Новости что такое эврика

1.8Библиография. Отобразить/Скрыть содержание. эврика.

Югорский филолог рассказал о значении слова «Эврика!»

Если машины не просто тупицы, быстро выполняющие вычисления, а им доступны мыслительные действия в таком широком диапазоне — от образования понятий до творчества, то, видимо, скоро настанет эра настоящих думающих автоматов? Инженеры всегда были в этом вопросе большими оптимистами. Как только появились вычислительные машины, они заявили, что в принципе возможно автоматизировать любую умственную деятельность, если будут известны правила, по которым она происходит. Достаточно лишь разложить эти правила на элементарные машинные операции. Было бы только чем заполнять машинную память». Но когда они увидели, с какими бесконечными подробностями приходится объяснять машине самые простейшие правила мышления даже весьма еще несовершенные программы перевода с одного языка на другой состоят из 10—20 тысяч машинных инструкций , оптимизм их несколько поубавился. А ведь многие мыслительные действия вообще не удалось представить в виде системы правил. Взять хоть то же распознавание знакомого лица или знакомой ситуации.

Правила, по которым совершается эта важнейшая мыслительная операция, запрятаны где-то в глубинах подсознания и до них не так-то просто докопаться. Но, видимо, они достаточно сложны. Потому что все попытки составить аналогичную программу для машины привели пока только к тому, что машина смогла узнать лишь некоторые буквы, простейшие геометрические фигуры да цифры. Как же «приблизить» машину к различным видам умственной деятельности, чтобы максимально разгрузить человека, оставив ему самые высшие, самые интересные, самые новаторские взлеты творчества? Тогда-то и появилась мысль решить задачу моделирования умственных операций обходным путем. Снабдить машину не подробной программой действия, а лишь способностью учиться. Тогда в машину надо будет ввести небольшую исходную информацию.

Все остальные сведения, необходимые для моделирования мыслительного процесса, она раздобудет сама в процессе учебы. Вместо подробного расписания работы машине дают основную рабочую программу, в которой описан только принцип действия. И «обучающую» программу, которая по ходу дела вносит исправления в первую. Однако способные к обучению и самосовершенствованию машины не разрешили всех проблем, связанных с моделированием мышления. Центр тяжести просто переместился. Стало проще составлять программу, зато дольше и сложнее учить машину. Учить машину думать ничуть не проще, чем человека.

А результаты пока довольно средние. Так что ни о каком преимуществе машины не может быть и речи. Во всяком случае, пока исходные позиции электронного ньютона и школьника Петьки неравны информация, закладываемая в начинающую учиться машину, намного меньше той, которой располагает первоклассник , человек может не бояться ее соперничества. Очевидно, мало наделить машину способностью учиться. Надо еще начинить ее теми алгоритмами, теми эвристическими приемами, что составляют механизмы нашего ума. Тогда ее работа станет больше похожа на мышление человека. В справедливости этого мы с вами имели возможность убедиться на многочисленных примерах творчества машин.

Но мы также знаем, что и сам-то механизм человеческого мышления далеко еще не раскрыт. И надо прямо добавить: чем глубже исследовательская мысль человека обращается к познанию самого себя, тем более сложными предстаем мы с вами перед микроскопом науки и тем больше нового и неожиданного открывается в наших мыслительных способностях. Мы с вами подошли сейчас к интереснейшей области. Вспомните: когда производили опыты над человеком, чтобы вырвать некоторые секреты его мышления и передать их машине, испытуемого приводили в состояние, близкое, если можно так выразиться, к машинному, — его ограждали от всех эмоций, насколько это возможно, от всех внешних впечатлений, помещая в специально изолированную камеру. Ведь машина бесчувственна. И ей требовалось дать «очищенную от посторонних примесей», бесчувственную человеческую мысль. Нужно сказать, что бесчувственность счетнорешающих устройств, эта самая их машинная суть, рассматривалась с первых шагов кибернетики и рассматривается и сейчас как огромное их преимущество в решении целого ряда практических задач.

Не поддающиеся гневу, не расстраивающиеся от мелких огорчений, не подверженные человеческим эмоциям, комбинации электронных ламп и сопротивлений, пусть с машинной тупостью, но и с хладнокровием механизма, бесстрастно выясняют все «за» и «против» и дают точный математический ответ. Такое преимущество управляющих машин остается за ними, пока их привлекают к роли диспетчера или другой подобной работе, выполняемой по твердому, заранее разработанному графику. Но поскольку ученые и конструкторы задались целью использовать машины и в таких областях, где даже от человека требуется вдохновение, встал вопрос об истинных механизмах этого вдохновения. Так ли уж не важны и не нужны эмоции человеку в его умственной деятельности? Мы повседневно наблюдаем, как человек, который страстно стремится к цели, достигает несравненно большего, чем тот, кто работает с прохладцей, чем тот, кого данное дело не волнует. Нет ли тут связи между эмоциональной зараженностью человека и эффективностью его мышления? И если уж взялись обучать машину самым продуктивным способам человеческого мышления, тогда выходит… В общем сейчас всерьез заговорили о создании не только думающих, но и чувствующих машин.

Как выяснилось, эмоции им действительно нужны… чтобы лучше думать. В самом деле. Любое наше мыслительное действие не является самоцелью. Оно совершается, так сказать, не из любви к искусству, а всегда бывает вызвано какими-то потребностями и мотивами, зависящими от чувств и настроений, которые мы в этот момент испытываем. И часто именно эмоции играют решающую роль в оценке различных ситуаций и даже отдельных мыслительных действий. Мозг как бы решает для себя, к хорошему или плохому результату приводит тот или иной этап переработки информации. Киевский кибернетик Николай Михайлович Амосов предположил даже, что в мозгу существуют две самостоятельные программы — интеллектуальная набор разнообразных эвристических приемов мышления и эмоциональная те самые потребности и мотивы, что определяют наше отношение к происходящему.

Когда мы думаем, действуют обе эти программы, причем выбор алгоритма зависит от оценки, которую он получит по эмоциональной шкале. Мало того, эмоциональная программа нередко даже изменяет интеллектуальную, так что образуется уже какой-то «сплав» из чувств и мыслей. Он-то и лежит в основе нашего мышления. И может быть, принадлежность людей к художественному и мыслительному типу определяется тем, какая из двух программ играет у них первенствующую роль. Так или иначе, а многие кибернетики считают, что самые существенные недостатки эвристических программ можно будет устранить, если снабдить машины чем-то? Первую электронную модель эмоций киевляне уже создали. Их детище сможет испытывать печаль, тревогу, любопытство, негодование, горе, обиду, жалость — всего около пятидесяти разных чувств, настроений и даже страстей.

Действия ее заключаются в ответах на вопросы. Машина анализирует не просто смысл того, о чем ее спрашивают, но учитывает и эмоциональную окраску вопроса. Потом она начинает думать, как ответить. И ответы ее зависят от «настроений» и «чувств», вызванных предыдущими вопросами и общим эмоциональным состоянием, которое задается заранее. Причем «темперамент» машины можно менять, усиливая одни чувства, ослабляя другие. Работа эта только начата и важна не конечными результатами, а поворотом исследований мыслительной деятельности в сторону чувств. Легко понять, что, когда машина научится не только думать, но и чувствовать, она станет еще более сильным помощником человека.

