Новости гелий 3 на луне

Добыча гелия-3 потребовала бы астрономические суммы для организации на Луне горнодобывающей и перерабатывающей промышленности.

Пациент Neuralink играет в шахматы мыслью, Добыча ГЕЛИЯ-3 на ЛУНЕ, Новое обновление робота H1

Мар 10, 2010 гелий-3 , кислород , Луна , полезные ископаемые Нам всем нравится любоваться Луной в прекрасную безоблачную ночь. Это очень романтично. Вместе с тем прагматики понимают, что перспектива освоения Луны возрастает с каждым годом. Действительно, какие полезные ископаемые есть на Луне?

Этот метод обладает огромным энергетическим потенциалом, однако пока человечеству не удалось создать подходящий реактор. Если ученым удастся придумать, как на практике использовать ядерный синтез для производства энергии, то он может стать источником чистой энергии. Однако топливо для него нужно будет добывать на Луне. Будущее энергетики Камень Чанъэ дает надежду на то, что на Луне действительно много гелия-3, который потенциально можно будет использовать для атомной энергии нового поколения. Всего 40 тонн вещества дали бы возможность обеспечивать энергией все США в течение года. Аарон Олсон, научный сотрудник НАСА по космическим технологиям, подчеркнул : «Из различных материалов, имеющихся на Луне, потенциально только один имеет значительную ценность на Земле — гелий-3. Если его использовать как топливо в реакторе ядерного синтеза, то он может способствовать производству электроэнергии по всему миру».

Обновлено 14.

Когда энергия связи продуктов реакции выше, чем исходных материалов, - реакция идет с выделением энергии, и, если научиться ее забирать в том или ином виде, исходные вещества можно использовать как топливо. Из химических процессов наиболее эффективна в этом смысле, как известно, реакция взаимодействия с кислородом - горение, которая сегодня служит основным и незаменимым источником энергии на электростанциях, на транспорте и в быту еще больше энергии выделяется в ходе реакции фтора, особенно молекулярного, с водородом; однако и сам фтор, и фтористый водород - вещества чрезвычайно агрессивные. Поэтому тонна ядерного топлива заменяет многие миллионы тонн нефти. Однако синтез не зря называется термоядерным: чтобы преодолеть электростатическое отталкивание при сближении двух положительно заряженных атомных ядер, нужно как следует разогнать их, то есть нагреть ядерное топливо до сотен миллионов градусов вспомним, что температура есть мера кинетической энергии частиц. По сути, при таких температурах мы имеем дело уже не с газами или жидкостями, а с четвертым состоянием вещества - плазмой, в которой нет нейтральных атомов, а есть только электроны и ионы. В природе подобные условия, подходящие для синтеза, существуют лишь в недрах звезд. Солнце своей энергией обязано так называемому гелиевому циклу реакций: синтезу ядра гелия-4 из протонов.

В звездах-гигантах и при взрывах сверхновых рождаются и более тяжелые элементы, формируя, таким образом, все разнообразие элементов во Вселенной. Правда, считается, что часть гелия могла образоваться и непосредственно при рождении Вселенной, во время Большого взрыва. Солнце в этом смысле не самый эффективный генератор, потому что оно горит долго и медленно: процесс тормозит первая и самая медленная реакция синтеза дейтерия из двух протонов. Все следующие реакции идут гораздо быстрее и немедленно пожирают доступный дейтерий, в несколько этапов перерабатывая его в ядра гелия. В результате, даже если предположить, что в синтезе участвует только одна сотая солнечного вещества, находящаяся в его ядре, энерговыделение составляет всего лишь 0,02 ватта на килограмм. Впрочем, именно этой медлительности, объясняемой в первую очередь небольшой, по звездным меркам, массой светила Солнце относится к категории субкарликов и обеспечивающей постоянство потока солнечной энергии на многие миллиарды лет, мы обязаны самим существованием жизни на Земле. В звездах-гигантах преобразование материи в энергию идет значительно быстрее, но в результате они сжигают себя полностью за десятки миллионов лет, не успев даже толком обзавестись планетными системами. Задумав провести термоядерный синтез в лаборатории, человек собирается таким образом перехитрить природу, создав более эффективный и компактный генератор энергии, чем Солнце.

