Новости применение искусственного интеллекта в медицине

В последнее время появляется все больше новостей о применении искусственного интеллекта (ИИ) в медицине и здравоохранении. Крупная международная биотехнологическая компания Insilico Medicine объявила о том, что лекарство, которое открыл искусственный интеллект, впервые в мире успешно прошло первую фазу клинических испытаний.

Искусственный интеллект в клинической медицине

Медицинская визуализация на основе ИИ также широко используется для диагностики ОРВИ и выявления пациентов, которым требуется клиническая поддержка. Нейросеть научилась отличать родинки от некоторых видов рака кожи Американские ученые создали систему искусственного интеллекта, которая умеет отличать родинки от некоторых видов рака кожи лучше врачей. Работа исследователей опубликована в журнале Nature. На протяжении последних десятилетий число людей, у которых обнаруживают рак кожи, постоянно увеличивается. По данным Всемирной организации здравоохранения, раком кожи страдает каждый третий онкологический больной, а каждый пятый американец заболеет им в течение жизни. Это заболевание особенно опасно тем, что злокачественное образование легко не заметить и спутать с родинкой. При этом, если вовремя обратить внимание на опухоль, шансы на выздоровление резко увеличиваются. Пациенты, у которых находят меланому самый распространенный и злокачественный вид опухоли на ранней стадии развития, выживают в 97 процентах случаев, в то время как при поздней диагностике заболевания эта доля сокращается до 14 процентов. Основным способом первичного выявления рака кожи до сих пор остается визуальный осмотр за которым обычно следует дерматоскопия или биопсия. Чтобы помочь пациентам самостоятельно обнаружить злокачественное образование на ранней стадии, ученые из Стэнфордского университета создали систему искусственного интеллекта, которая анализирует фотографии «подозрительных» родинок.

Авторы новой работы использовали сверточную нейросеть Inception v3, которая была ранее разработана компанией Google. Исследователи удалили ее верхний слой и обучили систему, изначально ориентированную на распознавание различных объектов, определять некоторые виды рака кожи — меланому и карциному. Для этого они использовали 130 тысяч фотографий более двух тысяч различных кожных заболеваний. После того, как программа научилась ставить диагноз, ее работу сравнили с работой двух ведущих дерматологов США. Анализ показал, что система не только справляется не хуже специалистов, но и превосходит их: нейросеть верно отличала родинки от злокачественной меланомы и карциномы в 72 процентах случаев, в то время как врачи успешно справились с заданием лишь в 66 процентах случаев. Дополнительная проверка нейросети, в которой принял участие уже 21 специалист, также показала, что, чувствительность и специфичность алгоритма которая отражает способность корректно определить доброкачественную и злокачественную опухоль не уступает чувствительности и специфичности дерматологов. В будущем компьютерная программа может быть адаптирована для смартфона или планшета, и позволит любому желающему пройти первичную диагностику рака кожи. Тем не менее, до этого момента системе будет необходимо пройти еще много дополнительных проверок. Так, по мнению авторов статьи, программа может плохо справляться с определением редких типов карцином и меланом, по каким-либо причинам не окрашенным в черный или коричневый цвет.

Недавно американские ученые также создали алгоритм, который успешно справляется с ранней диагностикой меланомы. В ходе эксперимента система смогла правильно определить меланому в 98 процентах случаев. В то же время специфичность алгоритма оказалась не такой высокой — диагностика доброкачественных образований была проведена верно лишь в 36 процентах случаев. Применение ИИ в медицине Данные о пациентах Информация о пациентах может храниться в десятках клиник и медицинских карточек. Это усложняет сбор анамнеза и постановку диагноза. Интерпретация анализов, тестов и снимков тоже может быть недостаточно точной из-за объема данных. Даже если у врача на руках находится вся необходимая информация, он не всегда может правильно ее интерпретировать и заметить каждую деталь. От этого могут зависеть жизни пациентов. Google Deepmind Health анализирует симптомы и предлагает несколько диагнозов.

