Новости теория суперсимметрии

Теория струн (теория суперструн) и суперсимметрия претендуют на роль Единой Теории Поля. Одна из задач, которую ученые пытаются решить с помощью БАК, – это получение экспериментального подтверждения теории Суперсимметрии. SIS’23 привлекло ведущих специалистов в квантовой теории поля и современной математической физики.

Крах теории суперсимметрии: большой адронный коллайдер ничего не нашел

В рамках энергий, описываемых Стандартной моделью, все хорошо, но и здесь очень много работы: нужно постоянно повышать точность экспериментов и точность расчетов, сравнивать одно с другим, искать возможные отклонения от предсказаний. Но в целом пока все измерения совпадают с теоретическими выкладками. О судьбе суперсимметрии трудно сейчас сказать что-то определенное. Может быть, ее вообще нет в природе. Может быть, она будет открыта на новом суперколлайдере, который, возможно, построят в Китае.

Суперсимметрия важна для теории струн, но наличие суперсимметрии в природе само по себе не означает, что последняя — правильная физическая теория. У теоретиков есть еще чисто психологические моменты. Люди, которые никогда не изучали суперсимметрию, могут относится к ней скептически, но они же, изучив предмет, с трудом готовы поверить, что природа обходится без такой красоты. Конечно, на суперсимметрии или на теории струн свет клином не сошелся — ученые разрабатывают и другие подходы к физике за пределами Стандартной модели.

Но мне кажется, что в целом состояние отрасли, если иметь в виду теорию, довольно плачевное. С другой стороны, несмотря на все усилия, понимания того, как устроен мир на энергиях, превышающих типичные значения для Стандартной модели, у нас по-прежнему нет. Можно сравнить эту ситуацию с тем, как развивалась фундаментальная физика в 1950-е — 70-е годы: сначала вел эксперимент, все более мощные ускорители постоянно открывали большое число новых частиц, и совершенно непонятно было, как все это описывать и классифицировать. Старые подходы не работали.

В 1959 году, выступая на конференции по физике высоких энергий в Киеве, Лев Ландау объявил, что прежний, гамильтонов, подход к теории поля умер, и остается лишь организовать ему достойные похороны. Возникли новые методы, в которых было очень много красивой математики, но не так уж много физического содержания. Но уже через десять лет в рамках старого, уже, казалось бы, похороненного подхода, появилась теория сильных взаимодействий, квантовая хромодинамика, и Стандартная модель, появились соответствующие предсказания, которые затем были блестяще подтверждены в новых экспериментах. Последнее из этих подтверждений — обнаружение хиггсовского бозона, это, так сказать, теоретический привет из шестидесятых.

Само по себе это нормально, но вопрос о том, сменится ли эта фаза реальным прогрессом в понимании природы, остается, на мой взгляд, открытым. Прошлые успехи не гарантируют успеха в будущем. Кроме того, сейчас имеется серьезная объективная трудность: в отличие от 1950-х годов, у нас сейчас не так много экспериментальных данных. Вот если бы БАК или другой ускоритель нашли бы "новую физику", тогда дело бы пошло веселей.

А так, в основном, мы имеем только косвенные подтверждения, что новая физика есть. По сути, мы сейчас идем за экспериментами — мы строим коллайдер, он, к счастью, находит бозон Хиггса, но не открывает микро-черные дыры или какие-то другие новые и интересные объекты, вроде суперпартнеров. Теоретики задыхаются от недостатка новых данных и у них, образно говоря, начинаются разнообразные сугубо математические галлюцинации… И это все при том, что острые нерешенные вопросы еще у нас есть. Мне, теоретику, ситуация, в которой теория становится ведомой, совсем не по душе.

