Новости термоядерная физика

Кажется, физики только что переписали основополагающее правило для термоядерных реакторов, обещающих миру почти бесконечную энергию.

Американские физики повторно добились термоядерного зажигания

Нынешний рекорд составил 403 секунды чуть менее 7 минут. Предыдущий рекорд был установлен на том же EAST в 2017 году и составлял 101 секунду. С момента начала работы в 2006 году EAST является открытой испытательной платформой для китайских и международных ученых для проведения экспериментов и исследований, связанных с термоядерным синтезом.

Рассчитывают они на это и сейчас, и строят в надежде на это международный термоядерный реактор ИТЭР читайте о нем в нашем материале «Солнце в бутылку! Быстрее взрыва Но наш главный герой — устройство, совсем не похожее на токамак. Это установка NIF National Ignition Facility — можно перевести как «Национальная зажигательная лаборатория» была построена в США в конце 1990-х годов для изучения управляемого термоядерного синтеза с инерциальным конфайнментом и непрямым лазерным обжатием. Главное слово в этом длинном поезде терминов — прилагательное «инерциальный». Если вы попытаетесь нагреть капсулу с термоядерным топливом скажем, смесью дейтерия и трития до очень высоких температур, при которых теоретически может начаться реакция синтеза, то задолго до нужного градуса и капсула и ее содержимое испарятся и рассеются в пространстве. Именно поэтому создатели токамаков тратят столько усилий на удержание плазмы в ограниченном объеме, чтобы не терять нужные для синтеза плотность и температуру топливной смеси. Но если вы сумеете сжать и нагреть топливо очень быстро и очень сильно, то термоядерная реакция в нем будет идти быстрее, чем разлет вещества капсулы и ее охлаждение. Иначе говоря, инерциальное удержание то есть конфайнмент состоит в том, что и реакция, и выделение энергии происходят до того, как вещество наконец соберется разлететься — точно как в термоядерной бомбе после того, как в ней сработает атомный запал.

Как это сделать? Советские физики, в частности, еще в 40-е годы прорабатывали теорию газодинамического термоядерного синтеза — то есть термоядерной реакции под действием направленного внутрь симметричного взрыва — имплозии — обычной взрывчатки. В 1978 году в письме в Nature физики из ядерного центра в Арзамасе-16 сообщали , что проводили такие эксперименты в 1955 и 1963 годах и достигли успеха — то есть смогли зафиксировать нейтроны, порожденные, по их мнению, термоядерной реакцией в тритиево-дейтериевой мишени. Но к тому моменту у ученых появился значительно более удобный, чем раствор нитробензола в тетранитрометане , инструмент — лазер. Лазерный пресс Один из изобретателей лазера Николай Басов в 1964 году вместе с коллегами опубликовал в ЖЭТФ статью , где рассматривал тонкости нагрева плазмы лазерным излучением, а уже через несколько лет рассказал о результатах первых экспериментов с мишенью из дейтерида лития и они увидел нейтроны, что могло свидетельствовать о термоядерной реакции. За океаном в то же время ходили похожие идеи. Например, американский «отец» водородной бомбы Эдвард Теллер в 1957 году обдумывал вариант взорвать термоядерное устройство в трехсотметровой полости в толще гранита для получения энергии. Это заставило его и его сотрудников искать ответы на два вопроса: каким может быть наименьший энергетический выход термоядерной реакции, который бы имел смысл для коммерческого использования, и какого уровня энерговыделения можно добиться, не используя для запуска реакции «ядерный запал». Эти вопросы через некоторое время привели их к мысли об использовании лазера — как способа концентрации энергии в очень небольшом пространстве, что позволяло бы достичь необходимых давлений и температур в маленьком объеме топлива, горения которого бы не было разрушительным по масштабу. В 1972 году Джон Накколс из Ливерморской национальной лаборатории имени Лоуренса вместе с коллегами опубликовал в Nature статью , где описал главные черты установки для лазерного термоядерного синтеза и даже привел вычисления, касающиеся ее коммерческой эффективности.