Результаты поиска основаны на миллионах страниц научной информации, которые содержат даже самые малоизвестные заболевания. Сервис MedClueRx анализирует симптомы и не просто диагностирует болезнь, но и выбирает максимально безопасные и эффективные препараты в зависимости от особенностей пациента. Диагностика Системы с искусственным интеллектом позволяют распознавать заболевания даже на ранней стадии. Например, сервисы Zebra Medical Vision и Arterys помогают врачам-диагностам сосредоточиться на общении с пациентами и избавиться от необходимости вглядываться в мельчайшие детали снимков легких и УЗИ сердца. Такие типы ИИ-программ могут использовать не только врачи, но и пациенты. Сервис 23andMe анализирует генетическую информацию и рассказывает пользователю о его предках. Стартап Sophia Genetics использует генетические данные для выявления предрасположенности к определенным заболеваниям. Так пациенты корректируют свой образ жизни, а врачи выбирают наиболее вероятные диагнозы. Создание лекарств Разработка вакцины и последующие клинические исследования — это долгие и дорогостоящие процессы.

ИИ может уменьшить время на разработку новых лекарств в несколько раз, анализируя молекулярные структуры существующих препаратов и предлагая новые согласно заданным требованиям. Например, в 2019 году компания Insilico Medicine таким образом создала несколько вариантов лекарств для лечения мышечного фиброза. Для этой задачи алгоритмам понадобился 21 день, после чего ученые отобрали наиболее подходящие варианты препаратов и за 25 дней провели тест на лабораторных животных. Таким образом, понадобилось 46 дней для выбора подходящего лекарства. Однако традиционный процесс разработки лекарств занимает около 8 лет и стоит фармкомпаниям несколько миллионов долларов. Новые технологии дают надежду на то, что с их помощью мы сможем быстрее получить лекарства от болезней, которые сегодня не поддаются лечению: рассеянный склероз, болезнь Альцгеймера и другие. Автоматизация процессов Дисбаланс и дефицит медицинских кадров высшего и среднего звена был во всем мире еще до вспышки коронавируса. По данным Всемирной Организации Здравоохранения, чтобы люди во всем мире имели доступ к услугам здравоохранения к 2030 году, странам с низким уровнем дохода нужно еще 18 миллионов медицинских работников. В дальнейшем ситуация, скорее всего, не стабилизируется из-за роста населения, старения общества и изменения клинической картины заболеваний.

Эти факторы только повысят спрос на высококвалифицированных медицинских работников и усложнят доступ к медицинской помощи. Поэтому инновационные технологии должны содержать в себе искусственный интеллект и базу знаний в предметной области. Так они освободят врачей от рутинных повседневных задач: внесение информации в медкарту, детальный анализ большого массива данных из истории болезней и т. Благодаря этому медработники сконцентрируют время и усилия на решении серьезных диагностических вопросов и выборе лечения. Современные ИИ-технологии могут помочь системе здравоохранения повысить удовлетворенность пациентов и медицинского персонала, снизить стоимость медицинских услуг и улучшить качество медицинской помощи.

Пока большинство регионов выбрали технологии, работающие с медицинскими изображениями: маммографией, компьютерной томографией органов грудной клетки и головного мозга, рентген-снимками органов грудной клетки. Также 32 региона заключили контракт на закупку решений для работы с электронными медкартами, говорится в презентации замминистра. Замминистра также обратил внимание, что перевес в этой сфере имеют российские продукты - из 24 медицинских изделий с ИИ, зарегистрированных Росздравнадзором, 17 - от российских разработчиков. Как работает анализ медицинских изображений?

А врач, когда работает с этим исследованием, уже использует результаты работы искусственного интеллекта, - рассказал "РГ" коммерческий директор компании Цельс Артем Капнинский. И мы эту работу делаем не для того, чтобы заменить его, а чтобы ему помочь. Когда врач работает вместе с искусственным интеллектом, это минимизирует возможность ошибки. До 50 процентов уменьшается время на интерпретацию исследования, и до 15-20 процентов повышается качество - выявление онкологических и других заболеваний на ранних стадиях". Один из самых активных регионов в плане использования ИИ для анализа медицинских изображений - город Москва. Научная база столицы включает более 10,5 миллиона исследований, проанализированных с помощью сервисов искусственного интеллекта, рассказал директор Центра диагностики и телемедицины, главный внештатный специалист по лучевой и инструментальной диагностике департамента здравоохранения Москвы Юрий Васильев. Врач-рентгенолог большую часть времени что-то пишет, а не смотрит на изображение, а должно быть наоборот", - сказал он.