Однако мы можем выбрать гораздо более легко осуществимую реакцию - синтез гелия из дейтерий-тритиевой смеси. Планируется, что проектируемый международный термоядерный реактор - токамак "ИТЕР" сможет достичь порога зажигания, от чего, впрочем, еще очень и очень далеко до коммерческого использования термоядерной энергии см. Основная проблема, как известно, состоит в том, чтобы удержать плазму, нагретую до нужной температуры. Так как никакая стенка при такой температуре не избежит разрушения, то удерживать плазменное облако пытаются магнитным полем. В водородной бомбе задача решается взрывом небольшого атомного заряда, сжимающего и нагревающего смесь до необходимой кондиции, но для мирного получения энергии этот способ мало подходит. О перспективах так называемой взрывной энергетики см. Главный недостаток дейтерий-тритиевой реакции - высокая радиоактивность трития, период полураспада которого составляет всего 12,5 лет. Это самая радиационно-грязная из доступных реакций, причем настолько, что в промышленном реакторе внутренние стенки камеры сгорания необходимо будет менять через каждые несколько лет из-за радиационного разрушения материала.

Правда, наиболее вредные радиоактивные отходы, требующие бессрочного захоронения глубоко под землей из-за большого времени распада, при синтезе не образуются совсем. Другая проблема заключается в том, что выделяемую энергию уносят в основном нейтроны. Эти не имеющие электрического заряда частицы не замечают электромагнитного поля и вообще плохо взаимодействуют с веществом, так что отобрать у них энергию непросто. Реакции синтеза без трития, например с участием дейтерия и гелия-3, практически радиационно безопасны, так как в них используются только стабильные ядра и не производятся неудобные нейтроны. Однако, чтобы "зажечь" такую реакцию, нужно, компенсируя более низкую скорость синтеза, нагреть плазму в десять раз сильнее - до миллиарда градусов одновременно решив задачу ее удержания!

То есть никакого создания прибавочной стоимости не произойдёт и «оплачивать счета» в конечном итоге будет NASA. Эта «лунная лихорадка» во многом похожа на золотую лихорадку в Калифорнии, но без золота. Сбор гелия-3 может изменить эту ситуацию, извлекая выгоду из ресурсов на Луне. Для добычи гелия-3 придётся решить немало технических задач. Необходимо разработать способ извлечения газа из лунного реголита — абразивного, каменистого и похожего на грязь материала с поверхности Луны.

Затем гелий-3 нужно отправить на Землю, что на данный момент нереализуемо. Наконец, потребуется организовать большой и устойчивый рынок сбыта добытого изотопа на Земле. NASA инвестирует десятки миллиардов долларов в программу «Артемида» по высадке людей на Луну, Мейерсон хочет использовать эти транспортные, энергетические и другие ресурсы, чтобы основать горнодобывающую компанию на Луне. Гелий-3 — стабильный изотоп гелия с двумя протонами и одним нейтроном.

Коммерческая добыча гелия-3 из лунного грунта: стартап хочет попробовать

Копирование, распространение, иное использование опубликованных на сайте видеоматериалов без предварительного согласия правообладателя не допускается. Мнение авторов может не совпадать с позицией редакции. Позиция редакции может быть озвучена только главным редактором или лицом, которое главный редактор специально уполномочил. Не каждая позиция главного редактора является официальной позицией редакции.

При этом считается, что его в изобилии можно найти на Луне. По некоторым оценкам, в первых нескольких метрах поверхности его может быть до 1,1 млн тонн.

Гелий-3 не радиоактивен, поэтому он может стать безопасным вариантом топлива для реакторов ядерного синтеза. Этот метод обладает огромным энергетическим потенциалом, однако пока человечеству не удалось создать подходящий реактор. Если ученым удастся придумать, как на практике использовать ядерный синтез для производства энергии, то он может стать источником чистой энергии. Однако топливо для него нужно будет добывать на Луне. Будущее энергетики Камень Чанъэ дает надежду на то, что на Луне действительно много гелия-3, который потенциально можно будет использовать для атомной энергии нового поколения.

Всего 40 тонн вещества дали бы возможность обеспечивать энергией все США в течение года.

Они применимы, например, для отопления домов. Имеют будущее возобновляемые биологические ресурсы, а также специальные биохимические устройства на основе фотосинтеза.

