Количество протонов равно количеству электронов и равно номеру атома в периодической таблице. Для определения количества неспаренных электронов на внешнем уровне атома необходимо сначала определить количество электронов, находящихся на его внешней электронной оболочке.
сколько спаренных и неспаренных електроннов в алюминию???
Сколько неспаренных электронов на внешнем уровне у атома алюминия? | 1 неспаренный электрон. |
Неспаренный электрон. Неспаренный электрон Атом алюминия в основном состоянии содержит | Чтобы найти количество неспаренных электронов, следует обратить внимание на. электронов в их электронных формулах: литий углерод фтор алюминий сера. |
Строение электронных оболочек | У алюминия в атоме 13 электронов. При распределении электронов по энергетическим уровням, первый уровень заполняется 2 электронами, второй — 8 электронами, а третий — 3 электронами. Таким образом, у алюминия 1 неспаренный электрон. |
Общая характеристика металлов IА–IIIА групп | | Чтобы определить количество неспаренных электронов, нужно знать электронную конфигурацию алюминия. |
Число неспаренных электронов атома al
Валентность алюминия: все о цифрах и возможных комбинациях | Чтобы посчитать число неспаренных электронов, нужно построить графическую формулу. Решение Азот и сера – неметаллы, они образуют устойчивые анионы (которым соответствует конфигурация ближайшего инертного газа). |
Количество неспаренных электронов на внешнем уровне в атомах Al | Сколько неспаренных электронов у хлора. Неспаренные электроны таблица. |
Разбор задания №1 ЕГЭ по химии | Укажите число неспаренных электронов на внешнем уровне алюминия в его основном и. От нашего клиента с логином ixjIhJf на электронную почту пришел вопрос: "Напишите электронную формулу алюминия. |
Число неспаренных электронов атома al
Находятся в нижней части таблицы Отметим, что принцип наименьшей энергии справедлив только для основного состояния атома, характеризующегося минимумом энергии. В возбуждённых состояниях электроны могут занимать любые орбитали атома, если при этом не нарушается принцип Паули. При получении энергии извне, например, при облучении или нагревании, один или несколько электронов могут повышать свою энергию и переходить на более высокие энергетические уровни. Такие состояния атома называются возбуждёнными. В отличие от азота, кислорода и фтора у атомов элементов тех же соответствующих главных подгрупп — фосфора, серы и хлора — возможен переход атомов в возбуждённое состояние.
Вследствие этого фосфор, в отличие от азота может быть пятивалентным, сера, в отличие от кислорода — шестивалентной, а хлор, в отличие от фтора — семивалентным. Например, распаривание электронов в атоме фосфора при переходе в возбужденное состояние можно изобразить схемой: Рис. Основное и возбуждённое состояние атома фосфора Если проанализировать электронное строение атомов, связывая его с положением химического элемента в Периодической таблице Д. Менделеева, то можно сделать следующие выводы: Число энергетических уровней в атоме равно номеру периода, в котором находится элемент.
В этом заключается физический смысл номера периода в таблице Д.
Также можно использовать спектральные методы, такие как электронный парамагнитный резонанс EPR , которые позволяют наблюдать сигналы от неспаренных электронов. Неспаренные электроны играют важную роль в различных химических реакциях. Они могут вступать в обменные взаимодействия с другими атомами или молекулами, образуя новые связи и изменяя свойства вещества. Например, неспаренные электроны могут участвовать в реакциях окисления и восстановления, образуя радикалы и ионы.
К ним относятся литий, натрий, калий, рубидий, цезий. Франций — радиоактивный элемент, в природе практически не встречается. У всех металлов IA группы на внешнем энергетическом уровне, на s-подуровне в основном состоянии есть один неспаренный электрон: … ns1 — электронное строение внешнего энергетического уровня щелочных металлов Металлы IA группы — s-элементы.
Каждая оболочка атома может содержать определенное количество электронов.