Есть еще одна возможность усилить интеллект машины. Не обязательно ей начинать с «каменного топора» и самостоятельно проходить весь сложный путь становления ума. Можно сразу сделать ее умнее, снабдив всем тем опытом мышления, который накопило человечество — не каждый из нас, а именно все мы за тысячелетия сознательной жизни. Снабженная таким коллективным опытом и творческими навыками, да при ее удивительном быстродействии, машина, по мнению современных кибернетиков, сможет превзойти своего создателя в поединке интеллектов. Но кто даст нам в таком случае гарантию, что, «работая над собой», машина не создаст совершенно новые эвристические приемы, неизвестные нашему мозгу? И не окажемся ли мы когда-нибудь перед необходимостью изучать творчество машины, подобно тому как мы изучаем сейчас творчество людей? Естественно, что сейчас, с появлением на границе кибернетики и психологии новой науки — эвристики, у многих возникло желание признать за ней право на первенство.

Англичанин Саймон, первым создавший для машины эвристическую программу, заявил недавно: «Я думаю, мы можем согласиться, что XX век — это век эвристики». Конечно, он по-своему прав, но где гарантия, что через пару лет не будут совершены еще более грандиозные открытия, скажем, в биологии, и тогда станут столь же справедливо связывать нашу эпоху с новым триумфом в науке? Между тем во всех этих определениях XX века есть одна общая черта. В химии ли, в физике или в кибернетике — всегда речь шла о большом количестве открытий, поставивших ту или иную науку впереди других. Невероятное обилие научных открытий — вот характерная особенность нашей эпохи. По данным ЮНЕСКО, девять десятых ученых всех времен и народов, совершивших важные открытия, — жители двадцатого столетия, наши современники. А предшествующие тысячелетия, вся многовековая история человечества — от Аристотеля до Сеченова — дала лишь одну десятую великих первооткрывателей.

Количество открытий и изобретений удваивается каждые десять лет. Причем темп развития науки все убыстряется. Подсчитано, что за последние пятнадцать лет сделано столько же научных открытий, сколько за всю предшествующую историю науки! Так не правильнее ли было бы назвать наш век эпохой открытий? В конце XIX века на всем земном шаре научными исследованиями занимались едва пятьдесят тысяч человек. К середине XX столетия их было уже четыреста тысяч. Сейчас во всем мире ученых, активно двигающих науку вперед, свыше двух миллионов.

Если теперешние темпы даже не ускорятся, а хотя бы останутся на таком же уровне а наука развивается по геометрической прогрессии! Поистине речь идет о грядущей «промышленности открытий», как ее справедливо называют. И как всякой индустрии, ей нужна соответствующая техника. Такими современными механизмами, способными автоматизировать умственный труд, и служат вычислительные машины, которые могут не просто решать отдельные задачи, большей частью уже давно решенные людьми, а быть настоящими действенными помощниками человека в высокоинтеллектуальной работе. Это по силам машинам, работающим по эвристическим алгоритмам, машинам, созданным, чтобы делать открытия. Известный ученый, директор Киевского института кибернетики Виктор Михайлович Глушков считает, что речь должна идти о комплексной автоматизации таких высокоинтеллектуальных творческих процессов, как развитие науки и техники. Ведутся эксперименты с программами, выводящими сложные логические следствия из имеющихся в распоряжении исследователя фактов.

Планируются работы по созданию программ, строящих теорию, которая простейшим образом объединила бы сложный экспериментальный материал. Высказаны первые идеи о путях построения программы, которые формулировали бы новые интересные идеи в математике… Уже сегодня электронная машина в нашем вычислительном центре может вывести любые теоремы алгебры так называемых вещественных полиномов, в том числе и те, которые не выведены человеком». Как скоро настанет пора такой «кибернетизации научного творчества»? Академик Глушков уверен, что очень скоро. Сразу же после «кибернетической десятилетки» в экономике, с которой, по его мнению, надо начинать массовое внедрение кибернетики в нашем народном хозяйстве. На помощь ученым придут электронные ньютоны, умеющие «думать» не только очень быстро и логически стройно, но и пусть несколько приблизительно, с некоторой долей вероятности, зато с помощью так называемых «скачков ума», внезапных откровений, интуитивных догадок, и составляющих суть творческого мышления. Рациональная в своей основе, наука движется вперед не за счет только простого рассуждения, а главным образом благодаря способности ума освобождаться от оков железной логики — мыслить широко, остроумно, порой парадоксально, забегать далеко вперед, воображать иногда то, что еще не получило подтверждения фактами.

Мысль человека всегда основана на чувствах, она всегда эмоциональна, хотя эта сторона деятельности ума не бросается в глаза и потому гораздо меньше изучена. Тем более это относится к мыслительной работе ученых и вообще творческих людей. Кто-то остроумно сказал, что эмоции — «закулисный дирижер» творчества. И дирижер этот играет не второстепенную, а главную роль в поисках нового. Когда эмоциями снабдят машины, они смогут «думать» еще более творчески. Не обязательно им впадать в экстаз, вдохновенно «щелкать цифрами». Не знаю, доведется ли им переживать минуты вдохновения, творческого подъема, но без воображения и интуиции их электронных моделей, разумеется им не стать подлинными ньютонами.

Тем более что им придется работать на науку XX столетия — науку «безумных идей» и фантастических открытий. Весь XIX век да и начало нашего ушли в значительной степени на собирание фактов — подготовку фундамента колоссального рывка вперед, который знаменовался такими невероятными, с точки зрения здравого смысла, открытиями, как теория относительности или антимир. Сами физики назвали эти теории «безумными» в хорошем смысле. И несмотря на уже обнаруженные парадоксы, по признанию многих ученых, современная наука нуждается в новых «сумасшедших» теориях. Этого не смогут сделать трезво рассуждающие умы. XX веку нужны ученые-фантазеры, ученые-мечтатели, люди гибкой и смелой мысли, способные оторваться от канонов старых теорий, вырваться за пределы прежнего знания. И если вы — будущие ученые, инженеры, художники — хотите стать участниками великих деяний своего времени, учитесь думать широко, эмоционально, творчески.

Помните: у вас есть теперь конкурент и ваш ученый друг — машина. Как не дать себя обогнать электронным ньютонам? Видимо, прежде всего иначе учиться и учить, что, пожалуй, даже важнее. Когда у нас появятся автоматические библиографы, переводчики, справочники, не будет необходимости разыскивать немыслимое количество фактов и загружать ими свою память. Нам надо сосредоточить внимание на другом — изучать не летопись науки, а ее принципы, суть составляющих ее открытий, чтобы на примере физики или химии познакомиться с методами познания и затем овладевать новыми, более совершенными способами обобщения и анализа, разнообразными приемами мышления. А для этого еще со школьной скамьи не просто набираться знаний, но и учиться думать. Собственно, первому мы школьников учим, а вот второму — умению думать — предоставляем учиться самим.

Кто поспособней, интуитивно доходит до правильной технологии мышления. Менее способные ученики нередко уходят из школы, унося багаж пассивных знаний, а умения активно пользоваться ими так и не приобретают. Как же научить школьников сложному искусству мышления? Ввести в число школьных предметов логику, представляющую собой как раз описание технологии мышления? Но во многих школах преподают логику, а существо дела не меняется. Ученики выучивают, какие формы выражения мыслей правильные, какие неверные, но лучше мыслить от этого не начинают. Не хватает опять того же — умения пользоваться приобретенными навыками.

