Теория суперсимметрии основывается на стандартной модели физики, которая включает гравитацию и объясняет существование темной материи и темной энергии.
Эксперимент на Большом адронном коллайдере опроверг современную теорию мироздания
В итоге возникла необходимость избавиться от противоречий между квантовой механикой и специальной теорией относительности, что привело к благополучному рождению квантовой электродинамики. Полагаю, примерно на этом этапе наши теории были самыми простыми. Но уже тогда физики знали о радиоактивном распаде — явлении, которое даже квантовая электродинамика объяснить не могла. Ответственность за распады возложили на новое, слабое взаимодействие, добавив его в теорию. Затем коллайдеры достигли энергий, достаточно высоких для того, чтобы нащупать сильное ядерное взаимодействие, — и на физиков обрушился «зоопарк» элементарных частиц см.
Это временное приращение сложности быстро пресекли теория сильного ядерного взаимодействия и объединение электромагнитного и слабого взаимодействий в единое электрослабое, поскольку выяснилось, что большинство из той лавины частиц составные — собраны из всего лишь двадцати четырех частиц, которые уже нельзя разложить на части. Эти двадцать четыре частицы с бозоном Хиггса, добавившимся позже, их стало в итоге двадцать пять остаются элементарными и сегодня, и Стандартная модель плюс общая теория относительности до сих пор объясняют все наблюдения. Мы несколько оживили их темной материей и темной энергией, но, поскольку у нас нет никаких данных о микроскопической структуре этих темных лошадок, в настоящее время их трудно увязать всех вместе. Объединение, однако, шло столь успешно, что физики считали логичным следующим шагом появление теории Великого объединения.
Группа содержит все преобразования, которые не изменят теорию, при условии что соблюдается симметрия. Группа симметрии круга, например, состоит из всех вращений вокруг его центра и обозначается как U 1. Пока в нашей дискуссии о симметрии мы обсудили лишь симметрии уравнений, законов природы. Однако наблюдаемое нами описывается не самими уравнениями, а их решениями.
И сам по себе факт, что уравнение обладает симметрией, совершенно не означает, что решения этого уравнения обладают той же симметрией. Представьте себе волчок, крутящийся на столе рис. Окружающая его обстановка одинакова по всем направлениям, параллельным поверхности стола, значит, уравнения движения обладают вращательной симметрией относительно любой оси, перпендикулярной столешнице. Когда волчок закручивают, его движение сопровождается уменьшением момента импульса из-за трения.
Поначалу волчок действительно подчиняется вращательной симметрии, но в конце концов он заваливается на сторону и останавливается. После этого его ось указывает уже в одном каком-то направлении. Мы говорим, что симметрия «нарушилась». Подобное спонтанное нарушение симметрии — обычное дело в фундаментальных законах природы.
Как иллюстрирует пример с волчком, будет ли система подчиняться симметрии — может зависеть от энергии системы. Волчок, пока обладает достаточной кинетической энергией, симметрии подчиняется. И только когда на трение растрачивается существенное количество энергии, симметрия нарушается. То же относится и к фундаментальным симметриям.
Энергии, с которыми мы обычно имеем дело в повседневной жизни, определяются температурой окружающей нас среды. С точки зрения физики элементарных частиц эти энергии ничтожны. При такой низкой энергии, соответствующей комнатной температуре, большинство фундаментальных симметрий нарушаются. При высоких же энергиях они способны восстанавливаться.
Значит, гравитацию можно будет включить в объединенную структуру. После этого волнительного открытия физики-теоретики приложили много усилий, чтобы осознать его последствия. Но, как это часто случается с научными исследованиями, история теории струн полна взлетов и падений. Сперва люди были озадачены тем, что она предсказывала существование частицы, которая движется быстрее света, так называемый «тахион». Это предсказание вошло в противоречие со всеми экспериментальными наблюдениями и бросило серьезную тень на теорию струн. Она предсказывает, что у каждой частицы есть свой суперпартнер и, по необычному совпадению, то же самое условие фактически устраняет тахион.