На первой оболочке максимальное количество электронов составляет 2, на второй — 8, на третьей — 18, на четвертой — 32 и т. От этого количества зависят свойства и химическая активность атома. Необходимо отметить, что наиболее стабильными являются атомы, в которых все оболочки заполнены электронами в соответствии с их максимальной вместимостью. В таком случае атомы не стремятся вступать в химические реакции и имеют нулевой или низкий уровень реактивности. Неспаренные электроны на внешней оболочке атома называются валентными электронами. Именно валентные электроны определяют химические свойства атома и его способность образовывать химические связи. Чем больше неспаренных электронов на внешней оболочке, тем больше возможностей для образования химических связей и реакций с другими атомами. Электронная оболочка с пустыми местами, где могут находиться дополнительные электроны, называется свободной. Именно свободные оболочки атомов являются активными и могут участвовать в химических реакциях, образуя новые химические связи.
Определение количества неспаренных электронов на внешнем уровне атома может быть полезным для понимания его химических свойств и взаимодействий.
Химия ЕГЭ разбор 1 задания ( Количество неспаренных электронов на внешнем слое)
Причём наиболее сильное влияние на свойства сплава оказывает последний: легирование магнием заметно повышает пределы прочности и текучести. Добавка кремния в сплав повышает его способность к искусственному старению. Легирование железом и никелем повышает жаропрочность сплавов второй серии. Нагартовка этих сплавов после закалки ускоряет искусственное старение, а также повышает прочность и сопротивление коррозии под напряжением. Сплавы этой системы ценятся за очень высокую прочность и хорошую технологичность. Представитель системы — сплав 7075 является самым прочным из всех алюминиевых сплавов. Однако существенным недостатком этих сплавов является крайне низкая коррозионная стойкость под напряжением.
Повысить сопротивление коррозии сплавов под напряжением можно легированием медью. Нельзя не отметить открытой в 1960-е годы закономерности: присутствие лития в сплавах замедляет естественное и ускоряет искусственное старение. Помимо этого, присутствие лития уменьшает удельный вес сплава и существенно повышает его модуль упругости. Алюминиево- кремниевые сплавы силумины лучше всего подходят для литья. Из них часто отливают корпуса разных механизмов. Комплексные сплавы на основе алюминия: авиаль.
Неспаренные электроны ЕУ. Не спаренные электронный натрия. Сколько неспаренных электронов у натрия. Натрий неспаренные электроны. Как определяется количество неспаренных электронов.
Валентность атома в возбужденном состоянии. Неспаренные электроны в возбужденном состоянии. Основное и возбужденное состояние электронов в атоме. Число неспаренных электронов у титана. Как узнать сколько неспаренных электронов.
Титан неспаренные электроны. Алюминий неспаренные электроны. Число неспаренных электронов фосфора. Определить неспаренные электроны. Of 2 метод валентных связей.
Строение по методу валентных связей. Фтор 2 метод валентных связей. Метод валентных связей МВС.. Охарактеризуйте электронное строение алюминия. Электронная оболочка атома алюминия.
Строение электронных оболочек атомов алюминия. Электронные слои алюминия. Число неспаренных электронов у кальция. Количество неспаренных электронов у кальция. Число неспаренных электронов таблица.
Формула электронной конфигурации 1s2 2s. Электронная конфигурация Иона s2-. Электронная конфигурация молибдена схема. Электронная формула Иона s2-. Вакантные орбитали это.
Электронные пары и неспаренные электроны.. Хром неспаренные электроны. Орбиталь с неспаренным электроном. Число неспаренных электронов у всех элементов. Число спаренных и неспаренных валентных электронов.
Кобальт в возбужденном состоянии электронная формула. Возбужденные состояния кобальта. В основном состоянии неспаренные электроны имеют элементы. Хлор неспаренные электроны. Валентные возможности атомов.
Валентные возможности атомов химических элементов. Валентные электроны маг. Валентные возможности магния. Как определяется валентность атомов. Валентные электроны это.
Невалентные электроны. Спаренные и неспаренные электроны как определить.
Формально выходит, что с одним атомом кислорода атом азота связан двойной связью, а с другим — обычной одинарной связью этот атом кислорода связан еще и с атомом водорода. С третьим атомом кислорода азот в HNO3 связан донорно-акцепторной связью, причем в качестве донора выступает атом азота. Гибридизация атома азота при этом должна быть sр2 из-за наличия двойной связи, что определяет структуру — плоский треугольник. Реально получается, что действительно фрагмент из атома азота и трех атомов кислорода — плоский треугольник, только в молекуле азотной кислоты этот треугольник неправильный — все три угла ОNО разные, следовательно, и разные стороны треугольника. Когда же молекула диссоциирует, треугольник становится правильным, равносторонним. Значит, и атомы кислорода в нем становятся равноценными. Одинаковыми становятся и все связи.