Выходит, надо не просто знакомить школьников с описанием разных форм мышления, а вырабатывать у них способность думать: «делать» рассуждение, строить умозаключение и т. Или, как сказали бы кибернетики, выявить алгоритмы умственной работы и обучить им школьников. Такие опыты обучения науке думания на основе выводов эвристики ставятся. Прежде всего попробовали разложить мысленно процесс решения геометрических задач на отдельные операции — один из очень эффективных алгоритмов, как мы знаем, — и обучать им школьников восьмых классов. Результаты оказались очень хорошими. Школьники, изучавшие геометрию в течение двух с половиной лет и так и не научившиеся решать задачи, после непродолжительного обучения специальным алгоритмам вдруг проявили способности к математике. Теперь они запросто решали большинство задач, которые до этого представляли для них камень преткновения.

А тот, кто и раньше хорошо справлялся с этими задачами, применяя вновь разработанные правила, стал соображать еще лучше. Этот первый опыт обучения умению думать был проведен несколько лет назад.

Призвав в свидетели царя, он взял два предмета: одним из них была корона, а вторым — золотой слиток, имевший такой же вес. Поочередно он опустил их в воду. При этом корона вытеснила большее количество воды, чем слиток. А из этого следовало, что определенная часть золота и вправду была заменена серебром. Оно имеет меньший вес и больший объем. Так, по преданию, был открыт закон Архимеда, который гласит, что на тело, которое погружено в газ или в жидкость, действует сила — подъемная или выталкивающая, которая равняется весу объема газа или жидкости, вытесненного телом. А слово «эврика» стало синонимом открытия, сделанного внезапно.

Повышение энерговооруженности труда — одно из основных условий повышения производительности труда. Измеряется энерговооруженность труда как отношение количества потребленной в производстве энергии в кВт к числу отработанных рабочими данного предприятия чел. Экономика природопользования — раздел конкретной экономики, изучающий главным образом вопросы экономической оценки природных ресурсов и ущерба от загрязнения среды. Эквивалент Эквивалент — от лат. Эквивалентность особенно важна при сравнении товаров и их обмене друг на друга.

История телекинеза — история жульничества и мошенничества Телекинез — шоу для простаков Существует несколько разновидностей так называемых экстрасенсорных способностей: предвидение, пирокинез воспламенение силой мысли , телепатия, или экстрасенсорное восприятие умение видеть вещи на большом расстоянии... Одна из самых любопытных — телекинез он же психокинез , то есть способность двигать вещами силой мысли. Представление о телекинезе возникло в незапамятные времена, а в конце XIX века, на пике интереса к спиритуализму и прочей экстрасенсорике, он считался некоторыми вполне научным явлением. Собственно говоря, во время спиритических сеансов, когда якобы вызывались духи мертвых людей, телекинез как раз и наблюдался: вещи передвигались по темным комнатам, казалось бы, без участия человека. Обмануть таким образом удалось многих неглупых людей, в том числе, как ни странно, сэра Артура Конан Дойла, создателя выдающегося сыщика и рационалиста Шерлока Холмса. Конечно, вы понимаете, что все это были ловкие трюки с использованием тонкой нити, а порой объекты передвигали просто-напросто люди в темных балахонах, скрытые «мистической» полутьмой. Известный фокусник Гарри Гудини раскрыл множество случаев спиритическго жульничества и даже написал об этом книгу «Горе-чудотворцы и их методы». Постепенно публика перестала верить в телекинез, и интерес к нему пропал. Но уже в 1930 — 1940-х годах эту тему возродил сотрудник Университета Дьюка по имени Дж. Райн, который занялся изучением того, влияет ли мысль на исход будущих событий. Он начал с игральных костей, предлагая добровольцам усиленно думать о том, какое число должно выпасть. Хотя результаты экспериментов оказались неоднозначными, а воздействие силы мысли — минимальным, ученый уверовал в то, что без мистики тут не обошлось. К сожалению для него, другие исследователи не смогли повторить полученные результаты, и в его методах было найдено множество ошибок. Несколько десятилетий спустя, в 1970-х, некто по имени Ури Геллер приобрел мировую славу человека, обладающего психическими сверхспособностями, и миллионы людей ехали на другой конец земного шара, чтобы своими глазами увидеть, как он взглядом заводит часы и гнет ложки. Геллер утверждал, что это не фокусы и не магия, а просто скрытые возможности человека, которые может разбудить в себе едва ли не каждый. Но скептики заметили, что все его удивительные трюки спокойно воспроизводятся обыкновенными фокусниками.

Россия решила выйти из европейской научно-технической программы «Эврика»

У этого термина существуют и другие значения, см. Эврика значения. Архимед бежит по улицам Сиракуз , крича «Эврика! Согласно легенде, пересказанной Витрувием в трактате « Об архитектуре », сиракузский царь Гиерон II подозревал своего ювелира в обмане при изготовлении золотой короны [1].

Эвристика — это момент открытия нового, а также методы, которые используются в процессе этого открытия. Эвристикой еще называют науку, которая имеет дело с изучением творческой деятельности. В педагогике под этой категорией подразумевается метод обучения. Как наука, изучающая творческое, неосознанное мышление человека, эвристика еще полностью не сформировалась. Ее предмет, методы тесно связаны с психологией, философией, физиологией высшей нервной деятельности и другими. Мы не будем сосредотачиваться на применении этого термина в конкретных отраслях науки, а предпримем попытку выяснить какие суждения, явления, смыслы исторически пребывали в центре понятия «эвристика». По легенде, Архимед, принимая ванную, открыл один из главных законов гидростатики — закон вытеснения названный позже в его честь. Следуя общепринятому мнению, после своего открытия он выкрикнул: «Эврика», что стало причиной привязки этого слова к открытию.

Не будем судить о правдивости этой истории, достоверно известно другое. Именно в Древней Греции зародилась система обучения, называемая эвристикой. Ее автором был Сократ, а сводилась она к сократическим беседам диалогу, в педагогике — сократический метод — разговор учителя с учеником, в результате которого путем постановки наводящих вопросов, обучающийся самостоятельно приходит к нужному результату, находит решение задачи, что позволяет также развивать критическое мышление. В то же время, понятие «эвристика» употреблялось и в трактатах древнегреческих математиков в особенности, Паппа Александрийского, которому многие приписывают первое упоминание этого термина , исходя из чего, можно судить о довольно широкой основе предмета этой отрасли. В средние века значительный вклад в развитие эвристики внес Раймонд Луллий, который известен благодаря своей идее создания машины для решения самых разных задач на основе всеобщей классификации понятий. Примерно до середины XIX века представления об эвристике как методе творчества и познания в целом сводились к уже упомянутому методу проб и ошибок. В Википедии приводится любопытная статистика: Томас Эдисон, работая над устройством щелочного аккумулятора, провел около 50 тыс. Выделение эвристики из системы логического знания началось в 1850-1860-х гг.

