Новости что такое кубит

Но время идет, новости о квантовых компьютерах с завидной периодичностью выходят в свет, а мир все никак не перевернется. Начинаем погружаться в основу основ квантовой связи и квантовой информатики, так что сегодня узнаем, что такое кубит, для чего он нужен и в каких направления. Как уже было сказано, если измерить кубит, в результате будет получено конкретное значение. В последние несколько лет в заголовках научных статей и новостей все чаще стали упоминаться квантовые компьютеры. Один кубит – это атом или фотон – мельчайшая частица вещества или энергии.

Что такое кубит?

Однако многие видят в них угрозу, ведь они будут в состоянии не только делать за человека механическую работу, но и легко заменят представителей творческих специальностей. Но не все так плохо: всемогущие кванты могут стать и нашими защитниками. Что такое квантовый ключ и как он защитит от мошенников С телефонными мошенниками хоть раз сталкивался каждый. Их главная задача — узнать секретную информацию. Если не напрямую от нас, то путем взлома смартфона или компьютера. Но совсем скоро эти воры останутся не у дел. Потому что защищать наши деньги будут при помощи квантовой криптографии, или, как ее еще называют, квантового распределения ключей. То есть мы используем только одни маленькие очень сильно ослабленные лазерные импульсы. И потом с их помощью, скажем так, передаем ключ. В этом случае не происходит передачи непосредственной информации. Мы передаем именно ключ", — пояснила кандидат физико-математических наук, доцент Московского технического университета связи и информатики Татьяна Казиева.

Квантовый ключ представляет собой шифр, и передают его при помощи фотонов света — квантов. Если вы знаете шифр, а точнее, не вы, а ваш компьютер или телефон, они автоматически расшифровывают секретное сообщение. Это может быть что угодно: электронная подпись, информация из банка или страховой компании.

Научно-образовательный портал «Большая российская энциклопедия» Создан при финансовой поддержке Министерства цифрового развития, связи и массовых коммуникаций Российской Федерации. Все права защищены.

При этом в работе квантового компьютера растет количество ошибок вычислений. Разработчики используют сверхтекучие жидкости, чтобы добиться такого охлаждения. Однако, по его словам, в последнее время все большую популярность приобретают альтернативные квантовые платформы: ионы, демонстрирующие высочайшие на сегодняшний день показатели стабильности и точности операций Honeywell, IonQ , и фотоны, преимуществами которых являются малый размер фотонного процессора и возможность работы при комнатных температурах Xanadu, PsiQuantum, Quix. Кроме того, развиваются новые концепции: системы на поляритонах или магнонах, системы бозе-эйнштейновских конденсатов, когерентные машины Изинга, когерентные CMOS-архитектуры. Так, в поляритонной архитектуре битом служит поляритон — квазичастица, сочетающая свойства света и вещества.

Теоретически, поляритонный квантовый компьютер сможет работать при комнатной температуре, что снизит его стоимость и упростит изготовление. В настоящее время изучением поляритонных структур занимается Сколтех. Чем квантовый компьютер превосходит обычный? Принцип суперпозиции, при котором базовая единица информации может существовать более чем в одном состоянии одновременно, позволяет квантовому компьютеру хранить и обрабатывать одновременно гораздо больше данных, чем любому другому. При этом большими объемами данных можно управлять одновременно с помощью концепции, известной как квантовый параллелизм. Имея возможность вычислять и анализировать разные состояния данных одновременно, а не по одному, квантовые системы могут давать результаты с очень высокой скоростью. Внутреннее устройство квантового компьютера Фото: IBM Квантовые системы можно было бы применить для того, чтобы решить проблему коммивояжера — задачу, которая требует нахождения кратчайшего маршрута между множеством городов, прежде чем вернуться домой. А решение этой задачи позволило бы более грамотно выстраивать навигацию и планировать маршруты по всему миру, что удешевило бы и упростило перемещения людей и грузов. Подобного рода исследования уже проводит Volkswagen совместно с D-Wave и Google. Квантовый компьютер способен обрабатывать огромные объемы финансовых, фармацевтических или климатологических данных, чтобы найти оптимальные решения проблем в этих отраслях.

Наконец, квантовые системы способны найти новые методы шифрования и легко взламывать даже самые сложные шифры. IBM Quantum уже работает с клиентами над решением подобных проблем. Компания помогает разработать новое поколение электромобилей на технологии квантовых батарей с Daimler; технологию снижения выбросов углерода в атмосферу с помощью открытия экологичных материалов с ExxonMobil: ищет истоки зарождения Вселенной вместе с CERN. А Google использовала Sycamore для точного моделирования химической реакции.