Физические свойства азотной кислоты Соединение ионизированное, пусть даже и частично, сложно перевести в газ. Таким образом, температура кипения должна бы быть достаточно высокой, однако при такой небольшой молекулярной массе температура плавления высокой быть не должна. Что касается растворимости, то, как и многие другие полярные жидкости, азотная кислота легко смешивается с водой в любых соотношениях. Чистая азотная кислота бесцветна и не имеет запаха. Однако из-за разложения на кислород и оксид азота IV , который в ней же и растворяется, можно сказать, что обычная концентрированная азотная кислота имеет желто-бурый цвет и характерный для NO2 резкий запах. Посмотрим, как влияет строение молекулы азотной кислоты на ее химические свойства. Смесь HNO3 конц. Азотная кислота не реагирует с другими кислотами по типу реакций обмена или соединения. Однако вполне способна реагировать как сильный окислитель.
В смеси концентрированных азотной и соляной кислот протекают обратимые реакции, суть которых можно обобщить уравнением: Образующийся атомарный хлор очень активен и легко отбирает электроны у атомов металлов, а хлорид-ион образует устойчивые комплексные ионы с получающимися ионами металлов.
Достаточно часто число неспаренных электронов увеличивается в процессе возбуждения атома, когда электрон с электронной пары на внешнем уровне переходит на свободную орбиталь, вследствие чего элементы могут иметь переменную валентность. Таким образом, валентность зависит от структуры внешнего электронного уровня элемента: наличия свободных орбиталей, спаренных и неспаренных электронов и общего количества внешних электронов. Задание 2 Почему численное значение валентности не всегда совпадает с числом электронов на наружном энергетическом уровне?
В некоторых случаях не все внешние электроны могут участвовать в образовании связей, а только неспаренные электроны, в виду отсутствия в электронной оболочке таких атомов свободных орбиталей и не возможности электронов распариваться. Задание 3 Почему максимальная валентность элементов 2-го периода не может быть больше четырёх? Максимальная валентность элемента равна числу неспаренных электронов.
Электронная конфигурация атома алюминия (Al)
Если у алюминия на внешнем подуровне 1 неспаренный электрон, то он имеет валентность не 1, а 3? | 1 дек 2022. Пожаловаться. Число неспаренных электронов в атоме алюминия в основном состоянии равно 1) 1 2) 2 3) 3 4) 0. Последние записи: СЕРГЕЙ СЕРГЕЕВИЧ ЧУРАНОВ Автор Игорь Валентинович Свитанько И. |
Количество неспаренных электронов в основном состоянии атомов Al | Для определения количества неспаренных электронов на внешнем уровне атома необходимо сначала определить количество электронов, находящихся на его внешней электронной оболочке. |
Электроотрицательность. Степень окисления и валентность химических элементов
Каждый энергетический подуровень обозначается определённым символом: 1s, 2s, 2p, 3s, 3p, 4s, 3d и т. Как несложно догадаться, цифра соответствует номеру энергетического уровня, а вот использование букв является традицией: одинаковым буквами соответствуют атомные орбитали одинаковой формы, а разным буквам — разной. Да-да, они ещё и разной формы могут быть, маленькие негодники. Энергетический подуровень, имеющий в своём обозначении определённую букву часто называют просто s-подуровнем, p-подуровнем или d-подуровнем. Располагающиеся на нём орбитали тогда называют s-орбиталями, p-орбиталями или d-орбиталями, а находящиеся на этих орбиталях электроны — s-электронами, p-электронами или d-электронами.
Спиновые состояния электрона Электроны на электронно-графической формуле изображают стрелочками внутри окошек. Стрелочка-электрон может быть направлена вверх или вниз. Электрон на атомной орбитали. Это связано с тем, что электрон на одной и той же атомной орбитали может находится в двух и только в двух!
Принцип Паули Среди законов физки есть один очень важный, но не самый известный широкой публике постулат: принцип Паули или принцип запрета. В честь великого швейцарского физика-теоретик Вольфганга Паули, который до него допетрил аж в середине 20-х годов прошлого века. Этот закон является фундаментальным и носит всеобъемлющий характер: то есть он никогда не нарушается. Ну, или по крайней мере физики до сих пор не смогли обнаружить ни малейшего признака явления, при котором бы принцип запрета не выполнялся бы.