До этого попытки выделить эвристику в отдельную науку предпринимались Эвклидом, Р. Декартом, Г. Но лишь в обозначенный период в науке начал формироваться подход к эвристике как своеобразному междисциплинарному методу со своими правилами, уверены канадские ученые М. Романисия и Ф. Пелатье, разрабатывающие данную проблематику. Дальнейшее развитие эвристики связано с развитием в области других наук, в первую очередь психологии творчества и физиологии мозга. Современная психология и эвристика тесно связаны: они сосредотачиваются на задаче определения механизма принятия человеком решения в условиях недостаточности информации. Несовершенство эвристических методов приводит к ошибкам познания, которые в психологии принято называть когнитивными искажениями.

В ХХ веке основные успехи в развитии эвристики как науки были сопряжены с успехами ученых-психологов. Так, роль эвристики в принятии решений одними из первых изучили израильские психологи А. Тверски и Д. Канеман в 1973 г. Он ввел понятие ограниченной реальности, которая отображает природу эвристической деятельности человеческого мозга.

Толковый словарь Ефремовой. Энциклопедический словарь Ф.

Брокгауза и И. Ефрона Эврика — I см.

Прежнее постановление российского правительства от 25 апреля 2011 года об участии в этой программе признали утратившим силу. Минпромторгу поручили уведомить председателя и руководителя секретариата ассоциации «Эврика» о выходе РФ из данной научно-технической программы. Ранее Михаил Мишустин по ходу общения с членами фракции «Справедливой России» в Госдуме заявил, что вопрос отмены системы Единого государственного экзамена ЕГЭ должен сопровождаться взвешенным изучением всех плюсов и минусов такого шага.

Эврика! Почему гениальные идеи приходят, когда мы не стараемся

Возглас, выражающий удовлетворение, радость при найденном решении, при возникновении удачной мысли и … ЭВРИКА в Новом словаре русского языка Ефремовой: межд. Возглас, выражающий удовлетворение, радость при найденном решении, при возникновении удачной мысли и … ЭВРИКА в Большом современном толковом словаре русского языка: межд. Восклицание в знач.

Ченнай Индия , 31 июля и 2 сентября в г. Шэньян КНР и 12 и 15 сентября в г. Кейптаун ЮАР.

Местами проведения образовательных событий стали: г. Ченнай Индия : Российский центр науки и культуры, ул.

Фраза указана в Оксфордском словаре цитат, под редакцией Елизабет Ноулс 2004 г. В словарях Толковый словарь русского языка 1992 г. Ожегова С. Шведова :.

Водный мир Американские астрономы нашли нового кандидата в потенциально обитаемые экзопланеты. Встречайте: это ранее открытая экзопланета LHS 1140b. Она обращается вокруг красного карлика с массой 0,18 массы Солнца наше светило — тоже карлик, но желтый. Вообще в системе LHS 1140 она в 48,8 светового года от Солнца, в созвездии Кита есть две экзопланеты. Ближайшая к звезде — LHS 1140c. Это теплая суперземля — так называют планеты больше нашей, но меньше Нептуна. Массой, например, около двух земных. А «теплая» она, потому что равновесная температура там 420 градусов Кельвина. Ну как «теплая»… В переводе на наши Цельсии это плюс 146 градусов с лишним. Нам туда не надо. А вот вторая, та самая LHS 1140b, имеет массу 5,6 «земных», радиусом 1,73 «земного» и равновесной температурой 226 кельвинов. По-нашему это чуть холоднее, чем минус 47. Ничего особенного, в поселке Каневка Мурманской области и похолоднее бывало. То есть планета находится в потенциально обитаемой зоне, говорят ученые из Лаборатории реактивного движения NASA.

Россия решила выйти из Европейской научно-технической программы «Эврика»

я нашел) - согласно преданию, восклицание Архимеда при открытии им основного закона гидростатики. 3.1.1 Общая информация об индивидуальных проектах программы «Эврика». В настоящее время «Эврика» включает более 160 проектов.

Что представляет собой эвристическое обучение

Российский премьер-министр Михаил Мишустин подписал постановление правительства о выходе России из европейской научно-технической программы «Эврика». Смотреть что такое «эврика» в других словарях: ЭВРИКА — (греч. нашел). Восклицание Архимеда, открывшего закон тяжести тел; восклицание, сделавшееся поговоркой по разрешении трудной задачи. АНО «Институт проблем образовательной политики "Эврика"». Эврика — статья из Интернет-энциклопедии для Российская Федерация является членом EUREKA с 1993 г. Постановление Правительства Российской Федерации от 25 апреля 2011 г. N 319 г. Москва "Об участии Российской Федерации в Европейской научно-технической программе "Эврика".

Значение слова эврика. Что такое эврика?

Думаю, ему еще неоднократно приходилось использовать это восклицание. Ведь он является основателем еще нескольких законов в физике и астрономии и внес колоссальный вклад в развитие многих наук. Однажды царь Гиерон поставил перед Архимедом непростую задачу. Ученому было нужно решить, действительно ли корона, сделанная по приказу царя, состоит из чистого золота, или ювелир решил обмануть его и добавил в сплав серебра. При этом царский атрибут весил ровно столько, сколько весил слиток золота, выданный ювелиру. Древнегреческий ученый долго ломал голову, как это проверить. Озарение пришло в момент, когда он решил принять ванну. Погрузившись в емкость с водой, математик заметил, что часть воды из нее вылилось.

А к разработке проектов организаторы привлекают профессоров из ВлГУ. А ребята постарше здесь получат полную выкладку по материалу по физике, начиная с 7-го класса. С помощью наших экспонатов школьники по-другому посмотрят на науку, это важно, - сообщила «Губернии-33» организатор научно-познавательного центра «Эврика» Елена Подгорная. Как говорят сами организаторы, планы на будущее у них грандиозные. Уже с 16 февраля в научно-познавательном центре «Эврика» преподаватели «политеха» начнут читать лекции и проводить мастер-классы, касающиеся естественных наук, для всех желающих. Научно-познавательный центр «Эврика» находится по адресу: город Владимир, Растопчина, 47. Стоимость посещения 300 рублей.