Москва, ул. Правды, д. Почта: mosmed m24.

Молли задает пациентам вопросы, касающиеся их здоровья, оценивает симптомы и на основе симптомов дает рекомендации по наиболее эффективному лечению. Таким образом, вместо того, чтобы искать обнаруженные у себя симптомы в интернете, сегодня человек может получить помощь от виртуальной медсестры. Виртуальные медсестры не только предоставляют медицинские консультации по поводу распространенных заболеваний или недомоганий, но также позволяют записаться на прием к врачу. Они доступны круглосуточно и без выходных и готовы ответить на вопросы в режиме реального времени. Это одно из основных приложений искусственного интеллекта в здравоохранении, которое все чаще применяется для повышения информированности и улучшения навыков самоуправления у пациентов с хроническими заболеваниями. Благодаря виртуальной медсестре пациент сможет предотвратить ухудшение своего состояния. Системы мультимодальной диагностики В развитии ИИ можно выделить несколько трендов, один из которых связан с интеграцией типов модальностей данных, на которых выполняется обучение. Например, для аудиовизуального распознавания речи визуальное описание движения губ объединяется с аудиовходом для предсказания произнесенных слов. Информация, поступающая из источников различных модальностей, может иметь различную предсказательную силу и топологию шума, а в некоторых источниках данные могут отсутствовать. Неоднородность мультимодальных данных затрудняет построение моделей. Важно изучить, как представлять входные данные и обобщать их таким образом, чтобы они отражали несколько модальностей. Например, текст представляется символами, а аудио и визуальные модальности — сигналами. В контексте медицинского применения вся диагностическая информация о пациенте может быть интегрирована в такие мультимодальные данные и обрабатываться системой ИИ, обученной рассматривать как внешнее изображение человека и фрагментов его тела, так и результаты анализов, МРТ- и КТ-изображения, аудиозаписи ответов на вопросы и т. Все это приближает нас к построению универсального диагноста, использующего холистический подход к диагностике заболеваний, и сокращению количества посещений разных врачей-специалистов для назначения эффективного лечения. Приложения для здоровья на базе искусственного интеллекта Самое большое потенциальное преимущество искусственного интеллекта — возможность помочь людям оставаться бодрыми, чтобы им не приходилось посещать врача или по крайней мере делать это не слишком часто. Искусственный интеллект и интернет медицинских вещей IoMT уже постепенно меняют парадигму с «реактивного» здравоохранения на «проактивное». Сочетание искусственного интеллекта и IoMT со временем сделает подключенные устройства для мониторинга состояния здоровья более интеллектуальными.

Роман Душкин: «Медицина — это область доверия»

Во-вторых, были приняты стандарты в области ИИ в здравоохранении. Напомним, в феврале 2022 года Россия приняла несколько стандартов в области ИИ в медицине. Среди первых стандартов: «Интеллектуальные методы обработки медицинских данных. Основные положения»; «Системы ИИ в клинической медицине — программа, методика клинических испытаний»; «Стандарт управления изменениями в системах ИИ с непрерывным обучением». Разрабатывается еще более 120 стандартов. Все это благодаря платформенному подходу. В 2019 году в Москве начался эксперимент по внедрению в систему столичного здравоохранения ИИ и цифрового зрения, старт которого пришёлся на то время, когда на мировом рынке только появились попытки обучить алгоритмы ИИ решению практических задач. Первая цель была направлена на то, чтобы опередить иностранных конкурентов, рассказал замруководителя Департамента здравоохранения Москвы Илья Тыров. По его словам, приведены и решения для здоровой конкуренции сервисов. Так, в каждом направлении активизировано как минимум два продукта.

Поддерживать высокий уровень медицинских ИИ-решений Москве помогают инвестиции. Так, в 2020-2022 годах на апробацию решений в рамках эксперимента выделено 900 млн рублей. По словам Ильи Тырова, ИИ в московском здравоохранении используется для поддержки решений в диагностике. Например, цифровое зрение применяется в радиологии, ИИ помогает в расшифровке ЭКГ, также пилотируется аналитика патоморфологических исследований. К тому же ИИ автоматизирует рутинные процессы. Так, чат-бот принимает жалобы пациентов, видеоаналитика в медорганизациях следит за сервисом, а технологии распознавания речи переводят речь медработника в текст.

