Новости 26 задача егэ информатика

#разбор заданий егэ по информатике 2022. 2024. 3 месяца назад. Самый мощный обстрел Белгорода за всю войну / Новости России. Большая база заданий ЕГЭ по Информатике, объяснения решений и правильные ответы.

Задание 26 ЕГЭ по информатике

Задание 26. ЕГЭ. Исправление ошибок в программе 72 Конец фильма ПОЛЯКОВ Константин Юрьевич д.т.н., учитель информатики ГБОУ СОШ № 163, г. Санкт-Петербург kpolyakov@ Изображение слайда.
Егэ информатика 26 задание решение Заспамили меня по поводу оформления второй части, особенно по 26 заданию, поэтому ловите.
ЕГЭ по информатике 2023 - Задание 26 (Сортировка) (Старый формат ЕГЭ) 1. Системы счисления.

Задание 26. Алгоритмы сортировки. Обработка целочисленной информации.. ЕГЭ 2024 по информатике

Рубрика «ЕГЭ Задание 26» @kegechat Связаться с админом и записаться на занятия - @marat_ii.
ЕГЭ по информатике задание 26 решение.
Вы точно человек? В работе приводится алгоритм решения задания 26 ЕГЭ, а также листинг программы на языке Python.
2 способа решения задания 26 на ЕГЭ по информатике 2023 | insperia - смотреть бесплатно Разбор Демоверсии ЕГЭ по информатике 2024 | Артем Flash (26 мероприятия Excel).

Search code, repositories, users, issues, pull requests...

В статье рассматривается альтернативное решение типовой задачи №26 ЕГЭ по информатике и ИКТ, отличающееся от предлагаемого разработчиками ЕГЭ. Смотрите видео онлайн на Смотрите сериалы бесплатно, музыкальные клипы, новости мира и кино, обзоры мобильных устройств. 40 Информатика. ЕГЭ по информатике 2022: задание 26. Задания по информатике.

Всё, что нужно знать о ЕГЭ по информатике

Мы должны выделить максимальное количество ячеек, но чтобы сумма не превышала число 8200. Получается максимальное количество файлов, которое можно сохранить, равно 568. Найдём максимальный размер файла при максимальном количестве файлов. Если покрутим таблицу вниз, то найдём такой файл размером 50. Это и будет наибольший файл при максимальном количестве файлов. Ответ получается 568 50.

Второй способ с помощью Python. С помощью команды readline считываем первую строчку. С помощью команды split разбиваем строчку по пробелу на два числа. Переменная st — это список. В st[0] — будет подстрока с первым числом, в st[1] со вторым.

Переменная s — это размер свободного пространства на диске, n — это количество пользователей. Мы должны использоваться функцию int , чтобы перевести из текстового типа данных в целый числовой. Заводим пустой список a. В него мы будем помещать все значения объёмов пользователей, которые идут ниже по файлу. Зачитываем последующие числа в список a, превращая их в целый тип данных.

Заводим список b. В него будем класть элементы, которые записываем на диск.

В статье есть только одна неточность: дерево, изображенное на стр. В контексте статьи понятно, о чем идет речь. Но при разборе статьи с учениками лучше уточнить: дерево возможных вариантов игры при выбранной стратегии Вани. Обычно деревом возможных вариантов игры или просто деревом игры называют дерево, изображающее все возможные партии.

То есть, рассматриваются все возможные ходы Вани, а не только ходы, соответствующие определенной стратегии. Задача C3-2013 объединяет идеи задач C3-2011 и C3-2012. Преемственность с C3-2012 видна из разбора К. Это задание из второй части высокого уровня сложности. Примерное время выполнения задания 30 минут. Максимальный балл за выполнение задания — 3.

Проверяемые элементы содержания: — Умение построить дерево игры по заданному алгоритму и обосновать выигрышную стратегию. Задание 26 Два игрока, Паша и Валя, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Паша. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 30 камней.

У каждого игрока, чтобы делать ходы, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится не менее 20. Если при этом в куче оказалось не более 30 камней, то победителем считается игрок, сделавший последний ход. В противном случае победителем становится его противник. Например, если в куче было 17 камней и Паша удвоит количество камней в куче, то игра закончится, и победителем будет Валя. Будем говорить, что игрок имеет выигрышную стратегию , если он может выиграть при любых ходах противника.

Описать стратегию игрока — значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. Выполните следующие задания. Укажите все такие значения и соответствующие ходы Паши. Опишите выигрышные стратегии для этих случаев. Опишите соответствующие выигрышные стратегии. Постройте дерево всех партий, возможных при этой выигрышной стратегии в виде рисунка или таблицы.