Эта недостающая часть Стандартной Модели физики элементарных частиц позволила ученым объяснить то, как другие элементарные частицы получают свою массу. Однако, открытие бозона Хиггса поставило перед учеными очередную загадку — масса самой этой частицы в 125 ГэВ удивительно мала по сравнению с ожидаемыми величинами. И ученые уже выдвинули ряд теорий, разработали ряд моделей, вроде бы как объясняющих столь малую массу бозона Хиггса, но ни одна из этих теорий и моделей пока не получила никаких экспериментальных подтверждений. Согласно новой теории, в самый ранний период существования Вселенная являлась «коллекцией» множества параллельных Вселенных, в каждой из которых бозон Хиггса имел свое уникальное значение массы. Вселенные, в которых бозон имел большое значение массы, разрушились первыми в горниле Большого Взрыва. Чем большую массу имел бозон Хиггса в каждой конкретной Вселенной, тем раньше она разрушилась, а наша современная Вселенная может быть одной из Вселенных с самым легким бозонам Хиггса, которым удалось пережить катаклизм и не разрушиться при этом.

Стабильные реликтовые нейтралино могут быть обнаружены по рассеянию на ядрах в неускорительных экспериментах по поиску частиц тёмной материи. Легчайшее нейтралино массой 30-5000 ГэВ является основным кандидатом в составляющие холодной тёмной материи из слабовзаимодействующих массивных частиц вимпов. В Стандартной модели, однако, электрослабое и сильное взаимодействия объединены лишь формально. Они могут оказаться разными проявлениями общего взаимодействия, а могут и не оказаться. Тем не менее, анализ экспериментальных результатов дает некоторые подсказки к вопросу о существовании великого объединения. У каждого из фундаментальных взаимодействий есть величина, которая характеризует его интенсивность. Эта величина называется константой взаимодействия. Константа электромагнитных взаимдействий просто равна заряду электрона. В случае сильных и слабых взаимодействий ситуация несколько сложнее. Одно из интересных свойств квантовой теории поля состоит в том, что константа взаимодействия на самом деле не константа — она меняется при изменении характерных энергий процессов с участием элементарных частиц, причем теория может предсказать характер этой зависимости. В частности, это означает, что при приближении к электрону на расстояния, гораздо меньшие размеров атома, начинает меняться его заряд! Причем такое изменение, обусловленное квантовыми эффектами, подтверждено экспериментальными данными, например, небольшим изменением уровней энергии электронов в атоме водорода лэмбовский сдвиг. Константы электромагнитного, слабого и сильного взаимодействий измерены с достаточной точностью для того, чтобы можно было вычислить их изменение с ростом энергии. Результаты изображены на рисунке. В Стандартной модели графики слева нет таких энергий, где произошло бы объединение констант взаимодействий. А в минимальном суперсимметричном расширении Стандартной модели графики справа такая точка имеется. Это значит, что суперсимметрия в физике элементарных частиц обладает приятным свойством — в ее рамках возможно великое объединение! Объединение с гравитацией Стандартная модель не включает гравитационное взаимодействие. Оно совершенно незаметно в ускорительных экспериментах из-за малых масс элементарных частиц. Однако при больших энергиях гравитация может стать существенной. Современная теория гравитационных взаимодействий — общая теория относительности — является классической теорией. Квантовое обобщение этой теории, без сомнения, стало бы самой общей физической теорией, если бы было построено. Помимо отсутствия каких бы то ни было экспериментальных данных, имеются серьезные теоретические препятствия в построении теории квантовой гравитации. В объединении гравитации с остальными взаимодействиями также есть трудности. Переносчик гравитационного взаимодействия, гравитон, должен иметь спин 2, в то время как спин переносчиков остальных взаимодействий фотон, W- и Z-бозоны, глюоны равен 1. Чтобы «перемешать» эти поля, нужно