Из самой формулировки принципа Паули должно стать понятно, что: 1 Во-первых, на каждой атомной орбитали может находится не более двух электронов. Иначе в атоме окажутся два электрона в одном и том же состоянии, что данным принципом строго-настрого запрещается. Электрон, который располагается на атомной орбитали в гордом одиночестве, называют неспаренным. Догадайтесь, как называют два электрона, находящиеся на одной и той же орбитали.
Неспаренный электрон слева и спаренные электроны справа. Принцип наименьшей энергии Другой физический закон, который управляет строением электронных оболочек атомов, это принцип наименьшей энергии. В отличие от принципа Паули он уже не является фундаментальным, то есть выполняется не всегда. Но огромное количество процессов в природе идут с ним в согласии.
Поэтому, например, электронно-графические формулы атомов натрия и алюминия выглядят следующим образом. Правило Гунда Наконец, последняя штуковина, которая нам сегодня пригодится — это правило Гунда. Названо так в честь немецкого физика Фридриха Гунда, который жил и творил в одно время с Паули.
Стрелочка-электрон может быть направлена вверх или вниз. Электрон на атомной орбитали. Это связано с тем, что электрон на одной и той же атомной орбитали может находится в двух и только в двух! Принцип Паули Среди законов физки есть один очень важный, но не самый известный широкой публике постулат: принцип Паули или принцип запрета. В честь великого швейцарского физика-теоретик Вольфганга Паули, который до него допетрил аж в середине 20-х годов прошлого века. Этот закон является фундаментальным и носит всеобъемлющий характер: то есть он никогда не нарушается.
Ну, или по крайней мере физики до сих пор не смогли обнаружить ни малейшего признака явления, при котором бы принцип запрета не выполнялся бы. Из самой формулировки принципа Паули должно стать понятно, что: 1 Во-первых, на каждой атомной орбитали может находится не более двух электронов. Иначе в атоме окажутся два электрона в одном и том же состоянии, что данным принципом строго-настрого запрещается. Электрон, который располагается на атомной орбитали в гордом одиночестве, называют неспаренным. Догадайтесь, как называют два электрона, находящиеся на одной и той же орбитали. Неспаренный электрон слева и спаренные электроны справа. Принцип наименьшей энергии Другой физический закон, который управляет строением электронных оболочек атомов, это принцип наименьшей энергии. В отличие от принципа Паули он уже не является фундаментальным, то есть выполняется не всегда. Но огромное количество процессов в природе идут с ним в согласии.
Поэтому, например, электронно-графические формулы атомов натрия и алюминия выглядят следующим образом. Правило Гунда Наконец, последняя штуковина, которая нам сегодня пригодится — это правило Гунда. Названо так в честь немецкого физика Фридриха Гунда, который жил и творил в одно время с Паули. Сформулируем его мы следующим образом не вполне строго : «В пределах одного энергетического подуровня количество неспаренных электронов должно быть максимально возможным, и все неспаренные электроны должны находится в одинаковых спиновых состояниях». Поэтому на электронно-графических формулах атомов серы и кислорода на их, соответственно, 3p- и 2p-подуровнях два электрона спарены, адва нет — именно в этом случае количество неспаренных электронов оказывается максимально возможным. Это как раз и показывает, что данные неспаренные электроны находятся в одном и том же спиновом состоянии. Внешние и валентные электроны Среди всех энергетических уровней, полностью или частично заполненых электронами, химиков едва ли не больше всего интересует тот, который обладает самой большой энергией и, соответственно, наибольшим номером. Такой энергетический уровень называют внешним. Именно электроны, располагающиеся на внешнем энергетическом уровне, как правило, могут принимать участие в образовании химических связей.
Каждый атом В имеет по три валентных электрона, два из которых участвуют в образовании обычных двухцентровых двухэлектронных связей с концевыми атомами Н. Таким образом, каждая группа ВН2 на связывание в фрагменте ВН3 может предоставить только по одному электрону. Очевидно, что для образования аналогичных связей с двумя мостиковыми атомами Н валентных электронов не хватает — бораны являются элек-тронодефицитными соединениями. Среди них наиболее устойчивы соли щелочных металлов МВН4. Разложение протекает через неустойчивые интермедиаты ВН3, В3Н7 и др.