Физически кубит делают на основе сверхпроводников, в которых за счет электрического тока удается реализовать необходимые для вычисления состояния — или О, или 1. Как и в традиционных компьютерах. Принципиальное отличие в том, что кубит может находиться еще и в так называемой суперпозиции — то есть, принимать промежуточные состояния. Понять это простым смертным не стоит и пытаться — квантовый мир полон причудами.

Но именно они и позволят в будущем фантастически увеличить скорость и мощность вычислений. Однако есть препятствия. Кубиты — «создания» очень нежные, если можно так выразиться. Чувствительны к внешним возмущениям — чуть что «погибают». То есть, утрачивают свои энергетические состояния. А вместе с ними и информацию.

Квантовые компьютеры

Уж больно неоднозначен сам выбранный принцип действия. Суперкомпьютеры — это очень мощный вариант привычных нам вычислительных устройств. За несколько минут они выполняют то, на что одному человеку потребуется не одна тысяча лет, но этого уже не хватает. Алексей Фёдоров, руководитель научной группы «Квантовые информационные технологии» Российского квантового центра: «Мы хотим добиться решения самых сложных прикладных задач, которые важны для каждого из нас с вами, которые непосильны для классических суперкомпьютеров. Уже сегодня на масштабе города решить все оптимизационные задачи, например, связанные с оптимизацией пробок, трафика до оптимального расписания общественного транспорта. Мы банально будем меньше тратить времени на какие-то вещи, быстрее добираться до работы». Что же предлагают создатели компьютеров будущего? В привычном для нас процессоре информация представлена в виде последовательности нулей и единиц, так называемых битов. Физически это контакты транзисторов. Так называемом кубите. Это значит, что он может быть немножечко 0, но в основном единицей.

В ней нобелевский лауреат высказал относительно простую мысль. Если у нас будут квантовые компьютеры, то есть компьютеры, которые совершают вычисления по квантовым законам, то было бы вполне естественно в первую очередь использовать их для вычислений, связанных с квантовыми системами, — в частности, для вычислений в квантовой химии. И действительно, как показали дальнейшие исследования, это возможно. И более того, такие вычисления смогут в полной мере задействовать уникальные возможности квантовых компьютеров, то есть они будут выполняться значительно быстрее, чем на компьютерах обычных. Это позволит решать задачи точного расчёта химических реакций за разумное время и заменить дорогостоящие прямые эксперименты на более дешёвые вычисления. Более того, одна из проблем квантовых компьютеров — разрушающее действие окружающей среды, не позволяющее подолгу сохранять квантовую суперпозицию, — в квантовых симуляторах может быть использовано для пользы дела. Ведь реальные квантовые системы тоже находятся в окружении других тел, которые точно так же разрушают квантовые эффекты в них.

Это воздействие можно имитировать с помощью действия окружения на кубиты квантового симулятора. Применение квантовых симуляторов Сейчас уже созданы первые, самые простые квантовые симуляторы. Так, в 2010 году группа экспериментаторов из Квинслендского университета в Австралии и Гарвардского университета в США сообщила, что им удалось рассчитать свойства самой простой молекулы — молекулы водорода — с достаточной для химиков точностью при помощи квантового симулятора, кубиты которого были основаны на «частицах» света — фотонах. Молекула водорода пока остаётся основным объектом, который исследуют на квантовых симуляторах, но сами симуляторы при этом с каждым годом улучшаются. Работа ведётся в нескольких направлениях. Во-первых, учёные пробуют разные реализации квантовых симуляторов. В качестве кубитов могут быть использованы охлаждённые до сверхнизких температур атомы, отдельные электроны или ядра некоторых атомов, сверхпроводящие кольца или, как в работе 2010 года, фотоны.

Каждая из этих реализаций имеет свои особенности. Например, системы на охлаждённых атомах требуют больших и относительно дорогих установок, хотя и удобны с точки зрения управления состоянием кубитов. Системы на основе ядер, управляемых при помощи эффекта ядерного магнитного резонанса, относительно просты, но, наоборот, не обладают достаточной гибкостью управления. Этой проблемы лишены системы, основанные на электронах, пойманных в так называемые квантовые ямы в полупроводниках. Именно они являются сейчас одним из наиболее перспективных направлений с точки зрения технологичности и дешевизны производства.

И почему квантовые роботы лучше обычных? Что такое квант "Мы вот-вот оставим цифровой век позади, и наступит квантовая эра, которая принесет невообразимые научные и социальные изменения. Миром станут править квантовые компьютеры", — заявил физик, популяризатор науки и футуролог Мичио Каку. Но что же такое кванты и почему ученые говорят о революции?