Стали очевидны такие проблемы, которые в обычной обстановке и со стандартной нагрузкой не так бросались в глаза. И в то же время пандемия стала наиболее эффективным стимулом для развития и внедрения инновационных методов решения различных задач. Разумеется, максимум внимания в исследовательской работе стало уделяться таким направлениям, которые целиком либо в какой-то мере были направлены на борьбу с пандемией, на снижение нагрузки врачей, на оптимизацию здравоохранения. И, конечно же, отдельно стоит упомянуть разработки, нацеленные на предиктивную аналитику и моделирование сценариев развития событий с учётом вероятности возникновения иных эпидемий.

Подготовка к таким событиям становится залогом успеха в борьбе с ними. Существуют ли какие-то разработки, позволяющие в будущем действовать на упреждение и успешнее бороться с такими проблемами, как SARS-CoV-2? Столкнувшись с трудностями борьбы с коронавирусом, мы в очередной раз заострили внимание исследователей на важности аналитики, в частности, аналитики эпидемиологической обстановки в мире. К этой сфере исследований сейчас наблюдается повышенный интерес, и это понятно: никто не хочет вновь пережить то, что до сих пор происходит в мире с декабря 2019 года в процессе борьбы с пандемией. Во избежание повторения событий последних двух лет группа учёных с моим непосредственным участием в настоящее время проводит внедрение предиктивной аналитики, которое реализуется с помощью искусственного интеллекта и позволяет моделировать различные сценарии развития событий и анализировать ход эпидемий, что даёт возможность заранее подготовить систему здравоохранения к вероятности масштабного противостояния очередным заболеваниям и «предсказать» их возможные последствия. Современные технологии необходимы и административному аппарату, и непосредственно в лечении.

Фото: ru. Цифровизация По словам Жаворонкова, когда компания создавалась, ее основатели сразу же сосредоточились на алгоритмах — на разработке технологии, способной самостоятельно обнаруживать и конструировать новые молекулы.

Но мы поняли, что для адекватной проверки нашей ИИ-платформы необходимо не только создать новые препараты с новым механизмом действия, но и довести их до клинической проверки. Только тогда можно будет сказать, что наша технология работает», — отметил Жаворонков. Фаза 2 В настоящее время лекарство проходит двойное слепое рандомизированное плацебо-контролируемое исследование, в котором участвуют 60 пациентов в 40 разных клиниках США и Китая. Если эта фаза пройдет успешно, испытание продолжится с большим количеством вовлеченных людей.

Благодаря этому сервису мы стали публиковать контент в своих соцсетях регулярно и сразу заметили повышение активности аудитории. Однозначно рекомендую iiMed, особенно тем, у кого есть проблемы с регулярностью создания и публикацией классного контента. Анастасия Управляющая сетью аптек Использование нейросети iiMed стало настоящим прорывом для нашей сети клиник. Я была поражена, когда увидела на что способен искусственный интеллект.

Что меня особенно впечатлило, так это то, как нейросеть понимает наши потребности и угадывает предпочтения. И что меня особенно порадовало, она создает контент сразу адаптированный под название нашего бренда. Благодаря iiMed.

Собянин сообщил, что в Москве ИИ станет базовой медицинской технологией

Первого российско-американского конкурса стартапов Сбер500Startups Первый поставщик специализированного сервиса видеоаналитики для здравоохранения Финалист конкурса "Новатор Москвы" на медицинские изделия по 3-му классу риска В 2019 году команда "Третье Мнение" победила в акселерационной программе Сбер500Startups и продолжила развитие в Кремниевой долине США В 2020 году сервис "Третье Мнение. ИИ-мониторинг" стал первым в России сервисом видеоаналитики для медучреждений Финалист конкурса 2020 года в номинации "Меняющие реальность" Первое регистрационное удостоверение для модуля анализа рентгенологических исследований Лидер Эксперимента по использованию инновационных технологий В области компьютерного зрения для анализа изображений и дальнейшего применения в системе здравоохранения города Москвы по направлению КТ COVID-19 Сервисы "Третье Мнение" победили в акселераторе «Будущее здравоохранения» Медтех-центра Москвы и «МЕДСИ» Победитель акселератора медицинских стартапов Future Healthcare Партнеры.

