Новости новости квантовой физики

Главным научным прорывом 2023 года в области квантовой физики стала разработка и проверка работы сразу нескольких квантовых компьютеров, способных автоматически. События и новости 24 часа в сутки по тегу: ФИЗИКА. Китайские физики объявили о доказательствах существования новой субатомной частицы, обнаруженной при распаде (J/psi)-мезона на пару положительных и отрицательных пионов.

Квантовая физика о Боге, душе и Вселенной

Бычкова и Ф. Зайцева — представителей самых престижных научных школ «Физического» факультета и факультета «Вычислительной математики и кибернетики» МГУ им. Книга называется «Математическое моделирование электромагнитных и гравитационных явлений по методологии механики сплошной среды». Написанная на высоком теоретическом уровне, эта книга была отмечена победой в 2018 году на конкурсе работ МГУ им.

Ломоносова, имеющих выдающееся значение для развития науки и образования. Попробуем кратко пояснить, в чем суть достижения россиян. Предложенная нашими учеными новая математическая модель эфира удивительно компактна, универсальна и всеобъемлюща.

Вместе с тем эта математика ориентирована на практику, поскольку использует близкие по смыслу категории «механики сплошной среды» — главной теоретической опоры аэрокосмических технологий. В теории эфира Бычкова-Зайцева показано, что все считавшиеся ранее экспериментальными законы, электричества, магнетизма, электродинамики и гравитации, являются математическими следствиями лишь двух уравнений движения эфира. В это трудно поверить, но одна и та же математическая модель эфира позволяет описывать все виды взаимодействий!

О такой математической теории мировая наука мечтала на протяжении доброй сотни лет. Кроме того, в рамках предложенной теории раскрыто такое фундаментальное физическое понятие, как масса. Авторы уникального научного достижения особо подчёркивают, что методология математического моделирования и методология экспериментальной физики, обобщающая результаты опытов, позволяют сделать обоснованный вывод о существовании эфира.

Попытки создать «теорию всего» предпринимались неоднократно. Но только сейчас можно сказать, что магистральный путь дальнейшего развития фундаментальной физики действительно найден. Этот путь вне всяких сомнений связан с обоснованной российскими специалистами идеей эфира.

Попутно заметим, что один из авторов открытия, доктор физико-математических наук, профессор МГУ Ф.

Он усовершенствовал установку Клаузера и смог добиться того, чтобы изначальные условия, при которых испускались фотоны, не влияли на результаты измерений. Эксперимент подтвердил вывод ученых: квантовая теория верна, и нет никаких скрытых переменных. Опираясь на исследования коллег, Антон Цайлингер и его исследовательская группа продемонстрировала «квантовую телепортацию» — передачу квантового состояния от одной частицы к другой на расстоянии. Что это значит Первая квантовая революция в XX веке подарила миру транзисторы, лазеры, солнечные панели, мобильную телефонную связь и интернет.

XXI век открыл новые возможности для квантовой механики. Открытия современных физиков позволяют найти применение свойствам квантовой механики в реальной жизни: от передачи и хранения данных до алгоритмов квантового шифрования. Умение управлять запутанным состоянием частиц позволяет развивать область квантовых вычислений и вносит вклад в совершенствование квантового компьютера.

Если бы их результат был выражен в терминах стандартной версии теоремы Белла, значение функции S составило бы приблизительно 2,7 — явное нарушение белловского неравенства. Результаты этого эксперимента были опубликованы 40 лет назад A. Aspect et al. Схема установки, предложенной Аспе и его коллегами. В 1982 году с ее помощью они показали нарушение неравенств Белла. Спутанные фотоны излучаются кальциевым источником L в противоположных направлениях.

Расстояние между поляризаторами составляет примерно 12 м. Рисунок из статьи A. Они показали, что спутанные частицы не просто реальны, но и ощущают присутствие друг друга на вполне приличных расстояниях в экспериментах парижских физиков дистанция между поляризаторами составляла 12 метров. Однако окончательно мощь неравенства Белла была продемонстрирована в самом конце прошлого столетия с участием еще одного нобелевского лауреата этого года Антона Цайлингера. Он и члены его группы продемонстрировали нарушение этого неравенства на дистанции 400 метров, причем для обеспечения полной стохастичности они применили квантовые генераторы случайных чисел G. Weihs et al. Правда, даже им всё же не удалось окончательно разделаться с подводными камнями, возникавшими при тестировании квантовой нелокальности. Контрольные эксперименты этого рода с другими протоколами еще не раз ставились и в нашем столетии, причем опять-таки не без участия Цайлингера. Работа Аспе сильно подхлестнула и теоретические, и экспериментальные исследования всё более сложных спутанных состояний.