Строение и свойства боридов металлов При взаимодействии бора с металлами образуются разнообразные бориды, в которых бор проявляет формально отрицательные степени окисления. Твердость карбида бора В4С выше твердости карбида кремния и приближается к твердости алмаза. Галогениды бора. Известны четыре высших галогенида бора. Все они состоят из молекул ВХ3, имеющих форму правильного треугольника, в центре которого расположен атом бора в состоянии sp2-гибридизации.
Кислотность соединений ВХ3 проявляется и в их склонности к гидролизу.
Неспаренные электроны, то есть электроны, у которых атомный спин не скомпенсирован другими электронами, играют важную роль в химических и физических свойствах атомов и молекул. Такие электроны обладают магнитными свойствами и способны взаимодействовать с внешним магнитным полем. Неспаренные электроны могут образовывать сильные химические связи с другими атомами и участвовать в создании химических соединений. Количество неспаренных электронов в атоме может оказывать существенное влияние на его химические свойства и реакционную способность. Изучение и понимание атомного спина и его влияния на неспаренные электроны является важной задачей в физике и химии. Это позволяет более точно описывать поведение и свойства атомов и молекул, а также разрабатывать новые материалы и химические соединения с желаемыми свойствами. Эффекты спин-орбитального взаимодействия Это взаимодействие оказывает существенное влияние на энергетический уровень электронов, приводя к разщеплению одинаковых орбитальных состояний на два или более подуровней с разными энергиями.
Эффекты спин-орбитального взаимодействия могут быть рассмотрены в рамках теории возмущений, а также являются важными для объяснения различных оптических, электронных и магнитных свойств атомов.
Количество неспаренных электронов в основном состоянии атомов Al
один неспаренный электрон на Р-орбитали. (в обычном состоянии). В возбужденном - 3 неспаренных электрона. Укажите число неспаренных электронов на внешнем уровне алюминия в его основном и. От нашего клиента с логином ixjIhJf на электронную почту пришел вопрос: "Напишите электронную формулу алюминия. Количество неспаренных электронов может быть определено с использованием спектроскопических и химических методов измерения. Число неспаренных электронов — 1. Укажите число неспаренных электронов на внешнем уровне алюминия в его основном и. От нашего клиента с логином ixjIhJf на электронную почту пришел вопрос: "Напишите электронную формулу алюминия. Сколько неспаренных электронов на внешнем уровне в атоме Алюминия?
Сколько спаренных и неспаренных електроннов в алюминию?
1 дек 2022. Пожаловаться. Число неспаренных электронов в атоме алюминия в основном состоянии равно 1) 1 2) 2 3) 3 4) 0. Последние записи: СЕРГЕЙ СЕРГЕЕВИЧ ЧУРАНОВ Автор Игорь Валентинович Свитанько И. Атом алюминия, имеющий 3 неспаренных электрона на внешнем уровне, может образовывать химические соединения с элементами, которые могут принять данные электроны и образовать с ними пары. Таким образом, на внешнем энергетическом уровне 1 неспаренный электрон имеют атомы водорода и алюминия. Укажите число неспаренных электронов на внешнем уровне алюминия в его основном и От нашего клиента с логином ixjIhJf на электронную почту пришел вопрос: "Напишите электронную формулу алюминия. Сколько неспаренных электронов у алюминия в основном состоянии? Количество неспаренных электронов на внешнем уровне в атомах алюминия делает его реактивным элементом, склонным образовывать химические соединения с другими элементами, чтобы достичь стабильности и заполнения последнего энергетического уровня.
Al неспаренные электроны
Чтобы определить количество неспаренных электронов у атомов алюминия, нужно посчитать количество электронов на последнем энергетическом уровне, которые не образуют пары. Сколько неспаренных электронов у алюминия в основном состоянии? 14. Подвергая электролизу 1тонну Al2O3 можно получить металлический алюминий массой.
ЕГЭ ПО ХИМИИ. ЗАДАНИЕ № 1. СТРОЕНИЕ АТОМА
Алюминий неспаренные электроны. Число неспаренных электронов фосфора. Определить неспаренные электроны. Of 2 метод валентных связей. Строение по методу валентных связей. Фтор 2 метод валентных связей. Метод валентных связей МВС..