Активно развивается применение искусственного интеллекта и в хирургии. По словам Андрея Наташкина, основателя и СЕО Mirey Robotics, сегодня в рамках общей хирургии уже выделилось отдельное направление — телехирургия. Технология позволяет хирургу управлять роботизированным манипулятором, который способен совершать сверхточные движения. Но здесь есть две опасности.

Первая — разрыв интернет—соединения, вторая — это кибератаки. А во время операционного вмешательства эти факторы, которые ведут к потере управления процессом, могут стать фатальными для пациента". По словам эксперта, в связи с этим сейчас на первый план выходит вопрос обеспечения безопасных условий во время операций с использованием роботов, и недавно российские учёные представили своё решение данной проблемы: в условиях возникновения чрезвычайной ситуации манипулятор сможет автономно завершить оперативное вмешательство, без контроля со стороны хирурга. Сейчас большинство хирургических операций проводятся с помощью американских робот—ассистированных хирургических систем Da Vinci — самых известных роботов—хирургов во всём мире. По данным сайта Da Vinci, с 2007 по 2022 год в России американскими роботами—хирургами было выполнено около 28 тыс.

Однако в ближайшее время в больницах страны появятся первые роботы—хирурги отечественного производства, разработанные учёными Института конструкторско—технологической информатики РАН.

Научный руководитель: к. The introduction of systems based on artificial intelligence is one of the key trends in modern healthcare. Keywords: artificial intelligence, machine learning, neural network. Внедрение систем на базе искусственного интеллекта - один из ключевых трендов современного здравоохранения.

Сегодня искусственный интеллект помогает в диагностике болезней и назначении оптимального лечения. В данной статье рассмотрены перспективные направления искусственного интеллекта в медицине, реализованные на базе нейронных сетей. Ключевые слова: искусственный интеллект, машинное обучение, нейронная сеть. Рецензент: Гладских Наталья Александровна - Кандидат технических наук, ассистент кафедры медицинской информатики и статистики. ВГМУ им.

Бурденко В современном мире информационные технологии затрагивают почти каждую сферу деятельности человека. И медицина тому не исключение. Искусственный интеллект ИИ - основа новых информационных технологий. ИИ в лечении и диагностике Одной из главных задач ИИ в медицине является оптимизация диагностики и лечения. В настоящее время созданы и внедрены программы, способные обрабатывать данные жалоб пациентов, осмотра, лабораторных анализов и инструментальных обследований.

Так для назначения оптимального лечения используется IBM Watson for oncology, помогающий врачам-онкологам в кратчайшие сроки подобрать терапию, основываясь на большой базе данных, загруженных для обучения ИИ: более 25 тысяч историй болезней, 300 медицинских журналов и 200 учебников. Программа, обрабатывая данные с помощью многочисленных источников, предлагает несколько вариантов терапии, из которых врач может выбрать наиболее подходящий, а также дополнить клиническую картину новыми данными, в зависимости от которых ИИ формирует новый алгоритм лечения.

Первого российско-американского конкурса стартапов Сбер500Startups Первый поставщик специализированного сервиса видеоаналитики для здравоохранения Финалист конкурса "Новатор Москвы" на медицинские изделия по 3-му классу риска В 2019 году команда "Третье Мнение" победила в акселерационной программе Сбер500Startups и продолжила развитие в Кремниевой долине США В 2020 году сервис "Третье Мнение. ИИ-мониторинг" стал первым в России сервисом видеоаналитики для медучреждений Финалист конкурса 2020 года в номинации "Меняющие реальность" Первое регистрационное удостоверение для модуля анализа рентгенологических исследований Лидер Эксперимента по использованию инновационных технологий В области компьютерного зрения для анализа изображений и дальнейшего применения в системе здравоохранения города Москвы по направлению КТ COVID-19 Сервисы "Третье Мнение" победили в акселераторе «Будущее здравоохранения» Медтех-центра Москвы и «МЕДСИ» Победитель акселератора медицинских стартапов Future Healthcare Партнеры.