Большой потенциал заключен в движении водных и воздушных масс. Роль гидроэнергетики, ветровых генераторов, установок, использующих внутреннее тепло Земли, вероятно, будет возрастать. Однако даже в совокупности перечисленные варианты не обеспечат полного замещения углеводородного топлива.

Главный недостаток большинства из них в том, что они рассчитаны на потребление рассеянной энергии с малой удельной мощностью. Аккумулирование ее требует больших поверхностей или объемов энерговоспринимающих устройств. Значит, даже при теоретически больших ресурсах реальная возможность применения этих источников ограничена.

Правда, есть еще уголь. Его хватит лет на двести, но сжигание связано с большой экологической нагрузкой. Да и топливная эффективность относительно мала.

Поэтому, хотя в ежегодной мировой добыче уголь 4,9 млрд. И если покрывать хотя бы половину мировой потребности в энергии за счет угля, доступные источники будут исчерпаны в течение 50 - 60 лет. Принципиальное разрешение проблемы может дать только ядерная энергия.

Но развитие атомной отрасли сдерживается ее главными недостатками: необходимостью захоронения радиоактивных отходов, отработавших реакторов и конструкционных материалов, катастрофическими последствиями возможных аварий. Вместе с тем запасы урана-235 235U ограничены. Правда, разработка технологий ядерного деления на быстрых нейтронах позволит перейти от использования редкого изотопа 235U к более чем в 100 раз распространенному 238U, а также к использованию тория.

На определенный период это снимет дефицит источников делящихся материалов. Но страшный бич - радиоактивные отходы - останется. Их захоронение уже ныне представляет грозную опасность.

Массовое развитие атомной энергетики, основанное на делении тяжелых ядер, неизбежно имело бы катастрофические последствия для экологии. Поэтому такой вариант не может рассматриваться как окончательный или даже долговременный. Сегодня промышленная атомная энергия вырабатывается только за счет реакции деления ядер урана.

С термоядерной же энергией человечество знакомо пока только по водородной бомбе. Установок, осуществляющих управляемый синтез, до сих пор нет, хотя над решением проблемы наука бьется более полувека. В настоящее время удалось почти вплотную приблизиться к цели.

Полагают, она будет достигнута в ближайшие годы при реализации проекта Международного экспериментального термоядерного реактора ИТЭР. Это будет ядерная реакция дейтерия D - тяжелого стабильного изотопа водорода с тритием T - тяжелым радиоактивным изотопом водорода. Реакция дейтерия с гелием-3 требует более жестких условий, то есть очень высоких температур.

А самое удивительное: синтез, основанный на использовании изотопа 3He, может быть экологически чистым. Кажется фантастическим, что существует термоядерный процесс, практически не несущий радиоактивность. Но это - факт.

Они легко проникают внутрь любых материалов, взаимодействуют с химическими элементами и делают их радиоактивными. В итоге возникающих повреждений материалы быстро становятся непригодными к дальнейшему употреблению, требуют изъятия и захоронения в виде радиоактивных отходов. Именно в этом ее уникальность, обеспечивающая ряд замечательных преимуществ.

Во-первых, протоны - заряженные частицы - не проникают в глубь материалов. Поэтому в отличие от нейтронов они не делают их радиоактивными. В-третьих, поскольку протоны - заряженные частицы, а электрический ток - поток заряженных частиц, становится реальным прямое преобразование термоядерной энергии в электрическую, минуя тепловую.

Это позволит в случае 3He применить гораздо более эффективные инженерные решения для отбора энергии и в целом почти вдвое поднять КПД указанного процесса преобразования. И наконец, в-четвертых, практическое отсутствие радиоактивности и взрывоопасности делает установки термоядерного синтеза на He совершенно безопасными в аварийных условиях, в том числе при природных катастрофах, террористических актах и т. Но с увеличением температуры и при избытке 3He в смеси гелия-3 с дейтерием влияние этого побочного "фона" сводится к минимуму.

Это - вопрос более отдаленного будущего. Итак, экологическая чистота и энергетическая эффективность делают термоядерный синтез на гелии-3 непревзойденным источником энергии. Правда, на пути к достижению конечной цели - две фундаментальные трудности.

Первая: такого изотопа гелия на Земле практически нет. Он есть на Луне. Но можно ли там организовать его добычу с последующей доставкой на нашу планету?