В конце 80-х годов американцы Дэниэл Гринбергер Daniel Greenberger и Майкл Хорн Michael Horne вместе c Антоном Цайлингером и при участии Абнера Шимони Abner Shimony теоретически показали, что опыты с тройками спутанных частиц демонстрируют особенности КС много лучше, чем «парные» эксперименты это так называемая квантовая нелокальность Гринбергера — Хорна — Цайлингера, см. Greenberger—Horne—Zeilinger state. Подтверждение этому пришло лишь в 1999 году, когда в лаборатории Цайлингера в Венском университете впервые создали спутанные триады, опять-таки фотонные J. Pan et al. Experimental test of quantum nonlocality in three-photon GHZ entanglement. С тех пор число спутанных в лаборатории частиц стало быстро расти. Например, в конце 2005 года физики из американского Национального института стандартов и технологий изготовили шестерку спутанных ионов бериллия. А уже в январе 2006 года немецкие ученые сообщили, что им впервые удалось «спутать» атом с фотоном. Но это уже другая история.

Исследования Цайлингера также стали важным этапом на пути разработки методов, позволяющих переносить состояние одной квантовой частицы на другую — так называемой квантовой телепортации. Один из самых первых экспериментов этого рода он вместе с коллегами осуществил еще до своей новаторской проверки нарушения неравенства Белла D. Bouwmeester et al. Experimental Quantum Teleportation. Используя квантовую спутанность частиц, такие операции можно производить практически с нулевой вероятностью ошибок. Эти методы нашли применение в разработке протоколов квантовой криптографии. Цайлингер также приложил руку как к созданию теоретической концепции так называемого обмена спутанностью entanglement swapping , M. Zukowski et al. Event-ready detectors: Bell experiment via entanglement swapping , так и к ее первой экспериментальной реализации J.

Experimental entanglement swapping: entangling photons that never interacted. Схема эксперимента, реализующего обмен спутанностью. В начальном состоянии квантовая система состоит из четверки фотонов, которые приготовляются в виде двух спутанных пар. Оптическая система белловского типа включает четыре канала, в каждый из которых поступает один фотон. Фотоны первой пары идут в каналы 1 и 2, второй — в каналы 3 и 4. Одновременное измерение производится над фотонами, вошедшими в каналы 2 и 3, в результате чего фотон из второго канала телепортируется в четвертый. В результате эксперимента фотоны в каналах 1 и 4 образуют спутанную пару, хотя физически они друг с другом никак не взаимодействовали. Такой исход эксперимента полностью противоречит интуиции, основанной на нашем обитании в мире классической физики, однако он совершенно реален. Рисунок из пресс-релиза Нобелевского комитета, с сайта nobelprize.

Кому это нужно? Исследование феномена КС имеет множество практических выходов. Система спутанных частиц, как бы сильно она ни была размазана по пространству, — это всегда единое целое. Поэтому такие системы — буквально золотое дно для информатики. Правда, они не позволяют передавать сигналы со сверхсветовой скоростью, этот запрет специальной теории относительности остается нерушимым. Однако с их помощью можно, как я уже отмечал, копировать состояние квантовых объектов даже на километровых расстояниях и осуществлять передачу сообщений, полностью защищенных от перехвата это так называемая квантовая криптография. Феномен спутанности открывает путь и к созданию квантовых компьютеров. Квантовый компьютер может одновременно оперировать огромным количеством чисел, недоступным для любого классического вычислительного устройства. И это свойство связано как раз с тем, что он использует спутанные состояния.

Каждая элементарная ячейка классического компьютера существует сама по себе, причем лишь в одном из двух логических состояний, которые кодируют нуль и единицу. А в квантовом компьютере состояние ячейки является суперпозицией, смесью двух базисных состояний, нуля и единицы. Такой ячейкой, так называемым кубитом , может быть любая квантовая система с двумя возможными состояниями, скажем электрон с его двумя спиновыми ориентациями. Кубиты можно по-разному связать друг с другом, создав тем самым множество спутанных состояний. Для связанной системы из двух кубитов имеются уже четыре возможных состояния, из трех — восемь, из четырех — шестнадцать, и так далее. Так что с ростом числа кубитов число состояний компьютера увеличивается по экспоненте. Поэтому квантовый компьютер в принципе позволяет в реальном времени решать задачи, для которых самому мощному классическому компьютеру понадобились бы зиллионы лет. И дело здесь не в какой-то особой логике, а просто в скорости вычислений. Надо подчеркнуть, что спутанные состояния чрезвычайно деликатны, физики-экспериментаторы столкнулись с этим давно.

