Анодирование – это метод повышения коррозионной стойкости металлического изделия путем формирования слоя оксида на его поверхности. Наиболее частой технологией анодирования алюминия является так называемое сернокислое анодирование – по химическому составу анодного раствора (электролита). Анодирование алюминия или его анодное окислениерассматривается многими предпринимателями, как одно из самых перспективных направлений обработки алюминия и его сплавов. Что такое анодированный алюминий? Смотрите видео онлайн «Подробно об анодировании-нужно ли анодирование на деталях из алюминия?
Анодирование алюминия: каким бывает и какие результаты дает
Процесс анодирования алюминия | Роль анодирования алюминия в защите от коррозии, повышении прочности и эстетической привлекательности алюминиевых изделий. |
Анодированный алюминий, полученный в домашних условиях | О сервисе Прессе Авторские права Связаться с нами Авторам Рекламодателям Разработчикам. |
Что называют анодированием и зачем его применяют | В данной статье мы расскажем вам о том, что такое анодирование, объясним основные понятия и способы анодирования, расскажем о плюсах и минусах метода, а также о том, когда используют анодирование | Статьи ГК Интерстилс в Ташкенте. |
Свойства и применение анодированных покрытий
Технология анодирования алюминия | Алюмпарк | В данной статье мы расскажем вам о том, что такое анодирование, объясним основные понятия и способы анодирования, расскажем о плюсах и минусах метода, а также о том, когда используют анодирование | Статьи ГК Интерстилс в Ташкенте. |
Процесс анодирования алюминия | Что такое анодирование? (классический процесс / ClassicELOX™). В отличии от всех остальных гальванических процессов, анодирование – процесс преобразования поверхности алюминия, при котором происходит конверсия поверхностных слоев алюминия в оксид. |
Анодирование: что это такое, применение, процесс | Ответив на вопрос: анодирование – что это такое, необходимо разобраться с оборудованием, которое предназначено для проведения данного процесса. |
Анодирование в "домашних" условиях V2.0
В результате реакции окисления на поверхности алюминия образуется не только оксидная пленка, но и микропоры. Такая особенность поверхности позволяет производить дополнительную декоративную окраску профиля. Декоративная обработка: окраска профиля " Дизайн Алюминий " предлагает алюминиевый профиль четырех цветов: черный, бронза, серебро, золото. Окончательное уплотнение алюминия. На этом этапе поры закрываются и оксидная пленка отвердевает. Свойства и преимущества анодированного профиля Анодированный алюминиевый профиль обладает рядом преимуществ, а именно: высокие декоративные и износоустойчивые качества; ровная однородная поверхность без сколов и царапин; возможность устойчивого окрашивания профиля в различные цвета; получения защитной пленки различной толщины профиль для помещений имеет толщину оксидной пленки 15 микрон, для улицы - 20 микрон. Мы ответственно подходим ко всем этапам анодирования нашего профиля. Поэтому готовы поручится за качество нашей продукции.
Однако, в условиях города воздух и осадки далеки от чистых: они содержат многочисленные газовые примеси особенно вблизи больших промышленных предприятий или автомагистралей , жидкие и твердые частицы особенно медь, железо , соли и щелочи. Щелочи а также соли ртути, меди и ионы хлора содержащиеся в воздухе особенно опасны для алюминия: они растворяют тонкий защитный слой и вступают с ним в реакцию: металл растворяется с выделением водорода. Кислоты особенно с высокими окислительными свойствами типа серной, соляной, азотной, уксусной разрушают алюминий, образуя его соли. Металлы железо, медь образуют с алюминием гальванические пары.
Кроме того, они увеличивают электропроводность электролита на поверхности металла влаги и продуктов коррозии, впитывающих ее. Возникающая электрохимическая коррозия разрушает поверхность алюминия. Идея технологии кратко Защитное покрытие создается за счет окисления поверхности алюминия кислородом, возникающим из воды при протекании тока получаемый оксид алюминия слабо реагирует с прочими химическими элементами и соединениями. Образующийся слой оксида алюминия частично разъедается кислотой: образуются многочисленные поры, через которые раствор воды и кислоты проникает еще глубже в материал.
Создается толстый защитный пористый слой. История технологии Анодирование было впервые использовано в промышленном масштабе в 1923 для защиты дюралюминиевых деталей гидросамолета от коррозии с хромовой кислотой. Этот процесс был тогда назван «процессом Бенгоу-Стюарта» «Bengough-Stuart process». Его модификация, с применением серной кислоты была запатентована в 1927г.
Она быстро стала наиболее часто применяющейся и остается таковой в наши дни.