Насколько это экономически целесообразно? Вторая трудность в том, что пока отсутствует технология управляемого термоядерного синтеза. Задача не решена, несмотря на многолетние усилия даже для более простой реакции синтеза на дейтерии и тритии.

Впрочем, прежде всего нужно оценить, насколько реальна добыча и доставка гелия-3 с Луны в необходимых количествах и каковы в действительности его запасы там? Этот поток, называемый солнечным ветром, попадает на поверхность Луны.

Некоторое количество гелия-3 было захвачено ядром Земли. В настоящее время гелий-3 не добывается из природных источников, а создаётся при распаде искусственно полученного трития. Изотоп в основном используют в лабораториях, им наполняют детекторы ионизирующего излучения. С помощью таких детекторов можно вычислить незаконно перевозимые радиоактивные вещества.

Гелий-3 также обладает большим энергетическим потенциалом.

На Луну спешим летим!:-) ГЕЛИЙ-3 забрать хотим!:-)

Яркий тому пример — планы стартапа Interlune США заняться добычей гелия-3, образующегося на Солнце в процессе термоядерного синтеза, запасы которого в лунном грунте огромны. По словам одного из основателей стартапа и бывшего президента Blue Origin Роба Мейерсона, для этого при поддержке НАСА планируется использовать специальный комбайн, который будет доставлен на Луну к 2028 году и запущен в эксплуатацию к 2030 году. Добытый на Луне гелий-3 предполагается использовать для проведения квантовых вычислений, медицинской визуализации, а также, возможно, в качестве топлива для термоядерных реакторов.

Мар 10, 2010 гелий-3 , кислород , Луна , полезные ископаемые Нам всем нравится любоваться Луной в прекрасную безоблачную ночь. Это очень романтично. Вместе с тем прагматики понимают, что перспектива освоения Луны возрастает с каждым годом. Действительно, какие полезные ископаемые есть на Луне?

Одним из теоретических вариантов являются термоядерные реакторы токамаки , в которых изначально планировалось синтезировать гелий из дейтерий-тритиевой смеси. Главный недостаток системы — высокая радиоактивность трития, период полураспада которого составляет всего 12,5 лет. В промышленном реакторе внутренние стенки камеры сгорания необходимо будет менять через каждые несколько лет из-за радиационного разрушения материала. Кроме того, выделяемую энергию уносят в основном нейтроны, не имеющие электрического заряда и плохо взаимодействующие с веществом, что усложняет её сбор. Одним из лучших альтернатив является замена трития на гелий-3. Реакции дейтерий-гелиевой смеси практически радиационно безопасны, так как в них используются только стабильные ядра, и не производят неудобные нейтроны. Что такое гелий-3 и где его искать Из химии мы знаем, что гелий — это инертный одноатомный газ без цвета, вкуса и запаха, являющийся вторым по распространенности во Вселенной элементом после водорода. Однако на Земле его содержание крайне мало. Более того, на нашей планете при распаде радиоактивных химических элементов вылетают альфа-частицы — ядра гелия-4. Гелий-3 же в относительно больших количествах содержится в космическом гелии, который образуется, например, на Солнце при термоядерных реакциях. Данный газ очень лёгкий, поэтому, попадая в атмосферу Земли, он быстро улетучивается. Общее количество гелия-3 в атмосфере нашей планеты оценивается в 35 000 тонн. Однако в настоящее время изотоп не добывается из природных источников, а создаётся при распаде искусственно полученного трития, бомбардируя нейтронами литий-6 в ядерном реакторе. Таким способом можно получать до 18 килограмм гелия-3 в год, чего абсолютно недостаточно для каких-либо промышленных нужд. Лунный грунт Фото с миссии «Аполлон-11» В природе же он может накопиться либо на больших планетах Уран или Нептун , способных его удерживать, либо на телах без атмосферы и магнитосферы.

Это включает в себя исследования и разработку магнитных ловушек и других устройств, способных удерживать горячую плазму, содержащую гелий-3, в контролируемых условиях. Важно отметить, что на данный момент промышленная эксплуатация гелия-3 ограничена из-за его редкости на Земле. Однако, как показали разработки Росатома, добыча Гелия-3 может значительно вырасти в ближайшем будущем. Ищете баллон с гелием в Москве? У нас вы можете купить баллон с гелием по выгодной цене и взять его в аренду. Мы предлагаем широкий выбор баллонов с гелием, включая портативные баллоны и баллоны под гелий вместимостью 40 литров. Просто свяжитесь с нами по номеру 8 800 555-65-59 или отправьте запрос на почту geliy germes-gas. Мы предоставляем гелий в Москве и гарантируем высокое качество нашей продукции! Текст статьи: А. З Источники:.