То есть, чтобы вы понимали, мир, который нас окружает, все, из чего он состоит, это элементарные частицы. И квант — это одна из элементарных частиц", — пояснил кандидат технических наук, доцент Московского технического университета связи и информатики Олег Колесников. И все это обеспечивает невероятную скорость работы суперкомпьютера. А квинтиллион — это цифра с 18 нулями. Сравнивать скорость работы Frontier со скоростью работы вашего ноутбука, это как сравнивать скорость улитки и сверхзвукового истребителя", — отметил профессор машиностроения и физики Массачусетского технологического института Сет Ллойд. А все потому, что в основе японского чуда — не обычные процессоры, а квантовые. Ведь большинство квантовых компьютеров могут работать только при температурах, близких к абсолютному нулю, когда все замедляется и "шум" окружающей среды минимален", — рассказал руководитель группы экспериментальных квантовых вычислений компании — производителя квантовых компьютеров Джери Чоу. Но дело не только в размерах. В классических ЭВМ информация зашифрована в битах, то есть в нулях и единицах, а в квантовых — в кубитах.

Один кубит — это атом или фотон — мельчайшая частица вещества или энергии.

До конца этого года должны успеть 50 сделать. Посмотрим, может быть, получится и больше», — добавил Юнусов. Квантовые компьютеры в будущем будут использоваться для решения задач, с которыми не могут справиться привычные нам электронные вычислительные машины. Это, например, моделирование природных процессов или очень сложные математические расчеты. Перспективным и активно развивающимся также является направление квантового машинного обучения.

Как работает квантовый компьютер: простыми словами о будущем

Все права защищены. Условия использования информации.

Обычные компьютерные чипы могут обрабатывать только определенное количество информации за один раз, и мы очень близки к достижению их физического придела. Напротив, уникальные свойства материалов для квантовых вычислений позволяют обрабатывать больше информации намного быстрее. Эти достижения могут произвести революцию в определенных областях научных исследований. Определение материалов с определенными характеристиками, понимание фотосинтеза и открытие новых лекарств — все это требует огромных объемов вычислений. Теоретически квантовые вычисления могут решить эти проблемы быстрее и эффективнее. Квантовые вычисления также могут открыть возможности, о которых мы даже не задумывались.

Это как микроволновая печь против обычной духовки — разные технологии с разными целями. Но мы еще не достигли цели. На данный момент одна компания заявила, что ее квантовый компьютер может выполнять определенные вычисления быстрее, чем самые быстрые классические суперкомпьютеры. До ученых, регулярно использующих квантовые компьютеры для ответа на научные вопросы, еще далеко. Чтобы использовать квантовые компьютеры в больших масштабах, нам необходимо улучшить технологию, лежащую в их основе — кубиты. Кубиты — это квантовая версия самой основной формы информации обычных компьютеров, битов. Что особенного в кубитах?

В атомном масштабе физика становится очень странной. Электроны, атомы и другие квантовые частицы взаимодействуют друг с другом иначе, чем обычные объекты. В определенных материалах мы можем использовать это странное поведение. Некоторые из этих свойств — особенно суперпозиция и запутанность — могут быть чрезвычайно полезны в вычислительной технике. Принцип суперпозиции заключается в том, что кубит может находиться в нескольких состояниях одновременно. С традиционными битами у вас есть только два варианта: 1 или 0. Эти двоичные числа описывают всю информацию на любом компьютере.

Кубиты сложнее. Представьте себе кастрюлю с водой. Когда у вас есть вода в кастрюле с крышкой, вы не знаете, кипит она или нет. Обычно вода либо кипит, либо нет — точка зрения не меняет ее состояния. Но если бы горшок находился в квантовой сфере, вода представляющая квантовую частицу могла одновременно кипеть и не кипеть, или любая линейная суперпозиция этих двух состояний могла бы быть справедливой. Если бы вы сняли крышку с этой квантовой кастрюли, вода сразу же перешла бы в то или иное состояние. Измерение переводит квантовую частицу или воду в определенное наблюдаемое состояние.

Восемь бит сохраняют информацию, которую можно сохранить в трёх кубитах, так как 3-кубитная система может хранить восемь состояний — 000, 001, 010, 011, 100, 101, 110 и 111. И так далее. График ниже демонстрирует вычислительную мощность кубитов.