Проблема в том, что при очень низкой температуре элекрическое сопротивление электролита сильно возрастает, вследствии чего вашего напряжения 25-50 вольт недостаточно для получения «правильной» плотности тока. У вас есть 2 пути решения: или поднять напряжение вольт так до 60-100 опасно!!! Я бы советовал второй вариант. Плотность тока правильная, а вот твердость анодного слоя слабовата, да и окраски у него по сути нет. Так себе, легкий мутновато-молочный оттенок… Дело в том, что температура- важнейший показатель процесса. И при превышении порога допуска, процесс изменяется качественно.
Из «холодного» он становится «теплым». Со всеми вытекающими: бесцветная и не слишком толстая и твердая пленка. Даже уже полученный «холодный слой», при этом разрыхляется и постепенно растворяется. Окраска исчезла не полностью, но пленка потеряла всякую прочность. Царапины от ногтя: 3 — Анодная плотность тока мала. Анодный слой растет медленно, он бесцветен. Хотя и прочен вполне.
Дело в том, что окрашенность у анодного слоя появляется скачкообразно, примерно с анодной плотности тока в 1,5.. При меньшей- слой получается бесцветным, а вернее- слегка мутно-белым. И хоть прочность такого слоя не так уж и плоха, мы ведь хотим еще и эстетики? В качестве небольшого запаса надежности. Вдруг вы ошиблись при подсчете площади поверхности детали? Хочется чтобы процесс шел быстро- потому вы подняли ток выше нормы. Но вас преследуют частые «пробои» и растравы то детали, то зажима подвески.
Это явление называется «прогар». Вот почему это происходит: Прогар — отчего он происходит? В принципе, при очень интенсивном перемешивании электролита, и как следствии — хорошем отводе тепла от детали, допустимы большие плотности тока. Это сокращает время процесса, и позволяет нарастить особо толстый анодный слой. В промышленности возможен даже вариант с 2мм слоем анода. Так обрабатывают рабочую поверхность цилиндров судовых двигателей. Для этого там имеют место во первых, супер качественное охлаждение детали в процессе анодирования, во вторых- напряжение анод-катод в сотни вольт.
Но ни то, ни другое мы позволить себе не сможем, к сожалению. И в итоге, из за естественной концентрации тока на углах и концах детали, деталь наша будет иметь зоны местного перегрева. А такие зоны нагревают окружающий электролит. А нагретый электролит имеет значительно более низкое электрическое сопротивление. Значит весь электрический ток устремляется именно в перегретую зону, перегревая ее этим еще больше! Кроме того, теплый электролит интенсивно растворяет анодный слой! В зоне перегрева начинается такой себе мини-процесс в «теплой» интерпретации.
В течении нескольких секунд, такая микрозона перегрева полностью оголяется до белого метала, и через нее начинает течь ток, в разы больший нормального. За пару минут деталь может раствориться наполовину! И все вышеуказаные проблемы- из за недостаточного перемешивания электролита! Таким образом, я не слишком советую большую плотность тока. В том смысле, что площадь поверхности свинцового катода мала, в сравнении с площадью поверхности обрабатываемой детали. Это не самая большая проблема, если вы обрабатываете маленькие детали, расположенные далеко от катода в разных концах ванны. Но вот, если вы станете анодировать тот же рессивер, в ванне не слишком больших габаритов, то начнутся проблемы.
Появится высокая склонность к прогару и растравливанию детали. Дело в том, что малые размеры катода способствуют неравномерному распределению силовых линий тока по поверхности детали. А это и приводит в итоге к повышенному риску прогара. Мой совет: площадь катода должна быть хотя бы в 2 раза больше чем площадь детали. В этом случае, получится достаточно равномерное распределение тока на поверхности детали. В идеале- лучше всего иметь свинцовую «облицовку» по всем стенкам и дну ванны. Не удается добиться правильной силы тока, а самое главное,- при подаче тока на деталь, пузырьки кислорода идут не с ее поверхности, а с поверхности зажима.
Ну или- вообще не идут. Чисто електрическая проблема. Возникшая, скорее всего, от вашей лени сделать качественный зажим. Всяческие варианты с обматыванием детали алюминиевой проволокой, имхо, ненадежны. Зажим должен быть струбциноподобным, с резьбовой контактной шпилькой-электродом из алюминия. Только такая конструкция позволяет с достаточной силой прижать електрод к детали, обеспечив тем самым, надежный электрический контакт. Возможна и еще одна причина- точка контакта шпильки-электрода на зачищена наждачкой.