Но, видимо, они достаточно сложны. Потому что все попытки составить аналогичную программу для машины привели пока только к тому, что машина смогла узнать лишь некоторые буквы, простейшие геометрические фигуры да цифры. Как же «приблизить» машину к различным видам умственной деятельности, чтобы максимально разгрузить человека, оставив ему самые высшие, самые интересные, самые новаторские взлеты творчества? Тогда-то и появилась мысль решить задачу моделирования умственных операций обходным путем. Снабдить машину не подробной программой действия, а лишь способностью учиться. Тогда в машину надо будет ввести небольшую исходную информацию. Все остальные сведения, необходимые для моделирования мыслительного процесса, она раздобудет сама в процессе учебы. Вместо подробного расписания работы машине дают основную рабочую программу, в которой описан только принцип действия. И «обучающую» программу, которая по ходу дела вносит исправления в первую. Однако способные к обучению и самосовершенствованию машины не разрешили всех проблем, связанных с моделированием мышления. Центр тяжести просто переместился. Стало проще составлять программу, зато дольше и сложнее учить машину. Учить машину думать ничуть не проще, чем человека. А результаты пока довольно средние. Так что ни о каком преимуществе машины не может быть и речи. Во всяком случае, пока исходные позиции электронного ньютона и школьника Петьки неравны информация, закладываемая в начинающую учиться машину, намного меньше той, которой располагает первоклассник , человек может не бояться ее соперничества. Очевидно, мало наделить машину способностью учиться. Надо еще начинить ее теми алгоритмами, теми эвристическими приемами, что составляют механизмы нашего ума. Тогда ее работа станет больше похожа на мышление человека. В справедливости этого мы с вами имели возможность убедиться на многочисленных примерах творчества машин. Но мы также знаем, что и сам-то механизм человеческого мышления далеко еще не раскрыт. И надо прямо добавить: чем глубже исследовательская мысль человека обращается к познанию самого себя, тем более сложными предстаем мы с вами перед микроскопом науки и тем больше нового и неожиданного открывается в наших мыслительных способностях. Мы с вами подошли сейчас к интереснейшей области. Вспомните: когда производили опыты над человеком, чтобы вырвать некоторые секреты его мышления и передать их машине, испытуемого приводили в состояние, близкое, если можно так выразиться, к машинному, — его ограждали от всех эмоций, насколько это возможно, от всех внешних впечатлений, помещая в специально изолированную камеру. Ведь машина бесчувственна. И ей требовалось дать «очищенную от посторонних примесей», бесчувственную человеческую мысль. Нужно сказать, что бесчувственность счетнорешающих устройств, эта самая их машинная суть, рассматривалась с первых шагов кибернетики и рассматривается и сейчас как огромное их преимущество в решении целого ряда практических задач. Не поддающиеся гневу, не расстраивающиеся от мелких огорчений, не подверженные человеческим эмоциям, комбинации электронных ламп и сопротивлений, пусть с машинной тупостью, но и с хладнокровием механизма, бесстрастно выясняют все «за» и «против» и дают точный математический ответ. Такое преимущество управляющих машин остается за ними, пока их привлекают к роли диспетчера или другой подобной работе, выполняемой по твердому, заранее разработанному графику. Но поскольку ученые и конструкторы задались целью использовать машины и в таких областях, где даже от человека требуется вдохновение, встал вопрос об истинных механизмах этого вдохновения. Так ли уж не важны и не нужны эмоции человеку в его умственной деятельности? Мы повседневно наблюдаем, как человек, который страстно стремится к цели, достигает несравненно большего, чем тот, кто работает с прохладцей, чем тот, кого данное дело не волнует. Нет ли тут связи между эмоциональной зараженностью человека и эффективностью его мышления? И если уж взялись обучать машину самым продуктивным способам человеческого мышления, тогда выходит… В общем сейчас всерьез заговорили о создании не только думающих, но и чувствующих машин. Как выяснилось, эмоции им действительно нужны… чтобы лучше думать. В самом деле. Любое наше мыслительное действие не является самоцелью. Оно совершается, так сказать, не из любви к искусству, а всегда бывает вызвано какими-то потребностями и мотивами, зависящими от чувств и настроений, которые мы в этот момент испытываем. И часто именно эмоции играют решающую роль в оценке различных ситуаций и даже отдельных мыслительных действий. Мозг как бы решает для себя, к хорошему или плохому результату приводит тот или иной этап переработки информации. Киевский кибернетик Николай Михайлович Амосов предположил даже, что в мозгу существуют две самостоятельные программы — интеллектуальная набор разнообразных эвристических приемов мышления и эмоциональная те самые потребности и мотивы, что определяют наше отношение к происходящему. Когда мы думаем, действуют обе эти программы, причем выбор алгоритма зависит от оценки, которую он получит по эмоциональной шкале. Мало того, эмоциональная программа нередко даже изменяет интеллектуальную, так что образуется уже какой-то «сплав» из чувств и мыслей. Он-то и лежит в основе нашего мышления. И может быть, принадлежность людей к художественному и мыслительному типу определяется тем, какая из двух программ играет у них первенствующую роль. Так или иначе, а многие кибернетики считают, что самые существенные недостатки эвристических программ можно будет устранить, если снабдить машины чем-то? Первую электронную модель эмоций киевляне уже создали. Их детище сможет испытывать печаль, тревогу, любопытство, негодование, горе, обиду, жалость — всего около пятидесяти разных чувств, настроений и даже страстей. Действия ее заключаются в ответах на вопросы. Машина анализирует не просто смысл того, о чем ее спрашивают, но учитывает и эмоциональную окраску вопроса. Потом она начинает думать, как ответить. И ответы ее зависят от «настроений» и «чувств», вызванных предыдущими вопросами и общим эмоциональным состоянием, которое задается заранее. Причем «темперамент» машины можно менять, усиливая одни чувства, ослабляя другие. Работа эта только начата и важна не конечными результатами, а поворотом исследований мыслительной деятельности в сторону чувств. Легко понять, что, когда машина научится не только думать, но и чувствовать, она станет еще более сильным помощником человека. Есть еще одна возможность усилить интеллект машины. Не обязательно ей начинать с «каменного топора» и самостоятельно проходить весь сложный путь становления ума. Можно сразу сделать ее умнее, снабдив всем тем опытом мышления, который накопило человечество — не каждый из нас, а именно все мы за тысячелетия сознательной жизни. Снабженная таким коллективным опытом и творческими навыками, да при ее удивительном быстродействии, машина, по мнению современных кибернетиков, сможет превзойти своего создателя в поединке интеллектов. Но кто даст нам в таком случае гарантию, что, «работая над собой», машина не создаст совершенно новые эвристические приемы, неизвестные нашему мозгу? И не окажемся ли мы когда-нибудь перед необходимостью изучать творчество машины, подобно тому как мы изучаем сейчас творчество людей? Естественно, что сейчас, с появлением на границе кибернетики и психологии новой науки — эвристики, у многих возникло желание признать за ней право на первенство. Англичанин Саймон, первым создавший для машины эвристическую программу, заявил недавно: «Я думаю, мы можем согласиться, что XX век — это век эвристики». Конечно, он по-своему прав, но где гарантия, что через пару лет не будут совершены еще более грандиозные открытия, скажем, в биологии, и тогда станут столь же справедливо связывать нашу эпоху с новым триумфом в науке? Между тем во всех этих определениях XX века есть одна общая черта. В химии ли, в физике или в кибернетике — всегда речь шла о большом количестве открытий, поставивших ту или иную науку впереди других. Невероятное обилие научных открытий — вот характерная особенность нашей эпохи. По данным ЮНЕСКО, девять десятых ученых всех времен и народов, совершивших важные открытия, — жители