Другая необычная особенность в том, что теория струн требует существования десяти пространственно-временных измерений. В настоящее время нам известно лишь четыре: глубина, высота, ширина и время. Хотя это похоже на серьезное препятствие, предлагалось уже несколько решений, и в настоящее время это все видится скорее необычной особенностью, нежели проблемой. Например, мы могли бы существовать в четырехмерном мире без какого-либо доступа к дополнительным измерениям. Однако различные компактификации привели бы к иным значениям физических констант и иным законам физики. М-теория Оставалась еще одна проблема, которая не давала покоя теоретикам струн того времени.
Алексей Воробьев: В ходе эксперимента сталкиваются два протона больших энергий. В результате рождается много разных частиц. Среди них рождаются B-мезоны. И специфика высоких энергий такова, что их рождается достаточно много. Живут они очень мало —10-12 секунд, после тут же распадаются. М-мезон — это аналог электрона, но тяжелее его в 200 раз.
Например, для фотона — фотино, кварка — скварк, хиггса — хиггсино и так далее.
Суперпартнеры должны иметь значение спина, на полуцелое число отличающееся от значения спина у исходной частицы. Материалы по теме:.
Вы точно человек?
Рассказываем, что это такое, о какой новой силе идет речь и что стоит за новым открытием. Читайте «Хайтек» в С чего все началось? Ученые из Аргоннской национальной лаборатории Министерства энергетики США DOE и Национальной ускорительной лаборатории Ферми вместе с сотрудниками из 46 других учреждений и семи стран проводят эксперимент, чтобы проверить наше нынешнее понимание Вселенной. Первый результат указывает на существование неоткрытых частиц или сил. Эта новая физика может помочь объяснить давние научные загадки, что приведет к новому пониманию нашей Вселенной и разработке новых технологий. Представители проекта Muon g-2 «Мюон джи минус два» огласили первые результаты измерений магнитных свойств мюонов.
Проект Muon g-2 — продолжение эксперимента, который начался в 90-х годах в Брукхейвенской национальной лаборатории Министерства энергетики США, когда ученые измерили магнитное свойство фундаментальной частицы, называемой мюоном. Эксперимент в Брукхейвене дал результат, который отличался от значения, предсказанного Стандартной моделью, лучшим описанием учеными структуры и поведения Вселенной. Новый эксперимент представляет собой воссоздание эксперимента Брукхейвена, созданный для того, чтобы оспорить или подтвердить несоответствие с более высокой точностью. Недавно ученые выяснили, что в поведении мюонов есть почти неоспоримые следы «новой физики» — то есть явлений, которые не описывает основная теория физики элементарных частиц — так называемая Стандартная модель. Об этом рассказал официальный представитель проекта Крис Полли, выступая на онлайн-брифинге для журналистов.
Он критически важен для понимания того, что именно было причиной расхождения в измерениях 20-летней давности и предсказаниях Стандартной модели. Мы удвоили точность измерений и не нашли ничего, что противоречило бы прошлым результатам. Но это не все. Два разных эксперимента с мюонами в США и Европе в итоге показали неожиданные результаты. Мюоны вели себя не так, как от них ожидали, за пределами Стандартной модели.
Это может поменять представление ученых о том, как вообще все работает во Вселенной. Что такое «новая физика»? Стандартная модель — общепринятая на данный момент теоретическая конструкция, описывающая взаимодействие всех элементарных частиц во Вселенной. Свод правил, называемый Стандартной моделью, был разработан около 50 лет назад.