По оси x отображается количество кубитов, используемых для хранения определённого количества информации. Значения по оси y голубой линии отображают количество битов, необходимых для хранения того же объёма информации, что и в количестве кубитов по оси x, или 2 в степени x. График построен с помощью Desmos.

Представьте себе какие возможности предоставляют квантовые вычисления! Квантовые компьютеры также прекрасно подходят для разложения чисел на множители, что приводит нас к RSA шифрованию. Протокол безопасности, защищающий Medium и, наверняка, любой другой известный вам веб-сайт, известен как RSA шифрование.

Он основан на том факте, что потребуется очень-очень много времени при существующих вычислительных ресурсах, чтобы разложить число m длиной больше 30 знаков на произведение двух чисел p и q, которые являются большими простыми числами. Однако деление m на p или q в вычислительном отношении значительно проще, и, поскольку m, делённое на q возвращает p и наоборот, это обеспечивает систему быстрой проверки ключа. Квантовый алгоритм, известный как алгоритм Шора, показал экспоненциальное ускорение в разложении чисел, что однажды может взломать RSA шифрование.

Но не стоит пока увлекаться шумихой. На данный момент наибольшее число, которое удалось разложить квантовому компьютеру — это 21 на 3 и 7. Для квантовых компьютеров ещё не разработано аппаратное обеспечение для разложения 30-значных или даже 10-значных чисел.

Даже если когда-нибудь квантовые компьютеры взломают RSA шифрование, новый протокол безопасности BB84, основанный на квантовых свойствах, проверен на безопасность от квантовых компьютеров. Так заменят ли квантовые компьютеры классические? Не в обозримом будущем.

Квантовые вычисления хоть и развиваются очень быстро, но находятся на ранней стадии, а исследования ведутся на полуконкурентной основе крупными корпорациями, такими как Google, Microsoft и IBM. Большая часть аппаратного обеспечения для ускорения квантовых вычислений пока не доступна. Существует несколько препятствий для квантового будущего, основными из которых являются устранение ошибок квантового вентиля и поддержание стабильности состояния кубита.

Процессор Google Sycamore, укомплектованный 54 кубитами. Однако, учитывая количество инноваций, произошедших за последние несколько лет, в течение нашей жизни успехи квантовых вычислений кажутся неизбежными.

Но возможно ли решать эти задачи ещё быстрее? Как преодолеть теоретические барьеры математики? Возможный ответ — поменять правила игры. Совершенно не обязательно, что если что-то невозможно выполнить на классическом компьютере, то это невозможно сделать в принципе. Просто необходимо использовать другой подход к концепции самих вычислений и алгоритмов, при котором математические ограничения, доказано распространяющиеся на привычные нам компьютеры, оказываются неприменимы. Одним из наиболее перспективных вариантов такого альтернативного подхода являются квантовые вычисления. Концепция квантового компьютера, появившись в 80-х годах прошлого века, к сегодняшнему дню успела развиться до уровня строгого математического формализма, воплотиться в металле и даже постепенно начать входить в нашу жизнь.

Ведь в области квантовых технологий по меньшей мере лежит и щит, и меч информационной безопасности — квантовые компьютеры представляют потенциальную угрозу, а для защиты от них применяются методы квантовой и пост-квантовой криптографии, уже достаточно широко представленные на рынке. Изначально было ясно, что многие квантовые алгоритмы не имеют прямых классических аналогов. Например, ускоренный поиск по неструктурированной базе данных, работающий быстрее последовательного перебора, или телепортация квантовой информации — перенос квантовых данных между двумя носителями таким образом, что физически между ними передаётся только информация классическая. Дело в том, что квантовые компьютеры остаются в определённом смысле аналоговыми, и такие сугубо квантовые алгоритмы не вписываются в парадигму детерминированных цифровых классических вычислений. По этой же причине многие из квантовых алгоритмов кажутся совершенно контринтуитивными и не вписываются в наши привычные представления. Долгое время оставался открытым вопрос, существует ли задача, в которой квантовые компьютеры будут обладать доказуемым качественным преимуществом по сравнению с классическими. Данный вопрос получил название задачи поиска квантового превосходства. Значительный шаг вперёд в этом направлении был осуществлён только в 2019 году, когда исследователи Google AI Quantum экспериментально продемонстрировали, как квантовый компьютер справляется с задачей, на решение которой у классического вычислителя, по представлениям исследователей, ушло бы несколько десятков тысяч лет [1]. И хотя данное исследование содержит только неподкреплённую строгим математическим доказательством практическую демонстрацию, а его результаты впоследствии вызвали в научных кругах широкую дискуссию с вескими аргументами за обе стороны вопроса, можно полагать, что в данный момент мы находимся на заре эпохи практического квантового превосходства.

