второй, жирной, земли. Система Бехера очень похожа на алхимическое учение о трёх принципах, в котором горючесть обусловлена наличием серы; однако Бехер считает, что сера является сложным телом, образованным кислотой и terra pinguis. По сути, теория Бехера представляла собой одну из первых попыток предложить нечто новое взамен алхимического учения о трёх принципах. Увеличение массы металла при обжиге Бехер традиционно объяснял присоединением "огненной материи".
Эти взгляды Бехера послужили предпосылкой к созданию теории флогистона, предложенной Шталем в 1703 г. Тем не менее, сам Шталь всегда утверждал, что авторство теории принадлежит Бехеру. Суть теории флогистона можно изложить в следующих основных положениях: 1. Горение представляет собой разложение тела с выделением флогистона, который необратимо рассеивается в воздухе. Вихреобразные движения флогистона, выделяющегося из горящего тела, и представляют собой видимый огонь. Извлекать флогистон из воздуха способны лишь растения. Флогистон всегда находится в сочетании с другими веществами и не может быть выделен в чистом виде; наиболее богаты флогистоном вещества, сгорающие без остатка.
Флогистон обладает отрицательной массой. Теория Шталя, подобно всем предшествующим, также исходила из представлений, будто свойства вещества определяются наличием в них особого носителя этих свойств. Положение флогистонной теории об отрицательной массе флогистона было призвано объяснить тот факт, что масса окалины или всех продуктов горения, включая газообразные больше массы обожжённого металла. Флогистонная теория со временем была распространена на любые процессы горения. Тождество флогистона во всех горючих телах было обосновано Шталем экспериментально: уголь одинаково восстанавливает и серную кислоту в серу, и земли в металлы.
Номер периода, к которому относится химический элемент, определяется числом его электронных оболочек энергетических уровней. Зарядовое число равно заряду ядра в единицах элементарного заряда и одновременно равно порядковому номеру соответствующего ядру химического элемента в таблице Менделеева. Группа периодической системы химических элементов — последовательность атомов по возрастанию заряда ядра, обладающих однотипным электронным строением. Номер группы определяется количеством электронов на внешней оболочке атома валентных электронов и, как правило, соответствует высшей валентности атома. В короткопериодном варианте периодической системы, группы подразделяются на подгруппы — главные или подгруппы A , начинающиеся с элементов первого и второго периодов, и побочные подгруппы В , содержащие d-элементы.
Katayantipovska 9 дек. Что означает "V" в химии? На этой странице сайта вы найдете ответы на вопрос Что означает Nn в химии нулевой период? Сложность вопроса соответствует базовым знаниям учеников 5 - 9 классов. Для получения дополнительной информации найдите другие вопросы, относящимися к данной тематике, с помощью поисковой системы. Или сформулируйте новый вопрос: нажмите кнопку вверху страницы, и задайте нужный запрос с помощью ключевых слов, отвечающих вашим критериям. Общайтесь с посетителями страницы, обсуждайте тему.
Что такое период в химии и какие варианты периодов существуют?
вступление 0:25 - группы 1:26 - периоды 3:08 - изменение свойств по горизонтали 5:28 - изменение свойств п Смотрите видео онлайн «Периодическая система химических элементов Д.И. Менделеева. Пери́од — строка периодической системы химических элементов, последовательность атомов по возрастанию заряда ядра и заполнению электронами внешней электронной оболочки. Период в химии — это временной промежуток, который используется для классификации химических элементов в периодической таблице Менделеева. Закономерности изменения химических свойств элементов и их соединений по периодам и группам.
Период периодической системы
Следует отметить, что период полураспада первого порядка реакции постоянна и не зависит от исходной концентрации реагента. Период в периодической таблице-это ряд химических элементов. Внутри одной подгруппы химических элементов электроотрицательность убывает, а при движении по ряду одного периода вправо электроотрицательность возрастает. Период — это строка Периодической системы Д. И. Менделеева, отражающая возрастание заряда ядра и заполнение электронами внешнего уровня. Химический период является важной концепцией в химии, поскольку элементы в одном периоде обычно имеют схожие свойства, связанные с их электронной конфигурацией. Получите определение периода в химии и узнайте, какое значение имеют периоды в периодической таблице элементов.