преобразование, меняющее спин. А преобразование суперсимметрии как раз и есть такое преобразование. Таким образом, объединение с гравитацией в рамках суперсимметрии вполне естественно. Природа темной материи Вселенной Суперсимметрия может объяснить некоторые результаты исследований в космологии. Один из таких результатов заключается в том, что видимая светящаяся материя составляет не всю материю во Вселенной. Значительное количество энергии приходится на так называемую темную материю и темную энергию. Прямым указанием на существование темной материи являются зависимости скоростей звезд в спиральных галактиках от их расстояния до центра. Эту зависимость легко вычислить. Оказывается, экспериментальные данные существенно расходятся с предсказаниями теории. Расхождение объясняют тем, что галактики находятся в «облаках» темной материи. Частицы темной материи взаимодействуют только гравитационно. Поэтому они группируются вокруг галактик правильнее было бы сказать, что обычная материя группируется вокруг сгустков темной материи и искажают распределение масс в галактике. В 1964 году физики Арно Пензиас и Роберт Вилсон, сотрудники Веll Laboratories, занимавшиеся обслуживанием радиоантенны слежения за американским космическим спутником «Эхо» в Холмделе Нью-Джерси , решили проверить некоторые свои научные гипотезы о радиоизлучении тех или иных объектов Вселенной. Антенна была самым чувствительным на тот момент детектором СВЧ-волн, а потому сначала ее надо было правильно настроить, чтобы исключить возможные помехи. Реликтовое излучение — равновесное тепловое излучение, заполняющее Вселенную. Это излучение отделилось от вещества на ранних этапах расширения Вселенной, когда электроны объединились с протонами и образовали атомы водорода рекомбинация. Тогда Вселенная была в 1000 раз моложе, чем сейчас. Нынешняя температура реликтового излучения составляет примерно 3 K. В Стандартной модели нет подходящих частиц для объяснения темной материи. В то же время в некоторых суперсимметричных моделях есть прекрасный кандидат на роль холодной темной материи, а именно нейтралино — легчайшая суперсимметричная частица. Она стабильна, так что реликтовые нейтралино могли бы сохраниться во Вселенной со времен Большого взрыва. Что касается темной энергии, ее природа в рамках современных физических теорий совершенно непонятна. Это настоящий вызов физикам двадцать первого века. Темную энергию можно интерпретировать как собственную энергию вакуума, однако при этом возникают огромные несоответствия между теоретическими оценками и наблюдаемым значением плотности темной энергии. Существование темной энергии приводит к наблюдаемым следствиям — ускоренному расширению Вселенной в настоящее время. МССМ Для построения суперсимметричных моделей был развит математический аппарат, останавливаться на котором здесь нет никакой возможности. Однако, несмотря на всю сложность математического аппарата, суперсимметричные теории обладают рядом простых особенностей. К одной из таких особенностей относится удвоение числа частиц. В Стандартной модели нет частиц, которые могли бы быть суперпартнерами друг друга. Следовательно, в суперсимметричных расширениях Стандартной модели каждая частица приобретает своего суперпартнера — новую частицу. Минимальная суперсимметричная Стандартная модель МССМ требует для построения меньше всего новых частиц. Другой важной особенностью суперсимметричных моделей является нарушение суперсимметрии. Если бы такого нарушения не было, суперпартнеры имели такие же массы, что и обычные частицы. Однако новые частицы с массами известных частиц Стандартной модели никогда не наблюдались. Также без нарушения суперсимметрии не работал бы хиггсовский механизм нарушения электрослабой симметрии. Чтобы применять суперсимметричные модели в физике высоких энергий, необходимо потребовать нарушение суперсимметрии. При этом суперпартнеры могут приобрести большие массы, чем можно объяснить их ненаблюдение в настоящее время. Конкретный механизм нарушения суперсимметрии сейчас неизвестен.