Главное преимущество лазера, писал Накколс и его соавторы, состоит в том, что он позволяет создать сверхвысокую плотность вещества, необходимую для зажигания термоядерной реакции. Механические средства могут создать давление не более 106 атмосфер, этот предел задается прочностью химических связей. Взрыв химической взрывчатки может создать давление от 106 до 107 в центре имплозивного взрывного устройства. Но это еще далеко до нужных для инерциального синтеза параметров. Лазерное излучение может довести давление до 108 — 1011 атмосфер и даже выше. Работать это все должно было так: лазерные импульсы, несущие огромную энергию сразу со всех сторон, должны был испарять внешние слои сферической мишени размером в миллиметр, что вызывало бы схлопывание оставшейся части к центру. И там, в момент наибольшего сжатия, возникали бы условия для «зажигания» небольшой части смеси дейтерия и трития в центре мишени — от 2 до 5 процентов общей массы, которые разогревали бы оставшееся тело мишени. Но достичь успеха удалось не сразу.

Стартап Helion Energy планирует запустить энергоэффективную установку термоядерного синтеза в 2024 году. Владимир Губайловский Схема установки Trenta. Helion energy Самый экологичный способ получения ядерной энергии — это термоядерный синтез. Но он начинается при температуре и давлении, примерно таких, как в недрах Солнца. Создать такие условия на Земле совсем непросто, но есть надежда, что все получится Самый знаменитый проект получения термоядерной энергии — это международный проект ИТЭР. Россия принимает в нем самое активное участие. Это — огромная установка, чья стоимость сегодня оценивается в 22 млрд евро. Чтобы запустить процесс на ИТЭР, плазму надо разогреть в токамаке — огромной полой баранке, где высокотемпературную плазму «держат на весу» мощные сверхпроводящие магниты. Это позволит проводить первые операции по разогреву плазмы. В 2035 году реактор должен выйти на полную мощность и будет производить больше энергии, чем потребляет. Но это еще не скоро.

Иоффе, академик, председатель Комиссии по борьбе со лженаукой при Президиуме РАН «В конце 2022 года мировой научной сенсацией стало сообщение о достижении существенного успеха в попытках реализации лазерного термоядерного синтеза — Ливерморская лаборатория США заявила о достижении существенного превышения выделившейся энергии ядерного синтеза над поглощённой энергией световых лазерных импульсов, используемых для обжатия мишени. Разумеется, до рентабельной термоядерной энергетики остается неопределенно долгий путь, поскольку поглощенная энергия имеет порядок одного процента от полной энергии света лазеров, не говоря о низком КПД самих лазеров. К этому нужно добавить безмерную стоимость оборудования и затраты на его содержание». Лебедева РАН «Отмечу недавний успех в лазерном термоядерном синтезе, где радиационное сжатие смеси дейтерия и трития позволило запустить реакцию ядерного синтеза с выделением большей энергии, чем было доставлено в образец. Это научное достижение, показывающее, что достигнуто неплохое понимание поведения экстремально сжимаемой материи. Но до практического применения результатов еще далеко, поскольку полная энергия, потребляемая установкой, в десятки раз превышает энергию, полученную от синтеза».

Термоядерный синтез вышел на новый уровень: подробности

Зачем на самом деле строится самый большой термоядерный реактор. Специалисты Института ядерной физики СО РАН уверены, что для Сибири термоядерный взрыв будет иметь катастрофические последствия. Так что, готовимся устанавливать термоядерный реактор в каждый дом? Сомневается популяризатор науки, автор YouTube-канала «Физика от Побединского» Дмитрий Побединский.

Американцы произвели термоядерный прорыв к 100-летию советского академика Басова

Американцы совершили прорыв в изучении термоядерной энергии. Кажется, физики только что переписали основополагающее правило для термоядерных реакторов, обещающих миру почти бесконечную энергию. Американские ученые в результате реакции термоядерного синтеза впервые получили больше энергии, чем затратили. Инженер и старший преподаватель Института ядерной физики и. Двигатель на термоядерной тяге разгонит космический корабль до 800 000 километров в час. все новости, связанные с понятием "Термоядерный синтез ". Регулярное обновление новостного материала. В саровском ядерном центре готовится к запуску лазерная установка для экспериментов по управляемому термоядерному синтезу УФЛ-2М.