На рёбрах дерева указывайте, кто делает ход; в узлах — количество камней в позиции. Поэтому можно считать, что единственный возможный ход — это добавление в кучу одного камня. Выигрышная стратегия есть у Вали. Выигрышная стратегия есть у Паши. Действительно, если Паша первым ходом удваивает количество камней, то в куче становится 32 камня, и игра сразу заканчивается выигрышем Вали. Если Паша добавляет один камень, то в куче становится 17 камней.

Как мы уже знаем, в этой позиции игрок, который должен ходить то есть Валя , выигрывает. Во всех случаях выигрыш достигается тем, что при своём ходе игрок, имеющий выигрышную стратегию, должен добавить в кучу один камень. Можно нарисовать деревья всех возможных партий для указанных значений S. Она состоит в том, чтобы удвоить количество камней в куче и получить кучу, в которой будет соответственно 18 или 16 камней. В обоих случаях игрок, который будет делать ход теперь это Валя , проигрывает смотрите пункт 1б. После первого хода Паши в куче может стать либо 8, либо 14 камней.

В обеих этих позициях выигрывает игрок, который будет делать ход теперь это Валя. В таблице изображено дерево возможных партий при описанной стратегии Вали. Заключительные позиции в них выигрывает Валя подчёркнуты. На рисунке это же дерево изображено в графическом виде оба способа изображения дерева допустимы.

Нам нужно понять, а сколько максимум файлов можно сохранить. Так мы в переменной count получим максимальное количество файлов, которое можно уместить на диске. Нам нужно написать так же написать в ответе максимальный размер файла при максимальном количестве файлов, который можно сохранить. Это не значит, что мы должны искать максимальный размер только среди тех чисел, которые участвовали, когда мы подсчитывали максимальное количество файлов. Возможно, найдётся один файл такой, при котором, количество будет такое же, но сам размер файла будет больше, чем те, которые мы рассматривали. Чтобы найти максимальный размер файла проходим массив уже с наибольших чисел.

Если количество файлов будет таким же, как и с исследуемым файлом, то мы нашли то что нужно. Кабанов Спутник «Фотон» проводит измерения солнечной активности, результат каждого измерения представляет собой натуральное число. Перед обработкой серии измерений из неё исключают K наибольших и K наименьших значений как недостоверные. По заданной информации о значении каждого из измерений, а также количестве исключаемых значений, определите наибольшее достоверное измерение, а также целую часть среднего значения всех достоверных измерений. Входные и выходные данные. В первой строке входного файла 26-k2. В следующих N строках находятся значения каждого из измерений все числа натуральные, не превышающие 1000 , каждое в отдельной строке. Запишите в ответе два числа: сначала наибольшее достоверное измерение, а затем целую часть среднего значения всех достоверных измерений. В начале откроем файл и посмотрим количество измерений и количество исключённых значений.

Здесь всё опирается на понимание циклов и условных операторов. Ручной перебор здесь исключен из-за большого массива данных. Воспользоваться альтернативными способами решения, не прибегая к программированию, также затруднительно. Диапазон значений, на которых выпускнику необходимо проверить ряд условий, достаточно большой, и программа будет долго выполнять перебор. Условия в задаче примерно следующие: — найти количество чисел из диапазона, у которых только два делителя — проверить числа из диапазона на «простоту» и т. Задачу необходимо решить оптимально, выполняя сортировку либо по возрастанию, либо по убыванию. Зачастую, если ученик не претендует на 100 баллов, учителя и репетиторы предлагают не тратить время на задание. Поскольку решение в среднем займет около 40 минут. Вот только часть необходимых знаний и умений, чтобы успешно справиться с заданием: уметь решать задачи с разбиением строк на подстроки по разделителям; умело использовать функции и процедуры; знать, как обрабатывать символьные данные; использовать сдвиги элементов массива.

Досрочный период КЕГЭ по информатике 9 апреля 2024

Задание 26 ЕГЭ-2019 по информатике: теория и практика Личный сайт Рогова Андрея: информатика, программирование и робототехника.
Задание 27 Шпаргалка по задачам по ЕГЭ по информатике 2023.
Задание 26 егэ информатика перестановка букв. В этой статье посмотрим некоторые задачи из 26 задания ЕГЭ по информатике.

Разбор 26 задания ЕГЭ 2017 по информатике из демоверсии

Входные данные В первой строке входного файла находится число N — количество коробок в магазине натуральное число, не превышающее 10 000. В следующих N строках находятся значения длин сторон коробок все числа натуральные, не превышающие 10 000 , каждое — в отдельной строке. Запишите в ответе два целых числа: сначала наибольшее количество коробок, которое можно использовать для упаковки одного подарка, затем максимально возможную длину стороны самой маленькой коробки в таком наборе. В них вы найдёте всё самое полезное для себя — теория, решения заданий и практика.