Надо перед каждым анодированием обязательно зачищать точку контакта. Алгоритм правильного режима анодирования: 1- Вы аккуратно подсчитали площадь поверхности детали, и правильно вычислили необходимую силу тока. Диаметр пузырьков крайне мал, их общее течение напоминает скорее струйки дыма, чем собственно пузырьки. Для полного понимания вот вам фото «правильного» течения процесса: 4- Длительность процесса контролируется в общем то визуально по цвету детали, но в среднем равна 20-30 минутам для мелких деталей заглушки и т. Подготовка под анодирование. Есть несколько специфичных тонкостей, которые надо знать, чтобы подготовить детали к анодировке. Легко подсчитать, что при толщине слоя 0,05 мм, болту в гайке станет теснее на 0,2 мм.
Шлифовать тем или иным способом деталь уже анодированную почти невозможно- твердость покрытия как у керамики. Да и крайне неэстетично обдирать часть покрытия, открывая, к тому же, дорогу коррозии… Значит единственный способ- обеспечить «запас» до обработки. Плоские участки можно подогнать напильником и шкуркой. Ну а у резьбы, как показывает практика, достаточно легко шлифовать лишь самую вершину резьбы- именно ей «становится тесно». Это можно сделать очень мелкой наждачкой. Во первых сильно выигрывает эстетика, во вторых снижается вероятность «прогара» при анодировании. Хотя, на самом деле, не так этот прогар и страшен..
Надо отметить что дефекты поверхности анодный слой не маскирует- они будут видны и на обработанной детали. Не советую держать ее в горячем едком калии или натрии, как рекомендуют заводские технологи- это заметно портит чистоту поверхности. Лучше пользоваться куском хозяйственного мыла и зубной щеткой- детали мелкие, работа нас не пугает… 4 — Очень эффективно обезжиривает стиральный порошок: достаточно растворить его в горячей воде, залить в пластиковую емкость, высыпать туда детали и хорошенько потрясти посудину. Но есть одно НО: после промывки детали надо тут же высушить горячим воздухом, иначе дюраль интенсивно окисляется! Видимо, стиральный порошок уж очень агрессивен! Тончайший слой жира с пальцев рук- не помеха. Он моментально окисляется кислородом при первых секундах анодирования и всплывает в виде черных хлопьев… Вот и все.
Этого вполне достаточно. Самодельная установка для анодирования. Тут я постараюсь подробно описать устройство всего необходимого оборудования. С некоторыми рекомендациями по изготовлению. Ну и, по возможности, с фотографиями. Замечу, установка пригодна для анодирования деталей с площадью поверхности примерно до 7-8 дм2. На практике этого хватит для ресиверов ружей 70-90 см.
Итак, приступим: Гальваническая ванна. Ванна, скорее всего, понадобится даже не одна. У меня их, например, три. Одна- для обработки всяких маленьких деталей, другая- для недлинных труб до 60 см , третья- для длинных труб 70-90 см. Замечу, для работы с последней, нужен весьма мощный блок питания, до 20-30 ампер при 50 вольтах. Материал для изготовления ванны может использоваться разный, можно даже использовать нержавейку или алюминий. Но эти ванны придется тщательно мыть после использования.
И в них нельзя оставлять электролит надолго. Потому как коррозия будет иметь место. Более нетребовательны пластиковые ванны. И, пожалуй самый подходящий материал- полиэтилен. Так, для маленькой ванны я использую пищевой контейнер, купленный в супермаркете, на 6 литров. А для больших ванн я вполне приспособил длинные пластиковые цветочные горшки- очень подходящая «тара» получилась. И вполне кислотоупорная.
Что очень важно- ванна должна иметь хорошую теплоизоляцию корпуса. Иначе электролит будет быстро в ней нагреваться, особенно летом, придется гораздо чаще его менять. Самое простое решение- обклеить ванну толстым 2-4 см слоем пенопласта. Можно также, закрепив ванну внутри подходящей коробки, залить промежуток строительной пеной. Но имейте в виду- пена, расширяясь, может сильно покоробить ванну. Тут важно- не переборщить с количеством пены. Лучше ее лить в несколько этапов.
Вот примерно такие ванны должны у вас получиться: Затем, необходимо изготовить свинцовый катод для ванны. Делается он из листового свинца. Такой свинец лучше всего снять с толстых електрокабелей. Думаю, вы и так это знаете: аккумуляторы и кабеля- 2 основных источника Pb для подвоха, озабоченного изготовлением грузов для грузпояса… Задача состоит в том, что площадь катода должна быть не менее чем раза в 2 больше площади поверхности обрабатываемой детали. При этом, поверхность катода, прислоненная к стенке дну ванны в учет не берется. Весьма полезным является наличие множества отверстий в катодной пластине- через них удобно выходить газу и, кроме того, так катод работает чуть эффективнее. Катод можно собрать из нескольких кусков, если нет одного большого.