Безусловно, это оказывает значительное влияние на индустрию информационных технологий в целом, и, в частности, на её экономику. Всё больше мировых IT-гигантов, таких как IBM, Google, Microsoft, Amazon и Alibaba вкладывают огромные ресурсы в разработку квантовых вычислителей и исследование квантовых алгоритмов. Несмотря на то что квантовые компьютеры пока остаются довольно слабыми и едва ли могут незамедлительно перевернуть все рынки, множество мировых экспертов сходятся во мнении, что компетенции в области квантовых вычислений могут стать одним из ключевых аспектов эффективного развития информационно-технологической экосистемы уже в ближайшем будущем. Рост индустрии После демонстрации квантового превосходства исследователями Google, индустрия квантовых вычислений начала привлекать всё больше и больше внимания. Заинтересованы данной областью как исследователи, так и инвесторы [2]. Это вполне объяснимо — мир едва начал свыкаться с экономическими и индустриальными последствиями революции, порождённой взрывным развитием технологий классических компьютеров. И тут на горизонте возникает новая область — квантовые вычисления, которая, кажется, имеет все шансы на повторение такого поразительного взлёта. Сообщение о способности квантового компьютера на практике решать задачу, принципиально неподвластную классическому вычислителю, для многих стало сигналом о том, что компьютеры нового типа неизбежно достигнут нужного уровня совершенства и займут свою нишу уже в ближайшем будущем. Ещё больше подогрели интерес к ситуации сами исследователи Google, заявив, что по аналогии с законом Мура для классических компьютеров, можно ожидать роста характеристик квантовых вычислителей с экспоненциальной скоростью [1].

Оглашение подобной перспективы мгновенно привело к взрывному росту числа тематических публикаций, регистрируемых патентов, а также компаний-стартапов в области квантовых вычислений [3]. Рост числа публикаций по теме квантовых вычислений [4. Тезис демонстрации квантового превосходства в значительной мере подвергается критике. Задача, на которой он был продемонстрирован, в реальности бесполезна, а временные рамки обещаний практически значимого квантового вычислителя постоянно сдвигаются [5 ; 6; 7]. В этом, безусловно, есть доля истины. Но настолько ли далека перспектива распространения квантовых вычислителей, чтобы можно было обходить их вниманием? Цель данной статьи — сформировать у читателя понимание возможных сценариев развития квантовых компьютеров, их потенциального места среди других существующих технологий, а также текущего прогресса в борьбе с практическими ограничениями, препятствующими широкому распространению продуктов и сервисов на основе квантовых вычислений уже сегодня. Парадигма квантовых вычислений Прежде всего определим, какое место квантовые вычислители могут в перспективе занять в устоявшейся индустрии информационных технологий. Как известно, классические компьютеры оперируют битами — единицами информации, которые позволяют различить два состояния системы: 0 и 1.

В основе логики квантового компьютера лежит схожее понятие — кубит. Кубит — объём информации, описывающий квантовую систему с двумя состояниями. В отличие от бита, кубит может принимать промежуточные значения, сочетающие вклад состояний 1 и 0 в разных пропорциях. Если кубита два, то возможных вкладов в состояние становится четыре: 00, 01, 10, 11. И так далее в геометрической прогрессии. Если число кубитов приближается к нескольким сотням, то памяти всех классических компьютеров не хватит, чтобы сохранить полный объём информации о состоянии такого регистра. На практике это в совокупности с особенностями обработки и считывания квантовой информации приводит к тому, что отдельные задачи на квантовом вычислителе начинают решаться качественно быстрее, чем на классическом. Например квантовый алгоритм Шора позволяет разложить число на простые множители с экспоненциальным ускорением [8], а алгоритм Гровера — осуществить поиск по неструктурированной базе данных с квадратичным ускорением [9]. Из первого следует потенциальное разрушение криптографической стойкости шифров с открытым ключом на основе RSA, а из второго — квадратичное ускорение решения любой NP-задачи и соответствующее снижение стойкости симметричных шифров.