Если они существуют, эти дополнительные частицы отменяли бы вклад партнеров в массу Хиггса. Потому бозон Хиггса был бы легким, как мы его и наблюдали. Это естественное объяснение куда более желательно, чем внесение корректировок в существующую Стандартную модель. Когда вы вынуждены править теории, объясняющие то, что вы в действительности наблюдаете, это знак того, что «вы на самом деле не знаете, что делаете», говорит Линкольн, а эта теория, по всей видимости, неправильная или неполная. Самые легкие суперсимметричные частицы, предсказываемые в рамках теории, могут быть неуловимыми частицами темной материи, на которые охотятся физики десятилетиями. Суперсимметрия предсказывает, что у этой частицы будет нейтральный заряд и она едва ли будет взаимодействовать с любой другой частицей. Примерно такое описание физики ждут от частиц темной материи. Темная материя невидима, поэтому частицы, из которых она состоит, должны быть нейтральными, иначе будут рассеивать свет и станут видимыми. Эти частицы также ни с чем не взаимодействуют, иначе мы бы их уже обнаружили. К примеру, теперь мы понимаем, что гравитация, которая привела к падению яблока на голову Ньютона, — это та же гравитация, которая управляет планетами и звездами. И теперь мы знаем, что законы электричества и законы магнетизма — просто два закона, которые определяют единую фундаментальную силу электромагнетизма. Если суперсимметричные частицы включены в Стандартную модель, они бы тесно связали три из четырех фундаментальных сил, которые описываются Стандартной моделью: электромагнетизм, сильное и слабое взаимодействие. Суперсимметрия будет означать, что все эти три силы будут обладать одной и той же силой на очень высоких энергетических уровнях. Суперсимметрия часто описывается как трамплин для теории струн — чтобы она стала возможной, необходима некоторая версия суперсимметрии.

Суперсимметрия

Это удар по суперсимметрии, который, однако, не сбрасывает теорию со счетов. Теория предсказывает наличие закона периодического изменения вероятности обнаружения частицы определённого сорта в зависимости от прошедшего с момента создания частицы. Теория предсказывает наличие закона периодического изменения вероятности обнаружения частицы определённого сорта в зависимости от прошедшего с момента создания частицы. Если рассмотреть квантовую электродинамику, то это теория с не очень большим, по сравнению с суперсимметрией, количеством симметрий. Сформулированная в 1973 году, теория Суперсимметрии предполагает наличие у каждой известной науке элементарной частицы двойника, отличающегося своими характеристиками. Так что суперсимметрия должна нарушаться в том смысле, что отношения, предсказанные теорией суперсимметрии, не могут быть строгими.

«Вселенная удваивается»

Суперсимметрия важна для теории струн, но наличие суперсимметрии в природе само по себе не означает, что последняя — правильная физическая теория. С момента ввода в обиход теории суперсимметрии и до настоящего времени эта теория являлась лишь только неподтвержденной физической гипотезой. Суперсимметрия часто описывается как трамплин для теории струн — чтобы она стала возможной, необходима некоторая версия суперсимметрии. Важные результаты в изучении низкоэнергетических следствий теории суперструн методами суперсимметричной теории поля получила в ходе цикла работ группа теоретиков из ОИЯИ. Суперсимметрия доминировала над физикой частиц десятилетиями, и исключила почти все альтернативные физические теории, выходившие за рамки СМ. Суперсимметрия, возникшая независимо в теории струн, «убила» тахион.

«В настоящее время мы не можем описать Вселенную»

Еще не все потеряно, есть усложненные теории суперсимметрии, по которым суперсимметричных частиц так просто не обнаружишь. Несмотря на кажущуюся катастрофу, изначальная теория суперсимметрии даёт нам простой и правдоподобный выход из ситуации. Теория струн предсказывает, что между этими двумя частицами существует связь, называемая суперсимметрией, при которой для каждого фермиона должен существовать бозон, и наоборот. Нужно построить теорию, которая будет инвариантна относительно преобразований суперсимметрии, а также относительно. Теория суперсимметрии выдвигалась многими физиками-теоретиками в качестве средства объяснения некоторых несоответствий в Стандартной модели Вселенной. В чем заключается «кризис суперсимметрии», как «поделить» физику высоких энергий и для чего нужно строить у себя установки класса megascience, в интервью.