При этом куски надо паять мощным паяльником, обязательно- вдоль всех стыков толстым швом. Не забывайте- у нас сильноточная цепь, она не любит тонких сечений! Паять лучше свинцом , а не припоями ПОС. Вывод контакта из ванны можно выполнить просто полоской того же свинца. Хотя можно и толстым медным проводом в изоляции. Место припайки медного провода надо изолировать силиконовым герметиком. Вот такие катоды для ванн получились у меня: Токоограничивающий резистор.
Кусок толстого нихромового провода диаметром 2 мм- метров этак 5. Из него нужно свернуть спирать- это будет мощный сильноточный резистор для регулировки силы тока на детали. По тому же принципу, как и у сварщиков. Купить такой провод можно там, где торгуют разным оборудованием для электросварки. Спираль сделать путем навивки провода на подходящий штырь или трубу. Можно часть резистора сделать из тонкой 1.. Не советую экспериментировать со стандартными, вращающимися проволочными потенциометрами зеленые такие — их мощность все же маловата, будут сильно греться.
Да и цена- немаленькая. Поверьте, простая самодельная спираль с «крокодилами» — и проще и надежнее. Блок питания. Электрическая схема БП выглядит примерно так: Попробуем разобрать ее по блочно. Самая важная и дорогая деталь БП. К нему предъявляются весьма высокие требования. Прежде всего- по мощности.
Если вы намерены анодировать не только мелкие детали, а и относительно крупные ресиверы ружей , с площадью поверхности 5-8 дм2, то ищите трансфоматор с током вторичной обмотки 10-15 ампер. Такие трансформаторы весьма дороги, поэтому иногда выгодно купить 2 меньших, и подключить их параллельно. Очень важно, чтобы во вторичной обмотке был хотя бы один центральный отвод- это даст вам 2 рабочих напряжения. Если будет несколько отводов- еще лучше. Напряжения вторичных обмоток я советую 2х25 вольт. Это довольно распространенный вариант. У меня 2 спараллеленных: один самодельный, другой- силовой от советского усилителя мощности: 2- диодный мост.
Можно, конечно собрать его и на отдельных диодах, но сегодня удобнее купить единым блоком- это уже давно не редкость.
Более того, компания Fox предоставляет покупателям возможность приобрести вилки и амортизаторы с покрытием Kashima, которое является запантетованной технологией анодировки японской компании Miyaki. Это невероятно прочное, плотное и гладкое покрытие, которое наносится на модели премиальной серии Factory. Пример вилки от RockShox с черной анодировкой на Stinger Genesis За анодировкой вилок и амортизаторов необходим уход, как минимум нужно иметь в виду, что через стертое покрытие на ногах вилки внутрь вилки будет попадать грязь, а сильные царапины будут повреждать башинги и пыльники. Полируйте поверхность в случае неглубоких царапин и легких стертостей, а если повреждения глубокие и сильные - лучше отнести в веломастерскую, чтобы там царапины аккуратно залатали, либо восстановили анодировку. Фирменное покрытие Kashima Coat на вилках Fox Factory. При желании также всегда можно найти мастера, готового анодировать детали велосипеда в разные цвета, например, если вы хотите фиолетовый вынос или красный руль. Анодировке поддается большинство алюминиевых деталей, но обычно на анодирование приносят втулки, рули, звезды, выносы, рулевые и подседельные штыри.
Что такое анодированный алюминий
Помимо этого, анодирование алюминия придает изделиям дополнительные эстетические свойства и респектабельный внешний вид. Прекрасный внешний вид этого материала делает возможным его использование для производства декоративных изделий, а высочайшие показатели функциональности делают его незаменимым при изготовлении высокопрочной фурнитуры, а также антипригарной посуды и отделки в стиле хай-тек дорогих автомобилей. Использование анодированного алюминия для производства лестниц и стремянок весьма распространено в мире. Изготовленные из этого материала конструкции прочнее и гораздо удобнее и безопаснее в эксплуатации, чем лестницы из простого алюминия.
Однако на территории нашей страны функционирует всего одна компания, занимающаяся производством стремянок из анодированных сплавов — московская. Эта организация функционирует в течение более чем семи лет, и все эти годы основным материалом производства являлся анодированный алюминий. На сайте компании, находящемся по адресу www.
Что такое анодированный алюминий и как анодируют алюминиевый профиль Алюминий сам по себе в обычных атмосферных условиях покрывается оксидной пленкой. Это естественный процесс под влиянием кислорода. Практически использовать его невозможно, так как пленка слишком тонка, почти виртуальна.
Но было замечено, что она обладает кое-какими замечательными свойствами, которые заинтересовали инженеров и ученых. Позже они смогли получать анодированный алюминий химическим способом. Оксидная пленка тверже самого алюминия, а значит, защищает его от внешних воздействий.