Охарактеризуйте электронное строение алюминия. Электронная оболочка атома алюминия. Строение электронных оболочек атомов алюминия. Электронные слои алюминия. Число неспаренных электронов у кальция. Количество неспаренных электронов у кальция.
Число неспаренных электронов таблица. Формула электронной конфигурации 1s2 2s. Электронная конфигурация Иона s2-. Электронная конфигурация молибдена схема. Электронная формула Иона s2-. Вакантные орбитали это.
Электронные пары и неспаренные электроны.. Хром неспаренные электроны. Орбиталь с неспаренным электроном. Число неспаренных электронов у всех элементов. Число спаренных и неспаренных валентных электронов. Кобальт в возбужденном состоянии электронная формула.
Возбужденные состояния кобальта. В основном состоянии неспаренные электроны имеют элементы. Хлор неспаренные электроны. Валентные возможности атомов. Валентные возможности атомов химических элементов. Валентные электроны маг.
Валентные возможности магния. Как определяется валентность атомов. Валентные электроны это. Невалентные электроны. Спаренные и неспаренные электроны как определить. Что такое не испаренные электроны.
Число неспаренных электронов в основном состоянии. Число неспаренных электронов у элементов. Электронно графическая схема алюминия. Электронная конфигурация атома алюминия в основном состоянии. Электронно графическая формула алюминия в возбужденном состоянии. Al в возбужденном состоянии конфигурация.
Сколько неспаренных электронов у алюминия. Два неспаренных электрона. Как понять сколько неспаренных электронов в атоме. Схема расположения электронов на энергетических подуровнях.
Трудности с домашними заданиями? Не стесняйтесь попросить о помощи - смело задавайте вопросы! Химия — одна из важнейших и обширных областей естествознания, наука о веществах, их составе и строении, их свойствах, зависящих от состава и строения, их превращениях, ведущих к изменению состава — химических реакциях, а также о законах и закономерностях, которым эти превращения подчиняются.
Экспериментальное и теоретическое исследование неспаренных электронов у AL Экспериментальные исследования показывают, что в основном состоянии неспаренные электроны в атоме алюминия располагаются в 3p-подоболочке. Таким образом, у атому алюминия есть один неспаренный электрон, который находится в последнем p-орбитале. Теоретические исследования с помощью методов квантовой механики подтверждают экспериментальные данные. Квантово-механические расчеты показывают, что энергетический уровень неспаренного электрона находится выше уровней парных электронов. Это объясняет физические свойства атома алюминия и его химическое поведение. Неспаренный электрон в атоме алюминия делает его активным в химических реакциях и дает возможность образования различных соединений. Он может участвовать в обменных реакциях, создавать сильные связи с другими атомами и образовывать ионные соединения с другими элементами, а также образовывать координационные соединения в комплексных соединениях. Значение наличия неспаренных электронов у AL в различных отраслях науки и промышленности В физике и химии алюминий с неспаренными электронами используется для проведения различных исследований, включая электронную спектроскопию и рентгеновскую дифракцию. Эти методы позволяют изучать структуру и свойства различных веществ, а наличие неспаренных электронов в алюминии позволяет получать более точные и надежные данные. В электротехнике алюминий с неспаренными электронами играет важную роль. Он используется в производстве проводов, кабелей и разъемов благодаря своей высокой проводимости. Неспаренные электроны улучшают электрические свойства материала и увеличивают его эффективность. Алюминий с неспаренными электронами также находит применение в промышленности. Он используется в авиационной и автомобильной промышленности для производства конструкционных материалов благодаря своей легкости и прочности. Неспаренные электроны придают алюминию дополнительные механические свойства, делая его идеальным материалом для создания легких, но прочных деталей и компонентов. В медицине алюминий с неспаренными электронами играет важную роль.
Непарный электрон на внешнем подуровне делает атом алюминия более реакционноспособным и способным к образованию комплексных соединений. В связи с этим он может образовывать три химические связи, обеспечивая валентность алюминия равной 3. Таким образом, можно сделать вывод, что если у атома алюминия на внешнем подуровне находится один неспаренный электрон, то его валентность не равна 1, а равна 3. Это объясняется тем, что атом алюминия способен образовывать три химические связи, что делает его более реакционноспособным и способным к образованию комплексных соединений.