» Сокровище Луны – гелий-3

Программа освоения и добычи гелия-3 с Луны на Землю с целью снабжения термоядерной энергетики топливом идеально отвечает этим требованиям. Новое открытие делает Китай третьей страной в мире, обнаружившей новый минерал на Луне, сообщил Дун Баотун, заместитель директора CAEA. гелий-3 - космическое топливо будущего.

Американцы займутся добычей гелия-3 на Луне

Стартап Interlune, созданный бывшими руководителями Blue Origin, заявил о планах по добыче на Луне редкого гелия-3. Сообщается, что из образцов ученые смогли узнать, в какой концентрации в грунте Луны содержится гелий-3. Компания планирует в 2026 году доставить на поверхность Луны демонстрационный аппарат, который возьмет образцы реголита, после чего попробует извлечь из них гелий-3. Как уже было сказано, на Земле природный гелий-3 добывать если и возможно, то абсолютно не эффективно, а искусственное производство покрывает только интересы учёных. Китай не сообщил, когда он планирует начать добычу гелия-3 на Луне.

Американцы займутся добычей гелия-3 на Луне

Как уже было сказано, на Земле природный гелий-3 добывать если и возможно, то абсолютно не эффективно, а искусственное производство покрывает только интересы учёных. В лунном реголите гелий-3 постепенно накапливался в течение миллиардов лет облучения солнечным ветром. После объявлений Changesite-(Y) и гелия-3 Китайское национальное космическое управление объявило о полном государственном одобрении следующих трех лунных миссий фазы 4. Европейские ученые объявили о планах начать добычу гелия-3 на Луне уже в 2025 году. Radia Windrunner который вскоре станет самым большим грузовым самолётом в мире и Стартап Interlune который собирается добывать безумно дорогой гелий-3 на Луне. По словам учёных, «имеющиеся на Луне запасы гелия-3 могут обеспечить землян энергией, как минимум, на пять тысяч лет вперёд» (цитата по РИА Новости).

На Луну спешим летим!:-) ГЕЛИЙ-3 забрать хотим!:-)

То есть никакого создания прибавочной стоимости не произойдёт и «оплачивать счета» в конечном итоге будет NASA. Эта «лунная лихорадка» во многом похожа на золотую лихорадку в Калифорнии, но без золота. Сбор гелия-3 может изменить эту ситуацию, извлекая выгоду из ресурсов на Луне. Для добычи гелия-3 придётся решить немало технических задач. Необходимо разработать способ извлечения газа из лунного реголита — абразивного, каменистого и похожего на грязь материала с поверхности Луны. Затем гелий-3 нужно отправить на Землю, что на данный момент нереализуемо. Наконец, потребуется организовать большой и устойчивый рынок сбыта добытого изотопа на Земле. NASA инвестирует десятки миллиардов долларов в программу «Артемида» по высадке людей на Луну, Мейерсон хочет использовать эти транспортные, энергетические и другие ресурсы, чтобы основать горнодобывающую компанию на Луне. Гелий-3 — стабильный изотоп гелия с двумя протонами и одним нейтроном.