Для работы квантового компьютера нужно сначала создать спутанное состояние многих кубитов и затем изменять его в ходе процесса вычисления. Поэтому для практического изготовления квантового компьютера необходимо, чтобы спутанные, когерентные кубиты жили достаточно долго и чтобы их можно было надежно контролировать. В этом заключается одна из главных физических и технических проблем создания квантовых компьютеров. Это очень сложно и чрезвычайно интересно. Что всё это значит? Один из крупнейших специалистов по квантовой спутанности назвал ее страстью на расстоянии. Некоторые физики считают, что КС противоречит если не букве, то духу специальной теории относительности — ведь создается впечатление, что существует нечто, что распространяется с бесконечной скоростью, хоть и не выполняет сигнальных функций. Впрочем, эта точка зрения отнюдь не общепринята. Знаменитый английский лексикограф и эссеист XVIII века Сэмюэль Джонсон как-то сказал оппоненту: «Я предложил вам объяснение, но я не обязан сделать так, чтобы вы его еще и поняли».

Квантовая механика объясняет результаты любых экспериментов с микрообъектами в том смысле, что позволяет их вычислить. Однако эти результаты не всегда удается понять в контексте нашего повседневного опыта, поскольку мы живем не в квантовом, а в классическом мире. Я думаю, что благодаря исследованиям Клаузера, Аспе и Цайлингера разрыв между этими уровнями понимания объективной реальности хоть немного сузился. Ведь не случайно мощную волну научных исследований, инициированную гениальными прозрениями Джона Стюарта Белла и работами этой великолепной триады, называют второй квантовой революцией.

Ранее создание и изучение конкретных запутанных состояний в мультикубитных системах было чрезвычайно сложной задачей.

Однако новая методика предлагает решение. Исследователи построили квантовый процессор с использованием сверхпроводящих цепей, по сути, искусственных атомов, которые выступают в роли кубитов. Применяя точный микроволновый контроль, они смогли сгенерировать два ключевых типа запутанности: закон объема и закон области.

Квантовые технологии

Изучение суперхимии открывает дорогу к ускорению химических реакций, а суперпарамагнетизма — к созданию очень мощных и быстрых компьютеров, работающих при комнатной температуре. Подробности — в обзоре новостей квантовой физики. Лауреатами Нобелевской премии по физике 2022 года стали Ален Аспе, Джон Клаузер и Антон Цайлингер — за работы в области квантовой информации и квантовой запутанности. Новости науки» Tag» Квантовая механика.

«ФИЗИКА ПОЛУПРОВОДНИКОВ БУДЕТ НУЖНА ВСЕГДА»

Спинароны могут найти полезные применения в наноэлектронике. Nature Physics, онлайн-публикация от 26 октября 2023 г. Оптический эффект Штарка в паре квантово запутанных фотонов 1 декабря 2023 Генерация пар фотонов в запутанном квантовом состоянии важна для применения в устройствах квантовой инофрмации. В квантовых точках запутанные по поляризации фотоны рождаются в процессе двухфотонного резонансного возбуждения в биэкситонно-экситонном каскаде, однако эффективность этого метода остается пока ниже, чем в методе параметрической вниз-конверсии. Basso Basset Римский университет Сапиенца, Италия и соавторы исследовали влияние индуцированного лазером эффекта Штарка на спектры излучения квантовых точек и на квантовую запутанность излучаемых фотонных пар [3]. Квантовая точка в GaAs облучалась фемтосекундными лазерными импульсами.

Оказалось, что эффективность запутывания зависит от соотношения длительности лазерного импульса и времени жизни верхнего возбужденного состояния точки, ответственного за генерацию каскада. В новом эксперименте длительность импульса была доведена до времени жизни указанного уровня, и была показана перспективность использования фотонных пар от квантовых точек на частотах выше ГГц, хотя пока остается широкое поле для дальнейших исследований и усовершенствований. Sreekanth Институт материаловедения и инжиниринга IMRE , Сингапур и соавторы продемонстрировали в своём эксперименте новый спектрограф для резонансной рамановской спектроскопии с поверхностным усилением в участке ближнего ИК-спектра [4]. Это устройство может применяться для идентификации молекул по частотам их колебательных линий. Использовался перестраиваемый брэгговский отражатель из чередующихся слоёв стибнита Sb2S3, вносящего малые фазовые потери, и слоёв SiO2, а также тонкой металлической плёнки.