Физики полагают, что обнаруженные LIGO волны пространства-времени порождены слиянием не обычных, а первичных черных дыр. Такие гравитационные объекты, согласно наиболее популярной в науке стандартной космологической модели , возникали на ранних стадиях эволюции Вселенной в момент начала ее расширения. Наиболее популярным кандидатом на роль вещества, которое могло бы сформировать первичные черные дыры, выступает темная материя, представляемая суперсимметричными частицами. Ученые полагают, что такого типа симметрия существовала на ранних этапах развития Вселенной, но в процессе ее старения расширения и охлаждения она нарушилась.
Ученые искали такие цепочки превращений в данных, собранных детектором CMS. Второй вариант подразумевает не поиск новых частиц, а обнаружение «недостатка» энергии при определенных типах столкновений. Согласно положениям гипотезы суперсимметрии, за такой недостаток «ответственны» нейтралино — один из типов гипотетических суперсимметричных частиц. По итогам анализа части данных, собранных на детекторах CMS и ATLAS в течение 2010 года, ученые не обнаружили событий, которые соответствовали бы проявлениям гипотезы суперсимметрии. Однако исследователи отмечают, что пока рано полностью исключать ее — с их точки зрения, новые результаты только устанавливают более высокие энергетические пределы для проявления суперсимметрии. Зачем нужен большой адронный коллайдер Большой адронный коллайдер — ускоритель частиц, благодаря которому физики смогут проникнуть так глубоко внутрь материи, как никогда ранее. Суть работ на коллайдере заключается в изучении столкновения двух пучков протонов с суммарной энергией 14 ТэВ на один протон. Эта энергия в миллионы раз больше, чем энергия, выделяемая в единичном акте термоядерного синтеза. Кроме того, будут проводиться эксперименты с ядрами свинца, сталкивающимися при энергии 1150 ТэВ.
По итогам анализа части данных, собранных на детекторах CMS и ATLAS в течение 2010 года, ученые не обнаружили событий, которые соответствовали бы проявлениям гипотезы суперсимметрии. Однако исследователи отмечают, что пока рано полностью исключать ее — с их точки зрения, новые результаты только устанавливают более высокие энергетические пределы для проявления суперсимметрии. Зачем нужен большой адронный коллайдер Большой адронный коллайдер — ускоритель частиц, благодаря которому физики смогут проникнуть так глубоко внутрь материи, как никогда ранее. Суть работ на коллайдере заключается в изучении столкновения двух пучков протонов с суммарной энергией 14 ТэВ на один протон. Эта энергия в миллионы раз больше, чем энергия, выделяемая в единичном акте термоядерного синтеза. Кроме того, будут проводиться эксперименты с ядрами свинца, сталкивающимися при энергии 1150 ТэВ. Ускоритель БАК обеспечит новую ступень в ряду открытий частиц, которые начались столетие назад. Тогда ученые еще только обнаружили всевозможные виды таинственных лучей: рентгеновские, катодное излучение. Откуда они возникают, одинаковой ли природы их происхождение и, если да, то какова она?
Экзамены суперсимметричной модели вселенной 1978
Согласно положениям гипотезы суперсимметрии, за такой недостаток «ответственны» нейтралино — один из типов гипотетических суперсимметричных частиц. По итогам анализа части данных, собранных на детекторах CMS и ATLAS в течение 2010 года, ученые не обнаружили событий, которые соответствовали бы проявлениям гипотезы суперсимметрии. Однако исследователи отмечают, что пока рано полностью исключать ее — с их точки зрения, новые результаты только устанавливают более высокие энергетические пределы для проявления суперсимметрии. Зачем нужен большой адронный коллайдер Большой адронный коллайдер — ускоритель частиц, благодаря которому физики смогут проникнуть так глубоко внутрь материи, как никогда ранее. Суть работ на коллайдере заключается в изучении столкновения двух пучков протонов с суммарной энергией 14 ТэВ на один протон. Эта энергия в миллионы раз больше, чем энергия, выделяемая в единичном акте термоядерного синтеза. Кроме того, будут проводиться эксперименты с ядрами свинца, сталкивающимися при энергии 1150 ТэВ. Ускоритель БАК обеспечит новую ступень в ряду открытий частиц, которые начались столетие назад.