Какова будет себестоимость, а соответственно и рентабельность добычи? Львиная доля издержек - транспортные расходы. Шансы всех игроков и будут зависеть от того, есть ли у них независимый доступ в космос. Как вы представляете себе реализацию проекта промышленного освоения Луны? Для начала несколько слов о том, почему его надо реализовывать. Как я уже упоминал, спутница Земли чрезвычайно богата редкими и ценными ископаемыми. По разным оценкам, от одного до пятисот миллионов тонн того же гелия-3. И хотя технология по его использованию на Земле еще только отрабатывается, начинать рассматривать проект по его добыче надо уже сегодня. По подсчетам, на создание промышленного термоядерного реактора уйдет около тридцати лет - этого как раз хватит на то, чтобы организовать добычу гелия-3. Сначала отправим к Луне зонды - автомата вполне достаточно для решения задачи сбора первичной информации. А вот для промышленного освоения потребуется человек. Стало быть, надо готовиться к тому, что в космос скоро полетят не только космонавты-испытатели, но и представители гражданских профессий - инженеры, механики, геологи. С того, что есть. Сегодняшние технологии позволяют осуществить первые пилотируемые полеты к Луне на кораблях "Союз" с разгонным блоком ДМ. Конечно, "Союз" придется модернизировать - будем использовать технологию сборки на орбите, проще говоря, на МКС. Денег на это пока нет: в Федеральной космической программе нет упоминания о пилотируемых полетах на Луну. Наша корпорация предлагает это исправить, разработав лунную программу. По вашим расчетам, сколько это будет стоить? Шесть полноценных экспедиций с высадкой на Луну, базируясь на нынешних технологиях, - порядка 2,5 миллиарда долларов. Но прежде чем высаживать на Луне человека, надо будет провести рекогносцировку на местности, отработать технологии, спуск и подъем. Иными словами, общее число экспедиций около десяти, шесть из которых будут пилотируемыми. Представим, что вам дали добро и средства. Как быстро РКК "Энергия" могла бы реализовать задуманное? В 2010 году к Луне полетел бы зонд, в 2012-м - пилотируемый облет Луны, а в 2014-м туда отправился бы человек. И как это будет выглядеть в деталях? Если в 60-70-е годы прошлого века ставка делалась на супертяжелые лунные ракеты, то только потому, что сборка в космосе представлялась чем-то фантастическим. Сегодня было бы экономичнее и эффективнее собирать комплекс на орбите. Чтобы отправить человека на Луну, сначала надо отправить на окололунную орбиту взлетно-посадочный модуль. Следом мы делаем еще один полет - доставляем космонавтов на МКС: они там адаптируются и ждут сборки корабля с разгонным блоком. Дальше по схеме: летят к Луне, стыкуются с лунным модулем, опускаются на поверхность, работают, поднимаются и - в обратный путь. Он и разрабатывался когда-то для лунной программы.

На Луне он входит в морские базальты — породы, которые находятся в «лунных морях». Они получили название море Спокойствия и океан Бурь.

Кроме славы, победитель получал возможность пострелять сверху по условному врагу к счастью, позже космическую агрессию запретили. Огромные средства тратились на подпитку государственного эго без реальной выгоды для граждан и человечества. В то же время именно благодаря этой гонке в космические программы вливали астрономические же суммы, а без них развитие технологий могло пойти иным путем. Фото: ArchDaily В 1980-х идея колонизации Луны утихла с одновременным снижением финансирования таких проектов, безжизненный шарик давно никто не посещал. В новом веке такая близкая и одновременно далекая Луна вновь стала объектом интереса — по ряду причин: как стартовая площадка для дальних путешествий и как источник гипотетической энергетической безопасности Земли. Луна хороша возможностью обеспечить быструю связь, доставку материалов — осталось только возвести там базу. В идеале перед этим надо было бы найти достаточное количество воды. Ее заметные следы обнаружены, а проверить «источники» должны во время масштабной по количеству участников программы Artemis, которой заведует NASA. Если ее не отложат или не отменят. Тогда у кого-то еще получится. Пищу придется завозить с родной планеты. Когда-то, может, появится местная гидропоника. И это при условии, что лунная вода имеется, ее достаточно, ее можно добыть и она в принципе пригодна для нужд человека. В противном случае в список очень дорогостоящих «покупок» добавится живительная влага.

Пациент Neuralink играет в шахматы мыслью, Добыча ГЕЛИЯ-3 на ЛУНЕ, Новое обновление робота H1

Рыночная стоимость этого ресурса более 10 квадриллионов долларов, примерно около 500 годовых ВВП такой страны как США. Ученые подсчитали: для того, чтобы обеспечить все население Земли энергией в течении года достаточно 30 тонн гелия. Солнечные батареи и электричество. На Луне нет ни атмосферы, ни облаков поэтому КПД солнечных панелей по расчетам вдвое выше, чем на у нас. А если установить панели на обратной стороне месяца, то солнце будет освещать их постоянно. Были даже проекты, которые предполагали передачу лунного электричества на Землю с помощью лазерных лучей или направленного микроволнового излучения. Но проще использовать эту электроэнергию прямо на Луне. Ведь там планируют развернуть большое строительство: обитаемые базы, космодромы, научные комплексы и многое другое. А на Луне тарелку можно сделать размером километра полтора и она будет легкая и невесомая. Данные дистанционного зондирования говорят, что в грунте очень много металлов. Есть проекты создания полностью автоматических металлургических заводов.