На ней генерировались таммовские плазмоны с длинами волн 738-1504 нм.

И ещё через три года этому последовало вящее доказательство. Вот пожалуйста. Пучок электронов пропущен через некое препятствие, в котором два просвета. И попал на этот экран. Но почему-то на экране в итоге получается вот такое нечто, которое рисуется только при распространении волн. Дифракция электронов. Вот в этом научно-популярном фильме физик Джим Аль-Халили объясняет, что будет, если из особой пушки через такое же препятствие с двумя просветами стрельнуть всего лишь ОДНИМ-единственным электроном. Но как только сие непонятно что сталкивается с беспросветным препятствием — превращается в добропорядочную частичку.

А дальше — со всеми остановками. За эти сотню с лишним лет после "отчаянного" выступления Планка человечество погрузилось в бездну неизвестности уже довольно глубоко. Выяснилось, что кванты могут состоять в непостижимых отношениях, как некоторые люди: у одного в далёкой дали что-то меняется, другой немедленно это ощущает и тоже начинает вести себя по-другому. Так называемая квантовая запутанность. Выяснилось, что эти частицы одновременно могут находиться в разных состояниях, отсюда — кот Шрёдингера: суть мысленного эксперимента в том, что кот сидит в коробке, и механизм его убийства сработает в случае распада одного атома, а поскольку квантовые частицы в этом атоме одновременно находятся в разных состояниях, выходит, что кот одновременно и жив, и мёртв.

По данным QuantumCTek, чип Xiaohong используется для проверки килокубитной системы, уже разработанной компанией независимо. Международная гонка кубитов Доцент CAS Лян Футянь Liang Futian сказал, что ключевые показатели чипа Xiaohong, как ожидается, достигнут уровня производительности чипов основных международных облачных платформ квантовых вычислений, таких как IBM. IBM заявила о выпуске чипа на тысячу кубитов в декабре 2023 г.

Журнал Nature назвал его первым в мире. В январе 2024 г. Ранее D-Wave заявляла также о важных результатах исследований, демонстрирующих успешное устранение квантовых ошибок QEM в прототипе Advantage2.

Регистрируя зависимость туннельного тока от частоты излучения можно распознать не только сам атом, но и его химическое состояние — на каких орбиталях находились электроны 4. Стерильных нейтрино нет? Отрицательный результат — тоже важный для науки результат. В самом начале 2023 года в журнале Nature физики из коллаборации STEREO сообщили об отрицательном результате поиска стерильных нейтрино с массой порядка одного электронвольта в реакторном эксперименте, проходившем с октября 2017 по ноябрь 2020 года в Институте Лауэ — Ланжевена в Гренобле Франция. Особенность детектора STEREO — наличие шести секций, что позволяет надёжно проверять осцилляции нейтрино при их удалении от реактора, и высокая защита от шумов, которые способны испортить сигнал. Исследователи также объяснили причину реакторной антинейтринной аномалии недооценкой вклада низкоэнергетических бета-переходов в ядрах атомов. Практически одновременно в журнале Physical Review Letters об отсутствии таких стерильных нейтрино сообщили и физики из коллаборации MicroBooNE в Национальной исследовательской лаборатории имени Энрико Ферми Фермилабе, США , которые провели повторный анализ своих данных.