Износостойкость у деталей из алюминия с оксидной пленкой значительно выше. Кроме того, на покрытую поверхность гораздо лучше ложатся органические красители, следовательно, она имеет более пористую структуру, что повышает адгезию. А это очень важно для изделий с последующей декоративной обработкой.
Так, инженерные исследования и опыты привели к изобретению способа электрохимического образования оксидной пленки на поверхности алюминия и его сплавов, который получил название анодное оксидирование алюминия, — это ответ на вопрос «что такое анодирование». Анодированный алюминий очень широко применяется в различных областях. Галантерейные изделия с декоративными покрытиями, металлические оконные и дверные рамы, детали морских кораблей и подводных аппаратов, авиационная промышленность, кухонная посуда, автомобильный тюнинг, строительные изделия из алюминиевого профиля — далеко не полный перечень.
Как происходит процесс анодирования? Вся процедура состоит из трех этапов работы: подготовки металла, его химической обработки и закреплении покрытия на поверхности. Предлагаем подробнее рассмотреть каждую из указанных фаз на примере обработки такого материала как алюминий: Подготовительный этап.
Профиль из металла очищается механическим путем, после чего шлифуется и обезжиривается. Сделать это необходимо для того, чтоб покрытие крепко зафиксировалось на основе. Далее в действие вступает применение щелочей.
Деталь помещают в раствор на некоторое время для травления, после чего перекладывают в кислотную жидкость, где алюминий осветляется. Завершающей стадией анодной подготовки является полная промывка деталей от остатков щелочи и кислоты. Химическая реакция.
Заготовленное изделие кладут в электролит. Он представляет собой раствор из кислоты, к которому подключено воздействие тока. Анодируемый материал чаще всего обрабатывают с помощью серной кислоты, а для достижения расцветки применяют щавелевый ее аналог.
Успешный результат достигается при правильных показателях температуры и плотности тока. Твердое анодирование предполагает использование низких температур, если же цель — получить мягкую и пористую пленку — показатели повышают. Этап фиксирования покрытия.
Полученные алюминиевые детали с образовавшейся на них пленкой имеют пористый вид, поэтому их необходимо упрочнить. Для этого применяется несколько методов: окунание изделия в горячую воду, обработка паром или холодным раствором. Статья по теме: Патинирование или как состарить металл Читайте также: Преимущества и недостатки технологии гидроабразивной резки При дальнейшей цветной окраске изделия нет необходимости производить закрепление анодирования.
Существующие лакокрасочные материалы отлично ложатся на пористую поверхность, образуя прекрасное сцепление с ней. Стоит отметить, что таким анодированием покрывают металлы на промышленных предприятиях. Особо прочный тип покрытия реально получить при твердом типе процедуры.
Данный материал применяется в автопроизводстве, строении самолетов и строительстве. Что такое анодирование Как анодировать алюминий? Анодирование- это такой процесс, при котором получают слой оксидной пленки на поверхности алюминиевой детали.
В электрохимическом процессе покрываемая деталь играет роль анода, поэтому процесс и называется анодированием. Самый распространенный и простой способ — в разбавленной серной кислоте под воздействием электрического тока. Как работает анодирование Чтобы понять, что это — анодированный алюминий, нужно чуть подробнее остановиться на том, как образуется защитная пленка.
Большинство металлов защищают либо протекторами, либо изоляторами из сплавов и соединений, более стойких к кислороду и влаге. Анодированный защитный слой представляет собой обычный окисленный алюминий Al2O3, но не в виде мягкой аморфной микропленки, которая всегда присутствует на его поверхности, а как кристаллическая структура, по свойствам напоминающая корунд или шпинель. Анодированная пленка отличается следующими характеристиками: Микрокристаллическая структура; Наличие огромного количества пор в поверхностном слое анодированной пленки и сверхплотная и прочная структура в основании; Невероятно прочное сцепление окисленного слоя с металлом.
К сведению! При точном соблюдении технологического процесса четкой границы между металлом и анодированной пленкой не существует. Сложная сетка из микрокристалликов плавно переходит в металл без четко очерченной границы.
Что это означает? Это значит, что пленка из анодированного алюминия не отслоится от основы при любых нагрузках и через 40 лет, тогда как никелевое или лакокрасочное покрытие со временем медленно отслаивается от алюминиевой матрицы. В зависимости от выбранных условий получения анодированной поверхности технология позволяет получить несколько вариантов защитного слоя.
Сверхтонкая окисленная пленка упорядоченной структуры при толщине в 10-25 мкм на поверхности алюминиевого зеркала даже не просматривается невооруженным глазом.
Какой класс использовать, зависит от условий последующей эксплуатации изделий. Первые два класса покрытия 5 и 10 чаще всего используют для тех изделий, которые эксплуатируются внутри помещений, остальные 15, 20, 25 — для архитектурных конструкций. Технологические возможности позволяют получать анодные покрытия различных цветов: светлое и темное золото, жемчуг, бесцветный. Для изделий, используемых внутри помещений, может использоваться цвет бронзы, а для малогабаритных изделий — черный цвет.