Для которых условия Луны, где нет атмосферы, это идеальное место для производства. Качество металла, полученного в вакууме гораздо выше, потому что в таком литье нет пузырьков газа, которые ослабляют материал. Внимательно рассматривая лунные песчинки ученые нашли вещество с Земли. Возраст крупинок - 65 миллионов лет. А именное 65 миллионов лет назад на Земле случилась глобальная катастрофа: с нашей планетой столкнулся 10-километровый метеорит, который уничтожил динозавров и многие другие виды животных.

Существует несколько проектов и исследований, направленных на поиск возможностей использования гелия-3 в термоядерном синтезе. Одним из наиболее известных проектов является ITER Международный экспериментальный термоядерный реактор , в рамках которого строятся установки для термоядерного синтеза на основе плазмы, использующие гелий-3 в качестве топлива. Таким образом, добыча гелия-3 на Луне может стать важным источником топлива для термоядерной энергетики в будущем.

В марте 2003 г. Недавно научный руководитель этого проекта академик китайской АН Оуянг Зиюань объявил о том, что уже на этом первом этапе исследования Луны Китай рассчитывает сделать большой вклад в науку и в развитие космических технологий.

Так что китайский лунный проект обещает быстро окупить себя. В ходе первого этапа китайской программы исследования Луны планируется, помимо прочего, измерить толщину лунного грунта, оценить возраст поверхности и определить количество имеющегося там гелия-3 очень редко встречающегося на Земле изотопа гелия, который можно использовать в качестве топлива для термоядерного реактора по материалам SpaceDaily Интересные рассуждения о космических программах, нужных для получения запасов гелия-3, даны в статье кандидата технических наук, члена-корреспондента Академии космонавтики им. Циолковского Юрия Еськова «За чистым топливом — на Уран, опубликованной в "Российской газете", 11 апреля 2002 года. Автор пишет, что еще эффективнее, чем на Луне, искать гелий-3 в атмосферах дальних планет гигантов, например, Урана, где гелий-3 составляет 1:3000 что в тысячу раз больше, чем в лунном грунте. За 10 лет аппарат преодолеет трудно вообразимую дистанцию в 6 млрд. Фокус, однако, в том, что запускается он с высокой околоземной орбиты и вся жизнь его проходит в космосе, так что никаких экологических проблем для населения Земли он не создает. Система бесперебойного снабжения наземных ТЯЭС с суммарной мощностью 3 млрд. Запаса топлива аппарату хватит лишь в один конец: до цели он долетит с пустыми баками. Таким образом, обратная заправка без которой задача возвращения нереализуема оказывается фактически даровой. Возникает естественный вопрос: в какой степени существующие на сегодня технологии могут обеспечить функционирование такой системы?

Главная проблема тут — бортовая энергоустановка. К нынешнему моменту накоплен огромный положительный опыт создания и эксплуатации реакторов наземных АЭС с мощностью 4 млн. Что касается размеров запускаемого беспилотного аппарата 450 тонн, в том числе 200 тонн топлива , то он по порядку величины соответствует массе МКС а в окончательном проекте масса МКС планируется еще большей ; суммарный же годовой грузопоток на орбиту 1900 тонн меньше, чем планируемый для стандартных программ космическая связь, телевещание и т. Подавляющее большинство элементов такого орбитального гелиево-водородного завода существует уже сегодня и благополучно действует в криогенной промышленности». Автор говорит, что даже при сегодняшнем уровне развития техники такой проект был бы вполне экономически рентабельным: «Отпускная цена электроэнергии в мире составляет от 5 до 10 центов за кВт. Из простейшей арифметики видно, что доставка с Урана гелия-3 будет оставаться рентабельной даже при цене 1 тонны в 10 млрд. Цена же выведения на орбиту одного подобного завода составляет 10 млн. Стали уже привычными слова, что наукоемкие отрасли ядерная, космическая и др. Случай с гелием-3 - тот самый случай. Этот способ, который позволит решить энергетическую проблему на достаточно длительное время, в случае, если найдутся возможности изыскать средства для его реализации, сможет стать шансом на прогресс российских наукоемких отраслей: как космонавтики что является предметом для отдельного разговора , так и термоядерной техники.