Тогда ученые еще только обнаружили всевозможные виды таинственных лучей: рентгеновские, катодное излучение.
В "нашем" мире точно нет суперсимметрии. И темная материя с темной энергией, а также с виртуальными частицами никак в этот "однобокий" мир не вписываются. Главное понять, что есть реальный физический мир. Но сразу надо определиться с так называемой темной энергией.
Её просто надо выбросить в корзину как выдуманную мифическую сущность для объяснения несуществующего всемирного вздутия Вселенной. И к вопросу суперсимметрии темная энергия вообще не имеет никакого отношения, в отличие от темной материи, которая гравитационно детерминируется, но больше никаких взаимодействий с барионной материей не имеет. Я не намерен тут приводить ни нобелевскую лекцию П. Суть СРТ-теоремы в том, что в рамках квантовой теории поля Людерсом и Паули была доказана фундаментальная теорема о том, что "Квантовые системы инвариантны относительно СРТ- преобразования в любой последовательности. Максаков Александр Николаевич Материя это и есть энергия, эта энергия меняет состояние материи, вид, распад квантовый это выделение энергии.
Может нам стоит исследовать эту энергию, св-ва её а не св-ва полученной материи! Что мы знаем о энергия?
Она предсказывает существование частиц, из которых может состоять «тёмная материя», невидимая субстанция, пронизывающая окраины галактик. Она объединяет три фундаментальных взаимодействия при высоких энергиях. И, самое большое преимущество,- она решает загадку физики под названием «проблема калибровочной иерархии». Загадка связана с несоразмерностью гравитации и слабым ядерным взаимодействием, которое в 100 миллионов триллионов триллионов 1032 раз сильнее, и действует на гораздо меньших масштабах, управляя взаимодействием внутри атомного ядра. Частицы, переносящие слабое взаимодействие, W и Z-бозоны, получают массу из хиггсовского поля, поля энергии, пропитывающего пространство. Но непонятно, почему энергия поля Хиггса, и соответственно массы W и Z-бозонов, такие небольшие. Поскольку другие частицы связаны с полем Хиггса, их энергии должны влиться в него в момент квантовых флюктуаций. Это должно сильно поднять энергию хиггсовского поля, делая W и Z-бозоны более массивными и приводя к тому, что слабое взаимодействие ослабеет до уровня гравитации.
Суперсимметрия решает проблему иерархии, предполагая наличие суперпартнёра-близнеца для каждой элементарной частицы. Согласно теории, у фермионов, из которых состоит материя, есть суперпартнёры-бозоны, переносящие взаимодействия, а у существующих бозонов есть суперпартнёры-фермионы. Поскольку типы частиц и их суперпартнёров противоположны, вклады их энергии в хиггсовское поле обладают противоположными знаками — один его увеличивает, второй уменьшает. Вклады пар взаимоуничтожаются, и никаких катастроф не происходит. А в качестве бонуса один из неоткрытых суперпартнёров может быть составной частью тёмной материи.