Топ-7 прорывов в медицине в 2023 году

Теперь же искусственный интеллект готов прийти на помощь к профессионалам медицины. Искусственный интеллект (ИИ) в медицине — использует алгоритмы и программное обеспечение для аппроксимации человеческих знаний при анализе сложных медицинских данных. Применение искусственного интеллекта в медицине и здравоохранении: сферы использования и перспективы ИИ.

Машины лечат людей: как нейросети используют в российской медицине

6 случаев, когда искусственный интеллект может творить чудеса в здравоохранении. Президентом РФ было поручено уделить особое внимание внедрению искусственного интеллекта в медицине. Чем искусственный интеллект лучше «человеческого» врача, почему перегруженные работой медработники пока не доверяют ИИ, возможен ли в медицине симбиоз естественного и искусственного интеллектов, а также причем здесь мораль и врачебная этика? Кроме того, многим развивающимся странам для внедрения искусственного интеллекта в медицину не хватает оборудования и средств. Области применения технологий на основе искусственного интеллекта быстро расширяются, в частности, умные технологии приходят на помощь врачам и пациентам. Искусственный интеллект в медицине: применение, технологии, вызовы, перспективы практического внедрения.

Эксперимент по внедрению технологий искусственного интеллекта

Журнал «Московская медицина» - Применение искусственного интеллекта в московском здравоохранении Искусственный интеллект (ИИ) помогает врачам ставить верный диагноз и назначать нужные исследования.
ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ В МЕДИЦИНЕ. ПЕРСПЕКТИВЫ РАЗВИТИЯ В РОССИИ На сессии «Внедрение искусственного интеллекта в здравоохранении: новые возможности для стартапов и цифрового бизнеса» RIW-2022 эксперты обсудили эффективные практики внедрения искусственного интеллекта и перспективы технологий в России.

Что хотите найти?

За 18 месяцев команда смогла создать препарат, который уже успешно прошел две фазы клинических исследований. Для сравнения, в обычных условиях разработка и тестирование лекарственного препарата занимает от пяти до десяти лет. При этом затраты на его создание просто на порядки меньше классических. В части поиска информации и ее классификации нейросети показывают отличные результаты. Они способны относительно быстро сканировать интернет на всех существующих языках, собирая данные, которые касаются конкретной темы. Добиться такой эффективности при работе вручную не получится. Искусственный интеллект и персонифицированная медицина Для большинства наиболее распространенных болезней разработаны терапевтические схемы приема лекарственных препаратов. Для лечения некоторых болезней например, туберкулеза или онкологии единственными эффективными препаратами выступают довольно токсичные вещества. Из-за низкой селективности такие лекарства оказывают побочные действия, пагубно влияют на печень, почки и сердечно-сосудистую систему.

И если ранее альтернатив не существовало и применение агрессивных препаратов считалось допустимым с причинением ущерба для здоровья в процессе лечения, то сейчас методика меняется. Развитие медицины и медицинской химии позволяет работать не только над поиском принципиально новых лекарств, но и над подбором оптимальных схем лечения по уже известным методикам. Индивидуальная дозировка препаратов, имеющих сильные побочные эффекты, могла бы снизить негативное влияние на пациентов, но сложность расчетов не позволяет проводить их массово. К тому же их нужно проводить несколько раз в день. Нейросети способны проводить такие расчеты быстро и качественно. AI для комбинационной терапии раковых больных с помощью искусственного интеллекта. Уже во время первого тестирования система показала свою эффективность. Для пациента с прогрессирующим раком простаты система рассчитывала индивидуальную комбинацию препаратов на протяжении всего курса лечения.

Как результат — рост опухоли значительно замедлился, а затем болезнь и вовсе перешла в стадию ремиссии.

Чем так хорош искусственный интеллект в медицине? Технологии ИИ проникают во все сферы деятельности человека, в числе которых и медицина со здравоохранением. К примеру, не так давно Министерство здравоохранения РФ вместе с Ростехом создали первую версию федеральной платформы ИИ для здравоохранения. С ее помощью ИТ-разработчики смогут получать доступ к обезличенным медицинским данным жителей России из медицинских карт. Главная цель этого проекта заключается в том, чтобы объединить обезличенные медицинские данные в верифицированные датасеты наборы данных , а также дать отечественным ИТ-компаниям площадку для разработки и тестирования сервисов ИИ в сфере здравоохранения. Компаниям нужен доступ к структурированным данным для разработки алгоритмов, которые смогут стать основой систем поддержки врачебных решений.