Линия оснащена итальянской системой контроллеров и выпрямителей производства Elca. Она позволяет выполнять анодирование при оптимально подобранных для каждой подвески параметрах процесса. Производительность линии составляет 100 тысяч м2 в месяц. Оборудование позволяет наносить покрытие на изделия высотой 1500 мм, длиной 6800 мм, шириной 500 мм. Речь идет, в том числе, о радиаторах охлаждения, светодиодных светильниках, корпусах приборов, крепежных элементах и других деталях.
В результате многолетних экспериментов специалисты нашей компании подобрали особую технологию анодирования: за счет достижения поверхностью коэффициента черноты 0,8 — 0,85 удается обеспечить максимальную излучательную способность. Это значительно продлевает срок службы всего изделия. Анодно-окисная пленка обеспечивает коррозионную стойкость до 25 лет даже в агрессивной среде и повышает механическую износостойкость изделия.
В зависимости от плотности тока, состава сплава и электролита это может быть бронзовый и желтый, голубой и пурпурный, ярко-зеленый и ярко-синий электрик. Если же этих цветов недостаточно, то поверхность анодированного металла в отличие от необработанного хорошо удерживает неорганические пигменты и синтетические красители и может быть окрашена в любой цвет. Достоинства анодирования не исчерпываются широкой цветовой гаммой гальванического покрытия.
Оксидные пленки в зависимости от условий процесса придают различные технологические свойства поверхностям металлов. Что дают оксидные покрытия, получаемые при анодировании? Низкую электропроводность оксидов. На поверхности алюминия образуется диэлектрический слой, который может быть усилен эмалью или лаком.
Сегодня речь пойдет об обработке анодированием при изготовлении экструдированного алюминиевого корпуса. Принцип окисления: процесс электризации алюминиевого сплава в качестве анода и электролита в качестве катода и постепенное образование оксидной пленки на поверхности алюминиевого сплава под действием электронов. Несколько факторов, влияющих на формирование оксидной пленки: материал, ток, температура, концентрация, время, эти пять факторов являются ключевыми факторами, которые непосредственно определяют конечное качество оксидной пленки. Основным компонентом оксидной пленки является оксид алюминия, представляющий собой сотовую микропористую структуру, которая может адсорбировать молекулы красителя в порах, что является принципом окрашивания. Особенности оксидной пленки: высокая твердость, коррозионная стойкость, изоляция, возможность окрашивания. Весь процесс окисления делится на четыре части: предварительная обработка, окисление, окрашивание и постобработка. Предварительная обработка: обезжиривание, промывка водой, травление щелочью удаление оксидной пленки , химическая полировка повышение яркости. Окисление: как указано выше Крашение: делится на адсорбционное окрашивание и электролитическое окрашивание. Адсорбционная окраска делится на монохромную и колеровочную. Молекулы красителя проникают в микропоры оксидной пленки, и краситель будет претерпевать переходы электронных уровней энергии под действием сильных длин волн, таких как ультрафиолетовые лучи, тем самым изменяя цветовую систему и вызывая существенное обесцвечивание. Электролитическое окрашивание требует электричества, но не используемого красителя, а электролита, который не выгорает. Последующая обработка: в основном герметизация, герметизация - это процесс, в котором оксид алюминия вступает в реакцию с водой и другими добавками с образованием объекта в гелеобразном состоянии и заполнением микропор оксидной пленки. Три степени окисления, пассивация, анодирование, жесткое окисление. Оксидная пленка обычно составляет от 1 до 3 микрон. Слой оксидной пленки образуется путем пропитки алюминиевого сплава сильным окислителем. Этот слой оксидной пленки очень тонкий, поэтому он может проводить электричество. Точно так же сам алюминиевый сплав образует оксидную пленку в естественной среде, что является реакцией с кислородом, и эта оксидная пленка тоньше. Пассив не может быть окрашен, потому что оксидная пленка не имеет условий для окрашивания.