То есть для обеспечения того же уровня секретности понадобится вдвое более длинный ключ. Математически доказано, что квантовый компьютер способен эффективно моделировать классический [10]. То есть всё, на что способен классический компьютер, квантовый компьютер способен исполнить по крайней мере не хуже. Однако на практике квантовый компьютер сегодня — весьма сложная лабораторная установка, отдельные элементы которой зачастую требуют криогенного охлаждения. Главным ограничением квантового компьютера является ограничение по объёму обрабатываемых данных. В лучшем случае сегодня это несколько сотен кубитов, что никак нельзя сравнить с доступными классическим вычислителям гигабайтами оперативной памяти. Поэтому реальный сценарий использования квантового вычислителя — гибридный. Вся инфраструктура остаётся классической, и только при необходимости произведения отдельных специфичных расчётов классическая программа удалённо подключается к квантовому вычислителю, передаёт ему данные и считывает результат. Единственная технология, которая остаётся за рамками такой картины — квантовые коммуникации.

Квантовая криптография, которая как раз способна обеспечить концептуальную защиту от атаки квантовым вычислителем, требует создания новой инфраструктуры для передачи квантовой информации. Это может быть оптическое волокно или атмосферный лазерный канал. Не исключается использование на оптическом канале дронов и спутников. Также, помимо непосредственно программируемых квантовых компьютеров, возможно использование проблемно-специфичных квантовых устройств. С их помощью, например, на линиях квантовых коммуникаций может осуществляться коррекция ошибки без считывания квантового состояния. Данный тип устройств не предъявляет больших требований по числу кубитов или объёму исполняемой программы и теоретически может быть реализован на имеющейся сегодня технологической базе.

Квантовые компьютеры: путь от фантастики до реальности и их влияние на науку и бизнес

Кубит (q-бит, кьюбит; от quantum bit) — квантовый разряд или наименьший элемент для хранения информации в квантовом компьютере. Как и бит, кубит допускает два собственных состояния, обозначаемых и (обозначения Дирака). Кубитам также характерно неприсущее битам явление квантового запутывания: состояние одного такого элемента связано с состоянием другого независимо от расстояния между ними. Но пока до реального взлома всё же невероятно далеко — чтобы взломать код биткоина, нужны десятки миллионов кубитов.

Как работают квантовые процессоры. Объяснили простыми словами

Сейчас 16 кубитов есть на нескольких платформах, при этом наибольшую вычислительную мощность демонстрирует ионный процессор. В 2013 году мы произвели первичные измерения полученных в Германии кубитов (кубит – элемент сверхпроводниковой микросхемы, сделанный из сверхпроводника – тонких пленок алюминия). Как сообщалось, кубит — единица информации в квантовом компьютере, он отличается от обычного бита тем, что может принимать любое значение между 0 и 1 в процессе вычислений. Недавно исследователи разработали флюксониевый кубит, способный сохранять информацию в течение 1,43 миллисекунды, что в десять раз дольше, чем предыдущие технологии создания кубитов.

От бита к кубиту. Создание квантовых компьютеров сулит необыкновенные перспективы

Что наиболее важно, кубит достиг времени когерентности в квантовом состоянии, конкурентоспособного с другими современными кубитами. Термин «кубит» (QuBit — «квантовый бит») был введен физиком Стивеном Визнером в его статье «Сопряженное кодирование» (Conjugate Coding), опубликованной в 1983 году в SIGACT News. Кубит — это система, которая может быть представлена квантовой точкой, атомом, молекулой, сверхпроводником, частицой света. Что такое кубиты для квантовых компьютеров? В квантовом компьютере основным элементом является кубит – квантовый бит.

От бита к кубиту. Создание квантовых компьютеров сулит необыкновенные перспективы

Мир квантов: как люди могут воспользоваться их открытием — 05.10.2023 — Статьи на РЕН ТВ Кубиты в квантовом компьютере расположены не слишком далеко, однако именно запутанность связывает их в единую, согласованно реагирующую систему.
Кульбит кубита. Новейший сверхкомпьютер может победить рак или погубить мир | Аргументы и Факты За последние двадцать лет количество кубитов в квантовых процессорах увеличилось с одного-двух до сотни (в зависимости от технологической платформы).
Квантовый компьютер: что это, отличие от обычного, как купить и стоит ли покупать С использованием суперкомпьютера ННГУ «Лобачевский» нижегородские физики, учёные МГУ и Российский квантовый центр разработали новый метод для управления квантовыми объектами – кубитами.

Что такое кубиты и как они помогают обойти санкции?

По данным QuantumCTek, чип Xiaohong используется для проверки килокубитной системы, уже разработанной компанией независимо. Международная гонка кубитов Доцент CAS Лян Футянь Liang Futian сказал, что ключевые показатели чипа Xiaohong, как ожидается, достигнут уровня производительности чипов основных международных облачных платформ квантовых вычислений, таких как IBM. IBM заявила о выпуске чипа на тысячу кубитов в декабре 2023 г. Журнал Nature назвал его первым в мире. В январе 2024 г. Ранее D-Wave заявляла также о важных результатах исследований, демонстрирующих успешное устранение квантовых ошибок QEM в прототипе Advantage2.