Стоимость этих двух товаров со скидкой составит 201,75 руб.

Самый дорогой товар, на который будет получена скидка, стоит 144 руб. В ответе нужно записать числа 1277 и 144. Грузы массой от 200 до 210 кг грузят в первую очередь, гарантируется, что все такие грузы поместятся. На оставшееся после этого место стараются взять как можно больше грузов.

Значит, первый в один ход явно выиграть не сможет. Однако второй — вполне сможет. Первый может сделать потенциально четыре действия: прибавить 1 к первой кучке, увеличить в 2 раза количество камней в первой кучке, прибавить 1 ко второй кучке, увеличить в 2 раза количество камней во второй кучке. В этом случае второй игрок может увеличить в 2 раза количество камней во второй кучке. Получим 7, 66. Суммарно — 73. Значит, второй выигрывает. Получим 12, 66. Суммарно — 78.

Получим 6, 68. Суммарно — 74. Получим 6, 132. Суммарно — 138. Итого: как бы себя не вёл первый игрок, второй выиграет и в один ход. Аналогично решается и с 8,32. Формальное решение Задания 1. Второй игрок имеет выигрышную стратегию. Докажем это и покажем эту стратегию.

Для этого построим дерево партии для каждой из начальных позиции. В дереве партий мы будем указывать состояние обеих кучек в формате a,b , где a — количество камней в первой кучке, b — количество камней во второй кучке. При ходе первого игрока мы будем рассматривать четыре возможных варианта его поведения: прибавить 1 к первой кучке, увеличить в 2 раза количество камней в первой кучке, прибавить 1 ко второй кучке, увеличить в 2 раза количество камней во второй кучке. Для второго игрока мы укажем по одному ходу, приводящему к выигрышу. Ходы будем показывать в виде стрелочек, рядом с которыми писать I в случае хода первого и II в случае хода второго. Дерево партий для начальной позиции 6, 33. Дерево партий для начальной позиции 8, 32. Согласно дереву партий, вне зависимости от ходов первого у второго всегда есть выигрышная стратегия, позволяющая ему выиграть в один ход, описанная в деревьях суммы после ходов Вани составляют слева-направо 73, 80, 74 и 136 соответственно. При этом, согласно дереву партий, второй игрок может выиграть ровно за один ход.

Задание 2 Формальное решение Рассмотрим начальную позицию 6,32. Заметим, что она близка к 6,33 из Задания 1. В Задании 1 мы выяснили, что в позиции 6, 33 выигрывает второй, причём в один ход. Можно это условие переформулировать: в позиции 6,33 выигрывает в один ход тот, кто не ходит то есть, ходит вторым. Или, иными словами, тот, кто ходит, проигрывает в один ход. В позиции 6,32 выигрывает первый в два хода. Докажем это. Таким образом, получается позиция 6,33. Как мы выяснили ранее, в позиции 6,33 тот, кто ходит, проигрывает.

В нашем случае будет ход Вани. Поэтому Ваня проиграет в один ход. Аналогично в позиции 7, 32. В этой позиции согласно тем же рассуждениям, тот, кто ходит, проигрывает. Будет ход Вани, поэтому Ваня проиграет. Аналогично в позиции 8, 31. Задание 3 Обсуждение Заметим, что из ситуации 7, 31 очень легко попасть либо в ситуации 8, 31 и 7, 32 , в которых, согласно предыдущему Заданию, тот, кто ходит, выигрывает, либо в ситуации 14, 31 и 7, 62 , в которых тот, кто ходит, может выиграть в один ход, увеличив в два раза количество камней во второй кучке. Таким образом, получается, что у Вани должна быть выигрышная стратегия. При этом он может выиграть как в 2 хода первые два случая , так и в один ход вторые два случая.

Формальное решение В начальной позиции 7, 31 выигрывает Ваня в один или два хода. Для этого построим дерево всех партий. Дерево всех партий для начальной позиции 7, 31. Согласно дереву всех партий Ваня выигрывает либо в один ход в случае, если Петя увеличил в два раза количество камней в первой или второй кучках , либо в два хода если Петя увеличил на 1 количество камней в первой или второй кучках. Таким образом, в начальной позиции 7, 31 у Вани имеется выигрышная стратегия, при этом Ваня выиграет в один или два хода. Полякова Теория игр. Поиск выигрышной стратегии Для решения 26 задания необходимо вспомнить следующие темы и понятия: Выигрышная стратегия для того чтобы найти выигрышную стратегию в несложных играх, достаточно использовать метод перебора всех возможных вариантов ходов игроков; для решения задач 26 задания чаще всего для этого применяется метод построения деревьев ; если от каждого узла дерева отходят две ветви, то есть возможные варианты хода, то такое дерево называется двоичным если из каждой позиции есть три варианта продолжения, дерево будет троичным. Кто выиграет при стратегически правильной игре?