Появление подобных сервисов поможет усовершенствовать систему здравоохранения. Врачам нужно на постоянной основе обновлять информацию о последних исследованиях в медицине. Они не способны это делать с такой же скоростью, что и искусственный интеллект, так как врач не может одновременно и лечить людей, и отдыхать, и обновлять информацию, а еще и держать ее в голове. Искусственный интеллект может регулярно обновлять данные об исследованиях и хранить всю полученную информацию. Внедрение такой технологии облегчит жизнь медикам и поможет спасти чьи-то жизни. Так, суперкомпьютер IBM Watson, изучив 20 млн статей о раке, помог выявить редкую форму лейкемии у 60-летней пациентки с неверным диагнозом. С помощью ИИ можно распознавать симптомы возникновения злокачественных новообразований, диагностировать нарушение работы головного мозга, туберкулез, нарушения зрения.

Примером работы программы выступает сервис Ada.

После этого сервис проводит поиск информации о проблеме и дает рекомендации. Также программы с искусственным интеллектом используются в анализе рентгеновских снимков и в разработке новых лекарств. У компании Semantic Hub есть сервис на базе ИИ для оценки потенциала медицинских препаратов перед их выпуском на рынок.

Алгоритм собирает и проводит анализ научных публикаций, связанных с заболеванием, назначением и действием разрабатываемого лекарства. После этого ИИ анализирует информацию и делает вывод о конкурентных преимуществах медикамента и возможностях его продвижения на рынке. Еще ИИ дает возможность оценивать влияние медикаментов на организм человека. Это помогает врачам понять, как генетические особенности того или иного пациента влияют на течение заболевания и какой эффект может оказать новый лекарственный препарат.

С помощью приложения IBM Watson Health Cloud доктор получает и анализирует данные об организме пациента с электронного браслета и на основе этого подбирает эффективный курс лечения. И это лишь малая часть того, что способен делать искусственный интеллект. Но наряду с плюсами есть и минусы. Какие есть препятствия на пути внедрения ИИ в медицину?

Почему некоторые медицинские эксперты относятся с недоверием к искусственному интеллекту? Все дело в том, что технологии еще далеки от совершенства и их использование для лечения пациентов может быть небезопасным. Да, ИИ в медицине и здравоохранении значительно упростит жизнь врачам и пациентам, но только при его грамотном внедрении.

Что нужно сделать, чтобы перестать отставать от развитых стран? Эти вопросы «МВ» адресовал члену наблюдательного совета ассоциации «Национальная база медицинских знаний» и участнику рабочей группы по подготовке проекта приказа об электронном медицинском документообороте Александру Гусеву. Искусственный интеллект преодолевает препятствия Ассоциация разработчиков и пользователей ИИ в медицине «Национальная база медицинских знаний» НБМЗ , созданная несколько лет назад при поддержке РВК, поставила перед собой цель способствовать внедрению новейших технологий в клиническую практику.

Национальная база медицинских знаний

Искусственный интеллект помогает в диагностике болезней и назначении оптимального лечения, а также напоминает выпить таблетку и угрожает безработицей. Сегодня искусственный интеллект помогает находить признаки заболеваний по более чем 20 направлениям, а количество обработанных с помощью него лучевых исследований уже превысило 11 миллионов. Какова же ситуация с применением ИИ в медицине по состоянию на июнь 2021 г.? На наш взгляд, такая фиксация времени необходима ввиду бурного развития рассматриваемой области. Сегодня искусственный интеллект позволяет выявить опасные заболевания на самых ранних этапах, создавать оптимальные схемы терапии, сводить к минимуму вероятность ошибок в лабораторной диагностике и даже делать хирургические операции. Применение методов искусственного интеллекта в медицине и сфере здравоохранения Для использования врачами и медицинскими специалистами Плюсы и минусы Заменит ли ИИ врачей? Примеры | Онлайн-университет доказательной медицины

Похожие новости:

Оцените статью
Добавить комментарий