Термоядерный синтез

83-летний физик Питер Хиггс, еще в 60-х предсказавший существование поля, которое отвечает за массу всех элементарных частиц, расплакался. На этой неделе на юге Франции началась сборка первого в мире термоядерного реактора. Кажется, физики только что переписали основополагающее правило для термоядерных реакторов, обещающих миру почти бесконечную энергию. Статья автора «Канал Наука» в Дзене: 13 декабря 2022 года было объявлено: американским физикам удалось добиться, чтобы термоядерный синтез выработал на 50% больше энергии.

Американцы произвели термоядерный прорыв к 100-летию советского академика Басова

Реакторы термоядерного синтеза имитируют ядерный процесс внутри Солнца, сталкивая более легкие атомы вместе и превращая их в более тяжелые. Проблемы термояда обсудили на 50‑й Международной конференции по физике плазмы и управляемому термоядерному синтезу в Звенигороде 20–24 марта. Реакторы термоядерного синтеза имитируют ядерный процесс внутри Солнца, сталкивая более легкие атомы вместе и превращая их в более тяжелые. И все из-за нового термоядерной установки токамак, аналогов которой нет нигде в мире. И все из-за нового термоядерной установки токамак, аналогов которой нет нигде в мире. «Команда физиков, работающих на установке NIF, провела первый в истории контролируемый эксперимент по термоядерному синтезу, достигнув энергетической безубыточности.

Искусственное солнце: как первый в мире термоядерный реактор изменит мир

На фото: физик-теоретик, участник Манхэттенского проекта от Великобритании, передавший сведения о ядерном оружии Советскому Союзу, Клаус Фукс. Специалисты Института ядерной физики СО РАН уверены, что для Сибири термоядерный взрыв будет иметь катастрофические последствия. Шведские физики изобрели новый вариант осуществления управляемого термоядерного синтеза. Справка «МК» Классическая термоядерная реакция происходит при преодолении электростатического отталкивания двух положительно заряженных ядер дейтерия и трития. Так что, готовимся устанавливать термоядерный реактор в каждый дом? Сомневается популяризатор науки, автор YouTube-канала «Физика от Побединского» Дмитрий Побединский. Физик объяснил важность создания прототипа российского термоядерного реактора.

Другие новости

  • Прототип российского термоядерного реактора: для чего он необходим?
  • Что такое токамак?
  • Лазерный пресс
  • Мегаджоули управляемого термоядерного синтеза / / Независимая газета
  • Английского физика, передавшего СССР секреты водородной бомбы, предали советские академики-ядерщики
  • Инновации и наука

Зачем люди пытаются создать Солнце на Земле, или что такое термоядерная энергетика

Вице-президент по исследованиям и разработкам Бен Левитт отметил, что измерения были сделаны на реакторе невероятно скромного масштаба в сравнении с традиционными термоядерными аппаратами. В отличие от токамаков и стеллараторов, технология Zap не требует дорогих и сложных сверхпроводящих магнитов или мощных лазеров. Термоядерный реактор Zap сначала вдувает газ в камеру, затем мощный импульс энергии ионизирует его в плазменную нить, проводящую сверхсильный ток. Волна термоядерных реакций превращает дейтериево-тритиевое топливо в высокоэнергетический гелий и нейтроны, которые можно улавливать для выработки тепла и электричества.

Физпуск состоялся еще 18 мая 2021 года.

А вот с энергопуском возникли организационные проблемы. Все это время мощности не использовались. Нам потребовалось почти два года, чтобы решить эту проблему. Мы согласовали с энергокомпанией все условия, и сейчас уже ничто не мешает выйти на работу в сети».

Следующим российским термоядерным реактором должен стать токамак с реакторными технологиями, который планируют построить на территории Троицкого института инновационных и термоядерных исследований.