В настоящий момент есть два магистральных направления в термоядерном синтезе: токамаки и лазерный синтез. Первый из этих вариантов сейчас реализуется в проекте международного экспериментального термоядерного реактора ИТЭР. Принцип действия токамака таков: в плазменном сгустке создавается электрический ток, и при этом, как у всякого тока, у него появляется собственное магнитное поле - сгусток плазмы как бы сам становится магнитом. И тогда с помощью внешнего магнитного поля определенной конфигурации подвешивали плазменное облако в центре камеры, не позволяя ему соприкасаться со стенками. В газе всегда есть свободные ионы и электроны, которые начинают двигаться в камере по кругу. Этот ток нагревает газ, количество ионизированных атомов растет, одновременно увеличивается сила тока и повышается температура плазмы. А значит, количество водородных ядер, слившихся в ядро гелия и выделивших энергию, становится все больше.

При этом суммарная мощность электростанций России равна 215 ГВт, так что получается, что для обеспечения энергетических потребностей нашей страны потребуется всего около 20 т гелия-3 в год, а вся мировая электроэнергетика потребит около 200 тонн это сырья за год работы. Выходит, что нескольких запусков транспортных космических кораблей в год полностью хватило бы, чтобы обеспечить сырьем все электростанции России. Сегодня запасы этого сырья только в верхних слоях естественного спутника Земли оцениваются примерно в 500 миллион тонн, таким образом, даже с учетом быстрого роста энергопотребления, полночное светило сможет снабжать человечество теплом и энергией 15 тысяч лет. А это куда больше, чем история отвела нефтяной эре. Добыча не будет легкой — одна тонна перспективного для переработки грунта содержит всего 10 миллиграмм гелия-3. При этом его предстоит отделить от обычного гелия-4, концентрация которого в 3 тысячи раз выше. Иными словами, говорит Эрик Галимов, чтобы добыть 1 тонну гелия-3, нужно переработать 100 миллионов тонн лунного грунта, то есть участок ее поверхности площадью 20 квадратных километров на глубину 3 метров! При этом доставка на Землю 1 тонны легкого изотопа гелия с Луны обойдется не дешевле 100 миллионов долларов. По расчетам американского астронавта Харрисона Шмитта, побывавшего в 1972 году на Луне в составе экипаже «Аполлона-17», использование гелия-3 в земной энергетике, учитывая все расходы на его добычу и доставку, становится коммерчески выгодным, когда производство термоядерной энергии с использованием этого сырья превысит мощность 5 ГВт. Фактически это означает, что уже одна электростанция на лунном топливе сделает его добычу и транспортировку рентабельной. По оценке Шмитта, предварительные расходы на стадии исследований обойдутся примерно в 15 млрд долларов. По словам Эрика Галимова, чтобы организовать добычу гелия-3 из лунного грунта, реголит необходимо нагреть до температуры 700 градусов Цельсия, после чего можно будет сжижать и извлекать нужный изотоп. Технологически все эти процедуры хорошо известны и достаточно просты. Ученый предлагает нагревать сырье в «солнечных печах», которые с помощью больших вогнутых зеркал будут фокусировать солнечный свет на реголите. При этом из грунта могут быть выделены содержащиеся в нем водород, кислород и азот. Таким образом, лунная промышленность могла бы производить не только сырье для земной энергетики, но и топливо для перевозящих его ракет, а также воду и воздух для работающих на этих предприятиях людей. Американцы также разрабатывают аналогичные проекты. Харрисон Шмитт даже спроектировал специальный лунный комбайн для добычи гелия-3 под названием «Mark-III». Но и это не все! В реголите очень много титана, что в перспективе позволит наладить выпуск элементы промышленных конструкций и корпусов ракет прямо на Луне.

Разведка редкого гелия-3 на Луне: история и результаты исследований

  • Луна на очереди: в Китае хотят добывать гелий-3 с поверхности спутника Земли
  • Что за новый источник энергии нашли в арктических скалах?
  • Новые сверхдержавы родятся на Луне
  • Что такое гелий-3 и где его искать
  • Вы точно человек?

Похожие новости:

Оцените статью
Добавить комментарий