Это облегчит решение, так как теперь нужно будет искать максимальный ряд и максимальное место. Идем по внешнему списку и проверяем: если ряд совпал и разность по местам равна 3, что соответствует вышеописанной схеме «занято» — «свободно» — «свободно» — «занято», сохраняем ряд и восстанавливаем место берем со знаком минус и добавляем 1, так как нужно получить минимальный номер свободного места. Обработка целочисленной информации с использованием сортировки, В — 2 балла Е26. В магазине для упаковки подарков есть N кубических коробок. Самой интересной считается упаковка подарка по принципу матрёшки — подарок упаковывается в одну из коробок, та в свою очередь в другую коробку и т. Одну коробку можно поместить в другую, если длина её стороны хотя бы на 3 единицы меньше длины стороны другой коробки. Определите наибольшее … Е26. В лесополосе осуществляется посадка деревьев. Причем саженцы высаживают рядами на одинаковом расстоянии. Через какое-то время осуществляется аэросъемка, в результате которой определяется, какие саженцы прижились. Необходимо определить ряд с максимальным номером, в котором есть подряд ровно 11 неприжившихся саженцев, при условии, что справа и слева от них саженц прижились. В ответе запишите сначала наибольший номер ряда, затем … Е26. При попадании каждой частицы на экран в протоколе фиксируются координаты попадания: номер ряда целое число от 1 до 10 000 и номер позиции в ряду целое число от 1 до 10 000. Точка экрана, в … Е26. По заданной информации об объёме файлов пользователей и свободном объёме на архивном диске определите максимальное число пользователей, чьи файлы можно сохранить в архиве, а … Е26. По заданной информации о цене каждого из товаров и количестве товаров, на которые будет скидка, определите … Е26. Гарантируется, что все числа различны. Необходимо определить, сколько в наборе таких пар чисел, что числа в паре имеют разную чётность, а их сумма тоже присутствует в файле, и чему равна наибольшая из сумм таких пар. Входные данные Первая строка входного файла содержит целое число N … Е26. Причем файлы размером больше 400 МБ записывает на диск A, а меньшего размера на диск F. Системный администратор старается сохранить как можно больше файлов.

Рубрика «ЕГЭ Задание 26»

#разбор заданий егэ по информатике 2022. 5сть полное совпадение задач 26 и 27. 5сть полное совпадение задач 26 и 27.

Rokokbet - Agen Situs Toto Macau Terpercaya Hadiah Togel Terbesar 2024

егэ по информатике информатика 10 класс информатика 11 класс информатика с нуля. Задание 6 в 2023 году будет посвящено анализу алгоритма для конкретного исполнителя, определению возможных результатов работы простейших алгоритмов управления исполнителями и вычислительных алгоритмов. Кроме того, задание такого типа в КИМ ЕГЭ по информатике включено с 2015 года и практически не претерпевало ательно рассматриваемая тема изучается недостаточно глубоко в значительном количестве образовательных организаций. Разбор 26 задания ЕГЭ 2017 года по информатике из демоверсии. Задание 3 ЕГЭ Информатика ДЕМО-2022 (Базы данных. ЕГЭ по информатике 9 мин 22 с. Видео от 23 апреля 2023 в хорошем качестве, без регистрации в бесплатном видеокаталоге ВКонтакте!

ЕГЭ по информатике с решением

Информатика. Решения, ответы и подготовка к ЕГЭ от Школково. Главная» Новости» 13 задание егэ информатика 2024. Тренировочные тесты ЕГЭ-2020 по всем предметам для 11 класса от авторов «СтатГрада» и других экспертов. ЕГЭ-2022 по информатике. Вебинар "Выполнение задания №26".

Задание 26 | ЕГЭ по информатике | ДЕМО-2024

40 Информатика. ЕГЭ по информатике 2022: задание 26. Главная Топ видео Новости Спорт Музыка Игры Юмор Животные Авто. Сегодняшний урок посвящн 26 заданию из егэ по информатике 2021. на нм мы будем тренировать умение обрабатывать целочисленную информацию с. 5сть полное совпадение задач 26 и 27. Тренировочные тесты ЕГЭ-2020 по всем предметам для 11 класса от авторов «СтатГрада» и других экспертов.

Похожие новости:

Оцените статью
Добавить комментарий