Вокруг них — отрицательно заряженные электроны. Силы, удерживающие систему в балансе, как раз и являются объектом изучения ядерных физиков. При этом существуют два принципиально разных подхода к высвобождению скрытой энергии: Атомная энергетика. Здесь за основу берется тяжелый элемент как правило, уран или плутоний , который расщепляется на составляющие с выделением энергии. То есть ключевой процесс — распад ядра. Первая в мире атомная электростанция была запущена еще в 1954 году — ей стала Обнинская АЭС в Калужской области. Человечество хорошо освоило расщепление, хотя проблемы пока остаются. Управляемый термоядерный синтез УТС.

В термоядерном синтезе используется обратный принцип: вместо расщепления тяжелых элементов соединяются синтезируются легкие — водород и гелий. Точно такие же процессы протекают в центре звезд. Синтез сопровождается выделением огромного количества энергии, но чтобы он осуществился, требуются уникальные условия. Почему же ученые так упорно ищут подходы к УТС, когда у них уже есть атомная энергетика?

Этот поразительный факт при наличии необходимых технологий сулит человечеству в далеком будущем неисчерпаемый источник энергии. Проект Международного экспериментального термоядерного реактора ITER , основанный на реакции слияния ядер двух тяжелых изотопов водорода, дейтерия и трития, в ядро гелия, призван показать миру возможность промышленного производства термоядерной энергии. И если эксперимент пройдет успешно, то это будущее может оказаться не таким уж и далеким Первое упоминание о «звездном» термояде относится еще к 1928 г. И, как нетрудно догадаться, поначалу далеко не в мирных целях: первый успех на этом пути прозвучал в СССР летом 1953 г. Тогда же появилась идея использовать термоядерную энергию в энергетике, но первоначальная эйфория перетекла в долгие годы исканий и напряженной работы.

Следующий шаг к управляемому термоядерному синтезу был сделан советскими физиками А. Сахаровым и И. Таммом, предложившими удерживать плазму с помощью магнитного поля. Нужно было только придумать технологию, с помощью которой вещество можно не только довести до необходимой температуры, но и удержать его. Другими словами, создать ловушку для плазмы. В целом она представляет собой электрически нейтральную среду. Плотная высокотемпературная плазма находится только в звездах, на Земле ее можно получить лишь в лабораторных условиях. Эта необычная для нас «лучистая материя» поражает воображение большим числом степеней свободы и одновременно способностью к самоорганизации и отклику на внешнее воздействие, такое как электрические и магнитные поля. Плазму можно удерживать в магнитном поле, заставляя принимать различные формы, но она стремится занять наиболее энергетически выгодное для нее положение: подобно живому организму, она будет вырываться на свободу из жесткой «клетки» магнитной ловушки, если конфигурация последней ее не устраивает Шошин, Аникеев, 2007 Наши ученые выдвинули идею замкнутого магнитного термоядерного реактора.

Проблема в том, что магнитное поле сжимает и удерживает плазму в поперечном направлении относительно силовых линий, а вот вдоль них плазма течет свободно, как по рельсам. Работа над созданием токамаков стала важнейшим шагом на пути к термоядерной энергетике. Этот параметр фактор Q , естественно, должен быть больше единицы. Для промышленной же электростанции значение Q должно быть не меньше пяти: только в этом случае заряженные альфа-частицы, которые вместе с нейтронами рождаются при термоядерной реакции, но, в отличие от последних, не покидают магнитную ловушку, будут способствовать поддержанию высокой температуры. Таким образом, при Q, равном пяти, достаточно один раз «зажечь» плазму, а потом никаких дополнительных манипуляций с реактором проводить уже не нужно. В идеале значение Q должно достигать десяти. Но создание подобной установки не под силу ни одной стране мира в одиночку. Поэтому в 1980-х гг.

МЫ БЫЛИ ПЕРВЫМИ

  • FT: американцы добились прироста чистой энергии в термоядерном синтезе и совершили прорыв
  • Мегаджоули управляемого термоядерного синтеза / / Независимая газета
  • Поделиться
  • Термоядерный синтез - что это такое, токамак, синтез, изучение, проблемы, трудности, эксперименты
  • Главные новости
  • Отсюда • «Это надо делать быстро!». Сводка термоядерных новостей

Похожие новости:

Оцените статью
Добавить комментарий