двадцатого столетия, наши современники. А предшествующие тысячелетия, вся многовековая история человечества — от Аристотеля до Сеченова — дала лишь одну десятую великих первооткрывателей. Количество открытий и изобретений удваивается каждые десять лет. Причем темп развития науки все убыстряется. Подсчитано, что за последние пятнадцать лет сделано столько же научных открытий, сколько за всю предшествующую историю науки! Так не правильнее ли было бы назвать наш век эпохой открытий? В конце XIX века на всем земном шаре научными исследованиями занимались едва пятьдесят тысяч человек. К середине XX столетия их было уже четыреста тысяч. Сейчас во всем мире ученых, активно двигающих науку вперед, свыше двух миллионов. Если теперешние темпы даже не ускорятся, а хотя бы останутся на таком же уровне а наука развивается по геометрической прогрессии! Поистине речь идет о грядущей «промышленности открытий», как ее справедливо называют. И как всякой индустрии, ей нужна соответствующая техника. Такими современными механизмами, способными автоматизировать умственный труд, и служат вычислительные машины, которые могут не просто решать отдельные задачи, большей частью уже давно решенные людьми, а быть настоящими действенными помощниками человека в высокоинтеллектуальной работе. Это по силам машинам, работающим по эвристическим алгоритмам, машинам, созданным, чтобы делать открытия. Известный ученый, директор Киевского института кибернетики Виктор Михайлович Глушков считает, что речь должна идти о комплексной автоматизации таких высокоинтеллектуальных творческих процессов, как развитие науки и техники. Ведутся эксперименты с программами, выводящими сложные логические следствия из имеющихся в распоряжении исследователя фактов. Планируются работы по созданию программ, строящих теорию, которая простейшим образом объединила бы сложный экспериментальный материал. Высказаны первые идеи о путях построения программы, которые формулировали бы новые интересные идеи в математике… Уже сегодня электронная машина в нашем вычислительном центре может вывести любые теоремы алгебры так называемых вещественных полиномов, в том числе и те, которые не выведены человеком». Как скоро настанет пора такой «кибернетизации научного творчества»? Академик Глушков уверен, что очень скоро. Сразу же после «кибернетической десятилетки» в экономике, с которой, по его мнению, надо начинать массовое внедрение кибернетики в нашем народном хозяйстве. На помощь ученым придут электронные ньютоны, умеющие «думать» не только очень быстро и логически стройно, но и пусть несколько приблизительно, с некоторой долей вероятности, зато с помощью так называемых «скачков ума», внезапных откровений, интуитивных догадок, и составляющих суть творческого мышления. Рациональная в своей основе, наука движется вперед не за счет только простого рассуждения, а главным образом благодаря способности ума освобождаться от оков железной логики — мыслить широко, остроумно, порой парадоксально, забегать далеко вперед, воображать иногда то, что еще не получило подтверждения фактами. Мысль человека всегда основана на чувствах, она всегда эмоциональна, хотя эта сторона деятельности ума не бросается в глаза и потому гораздо меньше изучена. Тем более это относится к мыслительной работе ученых и вообще творческих людей. Кто-то остроумно сказал, что эмоции — «закулисный дирижер» творчества. И дирижер этот играет не второстепенную, а главную роль в поисках нового. Когда эмоциями снабдят машины, они смогут «думать» еще более творчески. Не обязательно им впадать в экстаз, вдохновенно «щелкать цифрами». Не знаю, доведется ли им переживать минуты вдохновения, творческого подъема, но без воображения и интуиции их электронных моделей, разумеется им не стать подлинными ньютонами. Тем более что им придется работать на науку XX столетия — науку «безумных идей» и фантастических открытий. Весь XIX век да и начало нашего ушли в значительной степени на собирание фактов — подготовку фундамента колоссального рывка вперед, который знаменовался такими невероятными, с точки зрения здравого смысла, открытиями, как теория относительности или антимир. Сами физики назвали эти теории «безумными» в хорошем смысле. И несмотря на уже обнаруженные парадоксы, по признанию многих ученых, современная наука нуждается в новых «сумасшедших» теориях. Этого не смогут сделать трезво рассуждающие умы. XX веку нужны ученые-фантазеры, ученые-мечтатели, люди гибкой и смелой мысли, способные оторваться от канонов старых теорий, вырваться за пределы прежнего знания. И если вы — будущие ученые, инженеры, художники — хотите стать участниками великих деяний своего времени, учитесь думать широко, эмоционально, творчески. Помните: у вас есть теперь конкурент и ваш ученый друг — машина. Как не дать себя обогнать электронным ньютонам? Видимо, прежде всего иначе учиться и учить, что, пожалуй, даже важнее. Когда у нас появятся автоматические библиографы, переводчики, справочники, не будет необходимости разыскивать немыслимое количество фактов и загружать ими свою память. Нам надо сосредоточить внимание на другом — изучать не летопись науки, а ее принципы, суть составляющих ее открытий, чтобы на примере физики или химии познакомиться с методами познания и затем овладевать новыми, более совершенными способами обобщения и анализа, разнообразными приемами мышления. А для этого еще со школьной скамьи не просто набираться знаний, но и учиться думать. Собственно, первому мы школьников учим, а вот второму — умению думать — предоставляем учиться самим. Кто поспособней, интуитивно доходит до правильной технологии мышления. Менее способные ученики нередко уходят из школы, унося багаж пассивных знаний, а умения активно пользоваться ими так и не приобретают. Как же научить школьников сложному искусству мышления? Ввести в число школьных предметов логику, представляющую собой как раз описание технологии мышления? Но во многих школах преподают логику, а существо дела не меняется. Ученики выучивают, какие формы выражения мыслей правильные, какие неверные, но лучше мыслить от этого не начинают. Не хватает опять того же — умения пользоваться приобретенными навыками. Выходит, надо не просто знакомить школьников с описанием разных форм мышления, а вырабатывать у них способность думать: «делать» рассуждение, строить умозаключение и т. Или, как сказали бы кибернетики, выявить алгоритмы умственной работы и обучить им школьников. Такие опыты обучения науке думания на основе выводов эвристики ставятся. Прежде всего попробовали разложить мысленно процесс решения геометрических задач на отдельные операции — один из очень эффективных алгоритмов, как мы знаем, — и обучать им школьников восьмых классов. Результаты оказались очень хорошими. Школьники, изучавшие геометрию в течение двух с половиной лет и так и не научившиеся решать задачи, после непродолжительного обучения специальным алгоритмам вдруг проявили способности к математике. Теперь они запросто решали большинство задач, которые до этого представляли для них камень преткновения. А тот, кто и раньше хорошо справлялся с этими задачами, применяя вновь разработанные правила, стал соображать еще лучше. Этот первый опыт обучения умению думать был проведен несколько лет назад. Его успешные результаты натолкнули на мысль: а не помогут ли аналогичные алгоритмы овладеть и правильным правописанием, что составляет обычно наибольшую трудность. При ближайшем рассмотрении выяснилось, что и тут дело сводится к определенным правилам решения «грамматических задач» — описания действий, которые надо совершить, чтобы определить, например, простое предложение или сложное. Такой алгоритм состоит всего из трех частей. Прежде всего надо проверить: есть ли в предложении подлежащее. Если да, необходимо определить, нет ли «лишних» сказуемых, не относящихся к этому подлежащему. Значит, предложение сложное и запятую ставить придется, как, скажем, во фразе: «Поезд ушел, и его огни скоро исчезли». Тогда предложение простое, и разделять его знаками препинания не нужно. Ведь не поставите же вы запятую в выражении: «Взошла луна и бледным сиянием своим осветила море». Другое дело, если первый контрольный вопрос дал отрицательный ответ: подлежащих в предложении не оказалось.