СУПЕРСИММЕ́ТРИ́Я

Бозоны Хиггса Физики думают, что мы найдем доказательства суперсимметрии? Несмотря на десятилетия поисков, никто не нашел никаких доказательств суперсимметрии. Впрочем, великие теории открывались не за два-три года. К примеру, почти полвека понадобилось на то, чтобы открыть бозон Хиггса с момента теоретического предположения его существования. Потому, хотя мы и не видим доказательств суперсимметрии, эта теория остается очень мощной. Тем не менее Вселенной абсолютно все равно, насколько идеальными наши теории ни казались бы, говорит Линкольн. Многие физики говорят, что мы должны были найти доказательства суперсимметричных частиц уже в первый запуск БАК, поэтому теория вполне может быть не ахти. Но только потому, что мы не видели каких-либо суперсимметричных частиц, еще не означает, что их нет. Может быть, есть что-то в том, как суперсимметрия проявляется, чего мы пока не понимаем.

Может, нужен более мощный коллайдер, чтобы частицы-суперпартнеры проявили себя. Мы не узнаем этого, пока БАК не заработает. Если суперсимметрия была вне досягаемости по уровню энергии во время последнего запуска, данные этого года могут быть совершенно неописуемыми. Конечно, мы можем ничего и не найти. Но это тоже пойдет нам на пользу. Если суперсимметрия ошибочна, это откроет дверь к новому набору теорий. Также появится больше доверия к другим теориям, вроде идеи о мультивселенной, к которой никогда не было особого доверия.

Некоторые из самых легких суперсимметричных частиц могут оказаться темной материей, за которой астрофизики охотятся с 1930-х годов.

Теория суперсимметрии может быть использована для объединения всех взаимодействующих сил во Вселенной, кроме гравитации — это был бы большой шаг к единой теории поля, объединяющей и объясняющей всю известную физику. Пока что коллайдеры не дали подтверждения теории суперсимметрии. Частицы-суперпартнеры должны оказаться намного тяжелее обычных частиц. А в настоящее время БАК быстро накапливает данные при еще более высоких энергиях, сокращая "тяжелую область" для суперчастиц. К концу года он достигнет 1000 ГэВ, что потенциально исключит некоторые вариации теории суперсимметрии, которым отдавалось наибольшее предпочтение. Это создает серьезную проблему для теории суперсимметрии. Поскольку суперчастицы оказываются более тяжелыми, чем предполагалось, они уже не так хорошо уравновешивают квантовые колебания.

Для сокращения таких поправок к массе Хиггса параметры Стандартной модели должны иметь очень точно определённые значения. В рамках MSSM поправки, как к фермионным массам, так и скалярным, имеют логарифмическую форму, и их сокращение происходит более естественно, но требует точной суперсимметрии.

Кроме того, данное решение проблемы иерархии предполагает, что массы суперпартнёров не могут быть больше, чем несколько сотен ГэВ. Этот аргумент позволяет ожидать открытие суперсимметрии на коллайдере LHC. Унификация калибровочных бегущих констант. Известно, что в калибровочных теориях возникает явление бегущей константы связи, то есть значение константы взаимодействия изменяется в зависимости от того, на каком энергетическом масштабе наблюдается взаимодействие. Стандартная модель базируется на трёх различных калибровочных группах. Значения констант этих групп различны на малых энергиях, и с увеличением энергии они меняются. На энергетическом уровне порядка 100 ГэВ две константы становятся одинаковыми явление электрослабого объединения.

В таком случае частицы-суперпартнёры обычных частиц оказываются очень тяжёлыми по сравнению с обычными частицами. Поиск суперпартнёров обычных частиц — одна из основных задач современной физики высоких энергий. Ожидается, что Большой адронный коллайдер, запуск которого планируется осенью 2008 года [1], сможет открыть и исследовать суперсимметричные частицы, если они существуют, или поставить под большое сомнение суперсимметричные теории, если ничего не будет обнаружено.

Виктор Алексеевич Мудрец 14295 11 лет назад Суперсимметрия, это просто! Гляньте на себя в зеркало - вы совершенно симметричны!

Похожие новости:

Оцените статью
Добавить комментарий