Поскольку эти частицы могли играть важную роль в решении важных вопросов физики и космологии, в мире было запущено несколько программ по поиску стерильных нейтрино. Подождём, что скажут российские специалисты. Энергия из космоса 1 июня 2023 года Калифорнийский технологический институт Калтех, США сообщил о первой успешной передаче солнечной энергии из космоса в приёмник на земле с помощью прибора MAPLE, размещённого на космическом корабле SSPD-1, запущенном на орбиту в январе. MAPLE Microwave Array for Power-transfer Low-orbit Experiment — микроволновая решётка для низкоорбитального эксперимента по передаче энергии состоит из массива гибких лёгких передатчиков микроволновой энергии, управляемых специальными электронными чипами, созданными с использованием недорогих кремниевых технологий. Благодаря этому управлению с помощью когерентного сложения электромагнитных волн MAPLE способен смещать фокус и направление излучаемой энергии — без каких-либо движущихся частей, передавая большую часть энергии в нужное место на Земле. Нейтрино заглянуло внутрь протона Американские физики из Рочестерского университета и проекта MINERvA Main Injector Neutrino ExpeRiment to study v-A interactions — Главный эксперимент с инжектором нейтрино для исследований взаимодействия нейтрино с атомами в Фермилабе впервые смогли точно измерить размер и структуру протона с помощью нейтрино. Их результаты опубликованы в журнале Nature. Тем самым создан ещё один инструмент, способный заглянуть внутрь субатомных частиц, который, возможно, позволит уточнить наши представления о них. Кроме того, подобные эксперименты могут прояснить и то, как нейтрино взаимодействуют с веществом. Информацию о структуре протона исследователи получили, направив пучок нейтрино на пластиковые мишени, содержащие углерод и водород, ядра которого как раз одиночные протоны.

Первые в мире: ученые МФТИ добились прорыва в области квантовых компьютеров

квантовая физика — самые актуальные и последние новости сегодня. У России большой научный потенциал в области математики, программирования, физики и квантовой механики», – считает Семенников. Мировые новости экономики, финансов и инвестиций. Что представляет собой физика полупроводников? Почему полупроводники всегда будут сохранять свою актуальность, несмотря на развитие квантовых технологий? Новости физики в Интернете — раздел журнала Успехи физических наук, ежемесячно публикующего обзоры современного состояния наиболее актуальных проблем физики и смежных с нею наук. В данном обзоре новостей представлены последние открытия в физике. Читайте последние новости на тему в ленте новостей на сайте РИА Новости. В стране полным ходом прокладывают сети квантовой связи. В данном обзоре новостей представлены последние открытия в физике и астрофизике.

Квантовые технологии

В список вошли открытия, которые имеют важное значение для развития фундаментальной науки или могут быть использованы в прикладных целях. Создание имплантов, поднявших на ноги парализованного пациента Победу в этом году редакторы Physics World присудили группе швейцарских нейробиологов, которым удалось создать «электронный мост» между головным и спинным мозгом пациента с параличом. Разработанные ими импланты были вживлены в позвоночник и мозг 38-летнего мужчины из Нидерландов, который был прикован к инвалидной коляске после аварии 2011 года. Нейроинтерфейс смог частично восстановить передачу сигналов от головного мозга к нижним конечностям, что позволило пациенту встать на ноги при помощи костылей или ходунков. Благодаря вживленным устройствам, он может не только ходить по ровной поверхности, но и преодолевать ступеньки.

Создатели имплантов рассчитывают, что в скором будущем их изобретение найдет широкое применение. Ниже в хронологическом порядке приведены 9 других достижений, попавших в список лауреатов премии Physics World. Суть метода заключается в использовании специального геля, который впрыскивается в требуемое место, после чего содержащиеся в нем ферменты расщепляют метаболиты организма, запуская процесс полимеризации органических мономеров в геле. В результате в ткани формируются гибкие и долговечные электроды.

Источник: Thor Balkhed Пока что успешные эксперименты были проведены на рыбах и пиявках, но в перспективе технология может найти применение в медицине для создания безопасных нейроинтерфейсов, позволяющих расширить возможности человеческого организма или лечить различные заболевания. Изучение структуры протона при помощи нейтрино Теджин Кай из Рочестерского университета США совместно с коллегами из проекта MINERvA Main Injector Neutrino ExpeRiment to study v-A interactions удалось получить информацию о структуре протона путем «обстрела» пластиковых мишеней, содержащих углерод и водород, пучком нейтрино. Примененный метод может быть использован для дальнейшего изучения взаимодействия нейтрино с материей.

Для этого исследователи использовали конденсат Бозе-Эйнштейна — такое название носит агрегатное состояние вещества из бозонов и разреженного газа, охлажденного до температур, близких к абсолютному нулю. В эксперименте конденсат имитировал Вселенную, а двигавшиеся в нем квазичастицы фононы — квантовые поля. Изменяя длину рассеяния атомов в конденсате, ученые смогли заставить «вселенную» расширяться с разной скоростью и изучить, как фононы создают в ней флуктуации плотности. Согласно существующим космологическим теориям, схожие процессы происходили после возникновения Вселенной, так что подобное моделирование может пролить свет на многие загадки, занимающие умы ученых. Читайте также Существует ли край у Вселенной? Тем самым Юнг доказал волновую природу света.