То, что ранее изучалось философией, в скором времени может быть понято и в биологических терминах, считает ученый. С полным текстом исследования можно ознакомиться по ссылке. Москва, Большой Саввинский пер. II; Адрес редакции: 119435, г.

Что на самом деле означает слово «Эврика»: при чем тут Архимед, ванная и мошенники

От своего открытия Архимед пришёл в такой восторг, что голый с криками «Эврика! Затем он продемонстрировал опыт перед Гиероном, погрузив в воду корону и золотой слиток того же веса. Корона вытеснила больше воды, а это означало, что часть золота была заменена серебром, которое по весу легче, но имеет больший объём. Является девизом американского штата Калифорния [4] , в которой также находится одноименный город — Юрика англ.

Ученому было нужно решить, действительно ли корона, сделанная по приказу царя, состоит из чистого золота, или ювелир решил обмануть его и добавил в сплав серебра. При этом царский атрибут весил ровно столько, сколько весил слиток золота, выданный ювелиру. Древнегреческий ученый долго ломал голову, как это проверить. Озарение пришло в момент, когда он решил принять ванну. Погрузившись в емкость с водой, математик заметил, что часть воды из нее вылилось. Он сразу понял, что нашел ответ на вопрос и с радостным криком «Эврика! Поговаривают, что даже одеться забыл при этом. Архимед с Гиероном наполнили чашу водой и погрузили в нее корону.

Однако «универсальным» он все же не оказался. И знаете, на чем машина споткнулась? На шахматах. Она решала сложные, серьезные проблемы, а в игре пасовала. И не удивительно. Ведь в любой самой сложной задаче всегда известна исходная ситуация — начальная площадка лабиринта, и определена цель — центральная его площадка. А в шахматах область поиска не определена.

Здесь столько «коридоров», «площадок», «тупиков», что перебрать все варианты маршрутов не под силу даже быстродействующей вычислительной машине. А подходящих алгоритмов в ее распоряжении не было. Признать ограниченность своего детища американским психологам не очень хотелось. Кроме того, это означало, что какой-то важный механизм человеческого мышления им не удалось разгадать. Вот тогда они и принялись за новые поиски. Правда, они изучали теперь не столько особенности нашего мышления, сколько правила игры в шахматы, надеясь хоть косвенно проникнуть в секреты мозга, думающего над шахматной ситуацией. Мы теперь знаем, что в какой-то мере им это удалось.

Благодаря им машина научилась играть в шахматы «по-человечески» и стала достойным соперником чемпионов. Но по сравнению с «Универсальным решателем проблем» это был скорее шаг назад. Как-никак та машина хоть и не умела играть в шахматы, зато воспроизводила особенности творческого процесса вообще, свойственного и ученым и поэтам. Иными словами, создавая ее, инженеры решили более общую проблему. А электронный шахматист, как ни был интересен сам по себе, помогал понять только одну сторону творчества. Перед учеными встал вопрос: какой путь предпочесть? Вслед за шахматистом появился электронный игрок в шашки.

Вначале он играл довольно средне — его обыгрывали даже неопытные игроки. Но новый игрок обладал способностью учиться. И вскоре так наловчился, что стал обыгрывать даже чемпионов. Создали еще одну машину — математика. Она творчески решала задачи по геометрии, с которыми с трудом справлялись студенты-второкурсники. Американские психологи получили заказ от промышленников — им необходимо было с научной точностью узнать, куда вложить и как лучше истратить деньги. Ученые пригласили к себе в лабораторию одного из самых опытных служащих банка и принялись изучать, как он думает.

Это оказалось не таким легким делом. Ведь банковский служащий, чтобы решить, куда поместить деньги для наибольшей прибыли, должен выработать что-то вроде экономической гипотезы. После долгих доделок, переработок электронного финансиста все же удалось создать, и банкиры им как будто довольны. Другие изучали совсем иную разновидность интеллектуальной деятельности — творчество композитора. И тоже небезуспешно. Мелодии, созданные его электронным собратом, гораздо больше напоминали настоящую музыку, нежели нотные упражнения первых композиторов от кибернетики. Цели, которые ставили перед собой инженеры и психологи, создавая эвристические программы для вычислительных машин, были нередко диаметрально противоположными.

Кто-то стремился научить машину составлять расписание движения поездов или просто уроков в школе. Не думайте, это довольно каверзная работа, требующая «хитрости» и смекалки. А кому-то хотелось иметь электронного ученого, например биохимика. И чтобы он не только разрабатывал планы опытов, оценивал их результаты, выдвигал на этой основе какие-то гипотезы, но и сам проводил опыты с помощью механических рук. Дело дошло до того, что в лабораторию Московского университета, где занимаются разработкой эвристических программ, стали обращаться с самыми неожиданными просьбами. Не можете ли сделать такого диспетчера, чтобы он работал творчески? Нужен начальник планового отдела «с живинкой к делу».

Пришлите электронного учителя, который мог бы быстро и толково устранять «дефекты» знаний. Что делать? Неужели действительно каждый раз изучать образ мыслей диспетчера, плановика, учителя? И заново составлять программу для очередного случая? Вряд ли это целесообразно. И московские психологи решили поступить иначе. Найти то общее, что есть в любой более или менее творческой работе.

Установив, из каких форм складывается мыслительная деятельность и врача, и инженера, и музыканта, создать что-то вроде «крупных блоков». Скажем, блок «решения проблем», блок «самообучения», блок «распознавания сходных ситуаций» и тому подобные. И из них по мере необходимости собирать программу или для электронного врача, или для диспетчера. Этот путь не только более экономичен, он, так сказать, ближе по структуре к творчеству человека. Недаром же психологи говорят, что в разных творческих процессах — будь то работа инженера или художника — больше сходства, чем различий. В главном, основном творчество актеров, поэтов и ученых едино. Вспомните хотя бы, что вы прочли в начале книги о трех китах творчества.

Стало быть, создание универсального решателя проблем — более верный путь. И теперь перед психологами стоит задача разгадать новые алгоритмы, новые эвристические приемы творческого мышления. Снова ученые обращаются к человеку, чтобы, во-первых, расшифровать многочисленные эвристические приемы, которыми он владеет, а во-вторых, попытаться воспроизвести их в думающей машине. Разумеется, дело не сводится лишь к отгадке готовых приемов и способов мышления, как уже об этом говорилось раньше. Важно не просто выявить результат решения, а раскрыть процесс мышления в его динамике. Психологи Московского университета пытаются, например, воплотить в, виде программы ту особенность мышления, которую можно назвать «чувством близости решения». Машина, даже очень умная, часто проходит буквально в двух шагах от нужного решения и продолжает поиски совершенно в других концах лабиринта.

А человек, нередко еще не зная, как справиться с задачей, чувствует, что решение где-то совсем близко, и усиливает поиск именно в этом направлении. Разумеется, благодаря этому он докапывается до смысла гораздо быстрее. Или вот, скажем, умение человеческого мозга оценивать перерабатываемую информацию с точки зрения ее значимости для решения задачи. При поиске решения человек сосредоточивает внимание исключительно на важной информации. Но как он определяет, какие именно сведения будут работать на пользу дела? Ясно, что здесь тоже не обходится без эвристических приемов, только каких? Наконец, бывает так.

У человека уже выработана программа действий для определенных обстоятельств, но несколько изменились сами обстоятельства. Как быть? Вырабатывать новую программу? Вряд ли целесообразно. Гораздо быстрее найти то звено, из-за которого оказалась неудачной вся система действий, и заменить его. Однако самое трудное как раз отыскать требующее переделки звено. А наш мозг успешно справляется и с этой трудностью.