Анодирование в "домашних" условиях V2.0
Механизм и технология анодирования Ан.окс. Структура и свойства оксида алюминия в покрытии. | Анодирование – это метод обработки, который изменяет химию поверхности различных материалов, в частности, металлов. |
Анодирование в домашних условиях - способы и технология | Предлагаем вам рассмотреть вопрос о том, что такое анодированный алюминий, какие существуют его разновидности, в каких сферах используется анодированный алюминий и можно ли анодировать этот материал своими руками. |
Анодирование — Википедия | Анодирование в обобщенном смысле – это электрохимический процесс образования стабильных оксидных покрытий на поверхности металлов. |
Технология анодирования алюминия | Анодирование производится посредством процесса электролитической диссоциации, когда покрываемую деталь присоединяют к электроду и погружают ее в электролит. |
Анодирование металлов - что это такое? | Анодирование алюминия или его анодное окислениерассматривается многими предпринимателями, как одно из самых перспективных направлений обработки алюминия и его сплавов. |
Чем отличается анодированный алюминий от обычного
Поскольку в центре емкости образуется зона более теплой смеси, в ходе обработки обеспечивается постоянная циркуляция. Среди недостатков метода специалисты отмечают невозможность применения органических красок. Твердое анодирование Метод твердого анодирования используется для нанесения высокопрочного защитного покрытия на поверхность стальных деталей. Главные области применения — авиационная и космическая промышленность.
Технология позволяет использовать сразу несколько электролитов в заданных концентрациях, что существенно повышает качество оксидной пленки. Состав применяемых смесей, как и режимы обработки заготовок, как правило, защищены патентами. Процесс анодирования алюминия В процессе анодного оксидирования алюминиевые детали проходят несколько последовательных стадий обработки: очистку, травление, анодирование, покраску и герметизацию.
Крупногабаритные заготовки в ходе технологического процесса перемещаются с помощью специальных подъемных устройств — мостовых кранов, кран-балок и т. Качество очистки и обезжиривания поверхности критически важно, так как влага, жир и грязь могут стать причиной возникновения дефектов покрытия. На алюминиевых заготовках при некачественной подготовке появляются мелкие белые пятна.
Кроме того, пыль и грязь могут стать причиной неравномерного травления, что также негативно сказывается на качестве оксидной пленки. Травление Очищенные заготовки отправляются на травление в отдельную емкость, заполненную щелочным или кислотным травильным раствором. В ходе этой процедуры удаляется тонкий слой металла, что делает поверхность более однородной.
В ходе травления с поверхности также убирают все микродефекты, что делает ее более гладкой. Далее заготовки извлекают из ванны с травильным раствором и тщательно очищают от остатков кислоты и других загрязнений с помощью специальных составов — гидроксида натрия, нейтрализующих добавок, содержащих аммиак или аммиачные соединения, деминерализованной воды и т. Осаждающиеся на поверхность металла частички формируют прочную оксидную пленку.
Такие электрохимические реакции сопровождаются выделением большого количества тепла, в связи с этим электролитный раствор в ванне необходимо постоянно охлаждать. По завершении анодного оксидирования заготовки промывают в деионизированной воде, что позволяет удалить заряженные частицы, из-за которых на анодированной поверхности могут появиться пятна. Добавление цвета Пористая структура полученного при анодировании покрытия позволяет использовать его для последующей окраски, которая придает изделиям дополнительную эстетичность и защищает их от воздействия влаги и агрессивных химических веществ.
Процесс обработки различных типов металла При анодировании заготовок из стали учитываются свойства и характеристики конкретного металла. Рассмотрим особенности технологического процесса для других металлов и их сплавов: Анодирование меди и медных сплавов Медь тяжело поддается анодированию. Чаще всего медные детали обрабатывают электрохимическим способом, который позволяет изменить цвет поверхности.
Электролитный раствор готовят на основе фосфатов или оксалатов. Оксидирование меди и ее сплавов — очень сложный технологический процесс, поэтому применяется очень редко. Анодирование титана Для изделий из этого металла оксидирование — практически обязательная процедура.
Нанесение оксидной пленки позволяет не только повысить прочность и износостойкость деталей, но и придать поверхности требуемый цвет. Покрытие может окрашиваться в любой оттенок из весьма широкого спектра. Электролитные растворы для анодирования титановых заготовок изготавливаются на основе практически любой кислоты.
Анодирование серебра При анодном оксидировании поверхности изделий из серебра чаще всего применяется смесь полисульфидов натрия серная печень , с помощью которой поверхность окрашивается в различные оттенки синего или фиолетового цветов. Анодирование алюминия Для улучшения характеристик поверхности алюминиевых заготовок широко применяется анодное оксидирование. Существует большое количество методик, позволяющих не только повышать прочность и износостойкость изделий, но и окрашивать их поверхность в различные цвета.
Чаще всего анодирование алюминия и его сплавов используется в декоративных целях. Применение анодированного алюминия Анодированный алюминий выгодно отличается от других металлов малым весом и относительной дешевизной, которые в сочетании с повышенной стойкостью к изнашиванию ставят его вне конкуренции в качестве материала для изготовления строительных конструкций. Этими свойствами обусловлено широкое применение алюминия в производстве автомобилей, самолетов, судов, ракет и различного бытового и коммунального оборудования.