Ганновер, Германия Применение квантовых компьютеров В том же 1994 году американский ученый Питер Шор разработал первый из многих квантовый алгоритм для разложения целого числа на простые множители.

Удивительно, но даже для самых мощных современных компьютеров разложить длинное в несколько сотен цифр число на два простых множителя — невероятная по затратам времени задача. Именно на этом строятся самые современные системы шифрования и защиты информации. Шор же доказал, что квантовый компьютер, содержащий 1000 и более кубитов, взломает любой код буквально за секунды. Вся хитрость в том, что квантовый компьютер проверяет возможные варианты не последовательно, как это делает обычный процессор, а одновременно. Скорость обработки информации при таком способе возрастает просто колоссально. Работа Шора показала лишь одну из сфер практического применения квантового компьютера.

Возможности квантового взлома систем шифрования в том числе в военной сфере сразу привлекли в эту область разработок немалые ресурсы. Например, Китай планирует потратить более 11 миллиардов долларов на строительство нового квантового центра. Свой вклад в создание квантового компьютера вносит и Россия. Квантовый компьютер в России: перспективы Один из самых мощных квантовых компьютеров в мире 51 кубит создала в 2017 году научная группа Михаила Лукина, профессора Гарвардского университета и сооснователя Российского квантового центра. Ученые работают с «холодными атомами» — частицами, охлажденными почти до абсолютного нуля. Пока эти эксперименты проводятся в лабораториях Гарварда, но уже в 2018 году Газпромбанк инвестировал 1,5 миллиона долларов в Российский квантовый центр для разработки проекта по квантовому машинному обучению.

Разработки ведутся по трем основным направлениям: использование искусственного интеллекта в описании сложных квантовых систем; применение аналоговых устройств на квантовых принципах для обучения нейронных сетей; разработка программного обеспечения для квантовых вычислений. Духова и МГТУ им. Баумана продолжают исследования для разработки российского квантового «железа». Планируемая мощность квантового компьютера российского производства пока составляет несколько кубитов. Это, безусловно, отставание в количестве, но не в качестве и значении разрабатываемых технологий. Прогноз развития квантовых компьютеров Теоретически самый мощный квантовый компьютер, который уже создан, — устройство D-Wave 2000Q, детище канадской компании D-Wave Systems.

Цена новинки — каких-то 15 миллионов долларов. В нем установлен квантовый чип, содержащий 2000 кубитов. Проблема в том, что по сути это вовсе не квантовый суперкомпьютер, а так называемое устройство квантового отжига. Эта система работает на решение очень узкоспециализированной задачи, и до ее реального практического применения еще довольно далеко. Тем временем в марте 2018 года состоялась презентация 72-кубитного квантового компьютера. О его создании заявила компания Google.

Он отличается большей производительностью при низком уровне ошибок — но все эти достоинства опять-таки пока реализованы лишь в теоретической плоскости. Но каковы же возможности такого использования квантовых компьютеров, кроме упомянутого взлома шифров?

Вычисления при этом не должны быть полезными — они призваны лишь доказать сам факт, как в случае экспериментального самолета братьев Райт в 1903 году или первого в мире ядерного реактора Энрико Ферми в 1942-м. Последние десять лет я занимался теоретическим обоснованием для экспериментов по достижению квантового превосходства.

Работу Google я видел еще до публикации, поэтому я могу по крайней мере попытаться просто объяснить, что всё это значит. Зачем нужен квантовый компьютер? До недавних пор все компьютеры на планете, от больших ЭВМ 1960-х до вашего айфона или таких, на первый взгляд, экзотических изобретений, как нейроморфные компьютеры или ДНК-компьютеры, работали по одним и тем же принципам. Их сформулировал Чарльз Бэббидж в 1830-е годы и систематизировал Алан Тьюринг в 1930-е.

В ходе компьютерной революции менялись только количественные показатели: увеличивались скорость, объем оперативной и физической памяти, количество процессоров. Но квантовые вычисления — это нечто совершенно иное. Это первая компьютерная модель со времен Тьюринга, которая изменит принципиальные основы вычислительных алгоритмов, позволяя выполнять невероятно сложные для традиционных компьютеров задачи. Самые ожидаемые результаты квантовых вычислений — это возможность симулировать процессы химии и квантовой физики, а также разрушить большую часть систем шифрования, которые сейчас обеспечивают защиту данных в интернете.