И опять ему помогают специальные алгоритмы. Вот бы разгадать их. Вооруженные всеми этими дополнительными приемами, машины будут быстрее находить наилучшие решения самых разных сложных проблем. Но этого, по мнению ученых, еще недостаточно. Человек не только владеет тысячью секретов находить пути к быстрейшему решению самых разных проблем, он еще накапливает опыт. И при решении любой следующей задачи оказывается вооруженным опытом разгадывания всех предыдущих, что очень помогает ему и делает его все сильнее в процессе самой творческой деятельности. Недаром же мы говорим «зрелый мастер» или «квалифицированный исследователь» о писателе, художнике, ученом, достигшем большого совершенства в результате длительной и плодотворной работы в своей области.

Так вот, зрелые исследователи задались такой фантастической целью, как создание машины, которая тоже могла бы накапливать опыт и благодаря этому совершенствовать свои навыки и умения. Московские психологи уже сделали попытку создать самообучающуюся машину. В основу ее программы они положили факты, неоднократно наблюдавшиеся в опытах с людьми и, как это ни парадоксально звучит, с некоторыми животными. Оказалось, что алгоритмы, благодаря которым запоминает полезную информацию голубь, входят как составная часть в довольно сложную мыслительную работу человека, например, при изучении им высшей математики. Если вы хоть раз участвовали в каком-нибудь конкурсе, то хорошо помните, что его проводят всегда в несколько туров. Ни первый, ни второй туры еще не обеспечивают первенства победителям, они лишь отсеивают слабых участников. Наш мозг при обучении действует примерно так же.

Он не сразу и не всю информацию запоминает, а много раз отсеивает менее важную. И только после нескольких туров отборочного конкурса откладывает нужные сведения в памяти. Придирчивыми «экзаменаторами» служат промежуточные сигналы, промежуточные раздражители, возникающие в процессе анализа обстановки. Они сортируют информацию по значению. Предварительные сведения посылают в кратковременную память, на временное хранение. И только тщательно проверив, насколько они важны, решают: забыть их или направить в долговременную память, на постоянное местожительство. Часть таких алгоритмов удалось разгадать и даже воплотить их в программе для машины.

Но дело это довольно кропотливое, трудное и требует еще многих и многих исследований прежде всего того, как мы сами учимся. Вот почему одновременно с работой над программированным обучением появилась мысль обойтись без программы. А что, если действовать так, как учили раньше мастера своих подмастерьев? По принципу: «Я тебе объяснять не буду, ты смотри и учись». Нельзя ли так же поступить и с машиной? Это особенно важно в тех случаях, когда человек при всем желании не может объяснить, как именно он действует. Вот, скажем, мы отличаем буквы одну от другой или узнаем знакомых в толпе.

Рассказать, как мы это делаем, человек не может, потому что совершает все опознавательные действия интуитивно. И тем более мы не можем написать машине подробную инструкцию, как отличить букву «А» от «Б». Но учитель в школе тоже в этом случае ничего не объясняет первоклассникам. Он просто показывает им разные буквы и называет их. И они уже как-то сами учатся различать «А» от «Б». Одновременно в нескольких странах машины без всякой программы усвоили основы азбуки. Успешный опыт натолкнул на еще более дерзкую мысль: заставить машину учиться вовсе без учителя, поставив ее на место не школьника, а этакого Маугли, который сам, абсолютно без всякой помощи со стороны, научился бы, разглядывая буквы, понимать, что они чем-то отличаются друг от друга.

Он, может, и не сумел бы назвать буквы так, как называем их мы, но зато придумал бы им свои имена. Как, по каким признакам он классифицировал бы разные буквы? Наверное, что-нибудь вроде этого: «А» — уголок и горизонтальная палочка посредине, «Е» — три горизонтальные палочки и одна вертикальная, «О» — кружок, «Л» — уголок, обращенный острием вверх, и т. Когда в одном из наших технических институтов инженеры взялись за эту невероятную затею, психологи только посмеивались: пробовать пробуйте, а что у вас выйдет? Вышло же вот что. Вычислительная машина оказалась весьма способным «Маугли». Она довольно быстро определила, из каких «деталей» состоят разные буквы и что между ними общего.

Машина сама установила разницу между «уголками», «кружочками» и «вертикальными черточками». Но тогда, выходит, у нее выработались простейшие понятия? Именно так и расценивают результаты своих опытов инженеры из Института автоматики и телемеханики. Вот и встал опять «проклятый» вопрос о пределе возможности машин. Если машины не просто тупицы, быстро выполняющие вычисления, а им доступны мыслительные действия в таком широком диапазоне — от образования понятий до творчества, то, видимо, скоро настанет эра настоящих думающих автоматов? Инженеры всегда были в этом вопросе большими оптимистами. Как только появились вычислительные машины, они заявили, что в принципе возможно автоматизировать любую умственную деятельность, если будут известны правила, по которым она происходит.

Достаточно лишь разложить эти правила на элементарные машинные операции. Было бы только чем заполнять машинную память». Но когда они увидели, с какими бесконечными подробностями приходится объяснять машине самые простейшие правила мышления даже весьма еще несовершенные программы перевода с одного языка на другой состоят из 10—20 тысяч машинных инструкций , оптимизм их несколько поубавился. А ведь многие мыслительные действия вообще не удалось представить в виде системы правил. Взять хоть то же распознавание знакомого лица или знакомой ситуации. Правила, по которым совершается эта важнейшая мыслительная операция, запрятаны где-то в глубинах подсознания и до них не так-то просто докопаться. Но, видимо, они достаточно сложны.

Потому что все попытки составить аналогичную программу для машины привели пока только к тому, что машина смогла узнать лишь некоторые буквы, простейшие геометрические фигуры да цифры. Как же «приблизить» машину к различным видам умственной деятельности, чтобы максимально разгрузить человека, оставив ему самые высшие, самые интересные, самые новаторские взлеты творчества? Тогда-то и появилась мысль решить задачу моделирования умственных операций обходным путем.

Изначально целью было стремление преодолеть отрыв США и Японии от западноевропейских стран в научно-технической сфере. В числе последних Украина - 2006, Болгария - 2010, Черногория - 2012. С самого начала в хартии программы "Эврика" было заявлено, что она не принимает участия в военных исследованиях. А приоритетными для сотрудничества были и остаются сейчас информационные технологии, телекоммуникации и связь, энергетика, медицина и биотехнологии, транспортные технологии, перспективные материалы, робототехника и промышленная автоматизация. Из того, что в результате создано и пришло в жизнь каждого из нас, можно назвать стандарт HDTV - мировой стандарт телевидения высокой четкости и в чем-то схожий универсальный стандарт для плейеров MP3.

Архимедова сила: что это такое и как действует

Ударение: эврика межд. разг. Возглас, выражающий удовлетворение, радость при найденном решении, при возникновении удачной мысли и т.п. Разбирать значение и происхождение слова «эврика» невозможно, не вспоминая об Архимеде. 14 марта 2023 года Россия вышла из европейской научно-технической программы «Эврика» (EUREKA — European Research Coordination Agency). повышение качества эффективности изучения иностранных языков, начиная с младшего школьного возраста ЭВРИКА. нашёл!] Восклицание, выражающее радость, удовлетворение при найденном решении, при возникновении удачной мысли и т.п. По преданию, так воскликнул греческий учёный Архимед. ЭВРИКА, междом. Восклицание, выражающее радость, удовлетворение при найденном решении, при возникновении удачной мысли и т. п.

Похожие новости:

Оцените статью
Добавить комментарий