Эстетичное и прочное оксидированное покрытие позволяет повсеместно применять алюминиевые сплавы для изготовления спортивных товаров, посуды, фурнитуры и множества других изделий. Особенности ухода за анодированным покрытием Разберемся, как ухаживать за деталями с оксидированным покрытием на примере велосипедных вилок. Выход из строя деталей на любимом байке — большая неприятность.
Защитное покрытие спасает металл от ржавления и повреждений, но только при условии его целостности.
Во втором случае в проводящую среду добавляются красители различных цветов со строго определённым химическим составом. Первыми внедрили в производство промышленное анодирование алюминия инженеры из Великобритании. Созданный таким способом лёгкий и прочный металл начали применять в авиационной промышленности. Позже появился стандарт анодирования металла, который успешно применяется в современном авиастроении. В состав покрытия входят два компонента: органический; Краска, нанесённая в соответствии со стандартом, очень устойчива к истиранию и другим механическимповреждениям. Технология анодирования На сегодняшний день наибольшее распространение получил процесс сернокислого анодирования алюминия. Его суть в следующем: Деталь и катод, изготовленный из свинца, помещаются для очистки от примесей и масел в ванну с электролитом — серной кислотой H2 SO4. Производится окончательная промывка в растворе каустика. На поверхности детали из алюминия создаётся тончайший оксидный слой.
Скорость роста анодного слоя на поверхности металла неравномерна и очень невысока. При меньших показателях слой получается практически бесцветным. Большие значения катодной плотности отношения размера катода к величине обрабатываемой поверхности вызывают затруднения при обработке массивных деталей — появление прогаров и растравливание.
Низкотемпературная плазма, образующаяся в непосредственной близости от металла под оксидом, является источником анионов кислорода, необходимых для образования оксида. При анодировании в газовой плазме оксид образуется в результате диффузии анионов кислорода из плазмы. Слайд 6 Описание слайда: Комбинация уникальной пористой структуры с высокой температурной, механической и химической стабильностью делает пленки анодированного оксида алюминия привлекательным материалом для различных применений в области фильтрации и разделения смесей, хранения информации, в сенсорике и для синтеза одномерных наноструктур. Комбинация уникальной пористой структуры с высокой температурной, механической и химической стабильностью делает пленки анодированного оксида алюминия привлекательным материалом для различных применений в области фильтрации и разделения смесей, хранения информации, в сенсорике и для синтеза одномерных наноструктур.
Слайд 7 Описание слайда: Мембраны анодированного оксида алюминия АОА обладают однородной пористой структурой с гексагональной упаковкой цилиндрических каналов и узким распределением пор по размерам.
Анодированное покрытие: что это, где применяется, как изготавливается
Анодирование алюминиевых профилей широко использовалось в архитектуре в 1960-х и 70-х годах. Главная» Новости» Анодированный болт что это. Предлагаем вам рассмотреть вопрос о том, что такое анодированный алюминий, какие существуют его разновидности, в каких сферах используется анодированный алюминий и можно ли анодировать этот материал своими руками. это электролитическая пассивация, применяемая для увеличения толщины естественного оксидного слоя на поверхности металлических деталей.
Процесс анодирования алюминия
Обычно анодирование проводят при постоянном токе в гальваностатическом или потенциостатическом режиме. #2 Что такое процесс черного анодирования? Черное анодирование относится к процессу электролитического окрашивания, который превращает поверхность алюминия в прочный черный оксид отделка. Анодирование алюминиевых профилей широко использовалось в архитектуре в 1960-х и 70-х годах. Его характеристики можно улучшить благодаря анодированию, в результате которого на поверхности образуется прочный и устойчивый защитный слой. Что такое анодирование. это техника нанесения слоя металла на какой-либо предмет путем гальваностергии.
Свойства и применение анодированных покрытий
Анодирование — что это такое? Анодирование алюминия — это электролитический способ улучшения коррозионной устойчивости путем образования оксидного слоя. Анодирование алюминия разными методами: описание технологии оксидирования и цветного анодного окисления. Анодирование в обобщенном смысле – это электрохимический процесс образования стабильных оксидных покрытий на поверхности металлов. Анодирование алюминия или его анодное окислениерассматривается многими предпринимателями, как одно из самых перспективных направлений обработки алюминия и его сплавов. В этой статье вы узнаете, что такое анодирование и как происходит нанесения защиты на изделия.
Анодирование
Что такое анодирование. Процессом анодирования называется электролитическая химическая реакция металла с окислителем. #2 Что такое процесс черного анодирования? Черное анодирование относится к процессу электролитического окрашивания, который превращает поверхность алюминия в прочный черный оксид отделка. Ответив на вопрос: анодирование – что это такое, необходимо разобраться с оборудованием, которое предназначено для проведения данного процесса.