Иллюстрация классического двухщелевого опыта. Свет, проходя через две прорези в ширме, формирует на непрозрачной поверхности экрана ряд чередующихся интерференционных полос Источник: Савенок Д. Для этого они использовали полупроводниковое зеркало с переменной отражаемостью излучения. Исследователи дважды быстро изменяли отражательную способность зеркала, создав две щели во временной области. В процессе физикам удалось зафиксировать интерференционные полосы вдоль частотного спектра отраженного от зеркала света. При этом интерференция происходила на разных частотах, а не в разных пространственных положениях.

Результат теор. Яркие пятна — это бозе-эйнштейновские конденсаты экситонных поляритонов. Конденсат Бозе — Эйнштейна был получен в полупроводниковом микрорезонаторе, содержащем слой нового кристаллического материала диселенида молибдена толщиной в один атом. Локализация света в слое такой малой толщины была достигнута впервые. В результате этого исследования могут быть созданы новые типы лазеров, основанные на двумерных кристаллах, позволяющие создавать кубиты — квантовые транзисторы, основу квантового компьютера, работающего на светожидкости. Руководитель лаборатории оптики спина СПбГУ профессор Алексей Кавокин Важно понимать: как не раз отмечал ученый, квантовые компьютеры называют сегодня атомной бомбой XXI века, ведь они открывают огромные возможности не только в области, например, создания новых лекарств, но и в области кибератак. Имея компьютер с такими мощностями, можно разгадать практически любой шифр, поэтому перед учеными сегодня также стоит важная задача защиты квантовых устройств — квантовой криптографии, в которой открытия Алексея Кавокина и его коллег также играют очень важную роль. Сегодня Алексей Кавокин возглавляет лабораторию оптики спина имени И.

Что это значит Первая квантовая революция в XX веке подарила миру транзисторы, лазеры, солнечные панели, мобильную телефонную связь и интернет. XXI век открыл новые возможности для квантовой механики. Открытия современных физиков позволяют найти применение свойствам квантовой механики в реальной жизни: от передачи и хранения данных до алгоритмов квантового шифрования. Умение управлять запутанным состоянием частиц позволяет развивать область квантовых вычислений и вносит вклад в совершенствование квантового компьютера. Квантовое превосходство — способность квантового компьютера решить задачи, которые не способен обработать обычный компьютер — было доказано IBM в 2021 году. Квантовые вычисления помогают ученым моделировать молекулы, химические реакции, квантовые эффекты. Обновлено 05.

С приставкой «супер-»: обзор новостей квантовой физики

Показав, что квантово-механические объекты, которые находятся далеко друг от друга, могут быть гораздо сильнее коррелированы друг с другом, чем это возможно в обычных системах, исследователи предоставили дополнительное подтверждение квантовой механике. новости России и мира сегодня. Новости физики в сети Internet: май 2023 (по материалам электронных препринтов). Изучение суперхимии открывает дорогу к ускорению химических реакций, а суперпарамагнетизма — к созданию очень мощных и быстрых компьютеров, работающих при комнатной температуре. Подробности — в обзоре новостей квантовой физики. Последние новости на сегодня. Физик признал некорректным сравнение квантовой запутанности с парой носков. Все новости с тегом. Квантовые технологии.

Квантовые технологии

новости России и мира сегодня. Вероятно, в какой-то момент, когда критическая масса развитых квантовых технологий, нашего понимания физики и экспертизы перевалит некую черту, начнется эра полностью квантовых машин. Международная команда ученых-физиков из НИТУ «МИСиС», Российского квантового центра, Университета Карлсруэ и Университета Майнца из Германии научилась моделировать процессы, которые могут помочь в расшифровке механизмов фотосинтеза. Фактически квантовые явления в виде группового взаимодействия электронов можно использовать как макрообъекты, что упростит эксперименты в области квантовой физики и позволит использовать эти явления в обычной электронике и не только. Показав, что квантово-механические объекты, которые находятся далеко друг от друга, могут быть гораздо сильнее коррелированы друг с другом, чем это возможно в обычных системах, исследователи предоставили дополнительное подтверждение квантовой механике.

Похожие новости:

Оцените статью
Добавить комментарий