Демонстрация компанией Google способностей квантового компьютера стала критической вехой компьютерной революции. Квантовый компьютер: кубиты вместо битов В лаборатории Санта-Барбары Калифорния команда Google под руководством Джона Мартиниса создала микрочип под названием «Сикомор». Этот квантовый чип состоит из 53 проволочных петель, вокруг которых ток может течь при двух разных энергиях, представляя собой 0 или 1. Чип располагается в криогенной холодильной машине , которая охлаждает провода почти до абсолютного нуля, делая их сверхпроводимыми.

Такая температура необходима, чтобы на мгновение точнее, на несколько десятков миллионных долей секунды уровни энергии стали вести себя как квантовые частицы — кубиты qubits, от quantum bits. Эти частицы могут находиться в состоянии так называемой суперпозиции — состояние 0 и 1 одновременно. Суперпозиция печально знаменита тем, что ее очень сложно объяснить. Многие популяризаторы используют образ, который заставляет физиков выть в муках: «Представьте, что кубит — это бит информации, который может быть сразу и 0, и 1 и исследовать эти состояния одновременно».

Если бы у меня была возможность рассказать об этом подробно, я бы упомянул об амплитудах вероятности — ключевой концепции квантовой механики со времен Вернера Гейзенберга и Эрвина Шрёдингера. Однако первичные элементы, из которых состоит вся окружающая действительность фотоны и электроны , подчиняются совершенно иным законам вероятности. Более того, если событие — скажем, фотон, врезающийся в какую-то точку на экране, — может произойти в одном случае с положительной амплитудой, а в другом случае с отрицательной, то обе вероятности могут взаимно уничтожиться: общая амплитуда станет равна нулю и событие никогда не произойдет. Это явление называется квантовой интерференцией, и именно она лежит в основе всего того, что вам кажется очень странным в квантовом мире.

Вернемся к кубитам. Кубит — это просто бит информации с двумя амплитудами вероятности: 0 и 1.

Эти алгоритмы написаны на квантово-ориентированном языке программирования. Исследователи и технологические компании разработали несколько квантовых языков. Q : язык программирования, включенный в Microsoft Quantum Development Kit. Комплект разработчика включает в себя квантовый симулятор и библиотеки алгоритмов. Cirq: квантовый язык, разработанный Google , который использует библиотеку python для написания схем и запуска этих схем в квантовых компьютерах и симуляторах. Forest: среда разработки, созданная Rigetti Computing, которая используется для написания и запуска квантовых программ.

Использование квантовых вычислений Настоящие квантовые компьютеры стали доступны только в последние несколько лет, и только несколько крупных технологических компаний имеют квантовый компьютер. Эти технологические лидеры работают с производителями, фирмами, оказывающими финансовые услуги, и биотехнологическими компаниями, чтобы решить множество проблем. Доступность квантовых компьютерных услуг и прогресс в области вычислительной мощности дают исследователям и ученым новые инструменты для поиска решений проблем, которые раньше было невозможно решить. Квантовые вычисления сократили количество времени и ресурсов, необходимых для анализа невероятных объемов данных, моделирования этих данных, разработки решений и создания новых технологий, которые решают проблемы. Бизнес и промышленность используют квантовые вычисления для изучения новых способов ведения бизнеса. Вот несколько проектов в области квантовых вычислений, которые могут принести пользу бизнесу и обществу: Аэрокосмическая отрасль использует квантовые вычисления для поиска лучшего способа управления воздушным движением. Финансовые и инвестиционные фирмы надеются использовать квантовые вычисления для анализа риска и доходности финансовых вложений, оптимизации портфельных стратегий и урегулирования финансовых переходов. Производители применяют квантовые вычисления для улучшения своих цепочек поставок, повышения эффективности своих производственных процессов и разработки новых продуктов.

Биотехнологические компании изучают способы ускорения открытия новых лекарств. Открытые эксперименты с квантовыми вычислениями Значит ли это, что скоро у вас будет квантовый компьютер? Некоторые ученые изучают возможность моделирования квантовых вычислений на настольном компьютере.

Поделись позитивом в своих соцсетях

  • В погоне за миллионом кубитов
  • В Китае создан 504-кубитный чип для квантового суперкомпьютера. На подходе 1000-кубитный
  • Квантовые вычисления для всех
  • Кульбит кубита. Новейший сверхкомпьютер может победить рак или погубить мир | Аргументы и Факты
  • Упрямый кубит
  • Российские разработки отстают на 5 лет

Похожие новости:

Оцените статью
Добавить комментарий