Наука Большой адронный коллайдер очень скоро снова заработает с удвоенной скоростью. Физики полагают, что столкновения частиц на околосветовых скоростях помогут раскрыть целый набор новых частиц, открывающих изнанку физики: суперсимметрию. В прошлый раз мы немного затронули эту тему , пришло время обсудить, что это за суперсимметрия и зачем она нам. На данный момент главенствующей теорией физики элементарных частиц является Стандартная модель. Она отлично объясняет, как взаимодействуют основные строительные блоки материи, создавая Вселенную, которую мы видим вокруг. Стандартная модель — лучшее описание, которое у нас есть, но оно далеко от совершенства. Неполная теория Стандартная модель образовалась в 1970-х годах. Это набор уравнений, который описывает, как все известные элементарные частицы взаимодействуют с четырьмя фундаментальными силами: сильным и слабым взаимодействием, электромагнетизмом и гравитацией. Стандартная модель отлично связывает первые три из этих четырех фундаментальных сил, но не касается гравитации. Гравитация настолько слабая сила, что даже игрушечный магнит может ее побороть. Остальные три силы намного сильнее. Гравитация имеет крайне важное значение для физики, и ее поведение описывает общая теория относительности Эйнштейна. Стандартная модель также не может объяснить присутствие таинственного вещества под названием темная материя, которое удерживает галактики вместе. И не может объяснить, почему во Вселенной намного больше материи, чем антиматерии, хотя должно быть равное количество. Суперсимметрия — это расширение Стандартной модели, которое могло бы помочь заполнить некоторые из этих недостатков. Она прогнозирует, что каждая частица в Стандартной модели может обладать пока не обнаруженным партнером.
[Перевод] Суперсимметрия не подтверждается экспериментами, и физики ищут новые идеи
Теория суперсимметрии основывается на стандартной модели физики, которая включает гравитацию и объясняет существование темной материи и темной энергии. Теория суперсимметрии предполагает, что физические законы должны оставаться неизменными при перестановке бозонных и фермионных частиц. С ней должна уйти на покой теория расширения пространства, из которой происходят теории тёмной материи и энергии. К примеру, ученым очень хотелось, но не удалось найти подтверждения суперсимметрии — теории о том, что у каждой элементарной частицы есть гораздо более тяжелый «суперпартнер». Теория Суперсимметрии имеет дело с Суперпространством, в котором трехмерие дополняется принципиально ненаблюдаемыми измерениями. Причём из теории суперсимметрии следует существование новых частиц — аналогов уже известных элементарных частиц.
Откройте свой Мир!
активно развивающейся области теоретической физики, которая вполне может оказаться в центре будущего развития физики. Абстрактное преобразование суперсимметрии связывает бозонное и фермионное квантовые поля, так что они могут превращаться друг в друга. Теория струн предсказывает, что между этими двумя частицами существует связь, называемая суперсимметрией, при которой для каждого фермиона должен существовать бозон, и наоборот. На днях теория суперсимметрии получила еще один удар от большого адронного коллайдера (бак.
СУПЕРСИММЕ́ТРИ́Я
особенностями обладают различные элементарные частицы? Когда была была предложена теория, предполагающая связь. Однако Тара Шиарс отказалась полностью отвергнуть теорию суперсимметрии и заметила, что не нашли подтверждения выводы ее упрощенной версии, а не более сложного варианта. Немногим более сорока лет назад появилась суперсимметрия – теория, в которой каждому существующему фермиону в пару полагается бозон, и наоборот. Причём из теории суперсимметрии следует существование новых частиц — аналогов уже известных элементарных частиц. Суперсимметрия важна для теории струн, но наличие суперсимметрии в природе само по себе не означает, что последняя — правильная физическая теория.
Неполная теория
- Теория суперсимметрии под угрозой
- СУПЕРСИММЕТРИЯ. Достучаться до небес [Научный взгляд на устройство Вселенной]
- Суперсимметрия под вопросом
- Суперсимметрия не подтверждается экспериментами, и физики ищут новые идеи
- Вы точно человек?
- Доказательство суперсимметрии полностью изменит наше понимание Вселенной
«Вселенная удваивается»
Можно сказать, что если бы не было тёмной материи, то наш мир был бы совершенно иным. Например, если тёмную материю «отключить», то гравитационная масса всех объектов во Вселенной окажется намного меньше, поэтому звёзды и планеты просто разлетятся в разные стороны, а галактики исчезнут. Например, плотность тёмной материи значительно выше в центрах галактик, чем в среднем по Вселенной. В то же время наблюдаются галактики, где почти отсутствует тёмная материя или, наоборот, почти полностью состоящие из неё. При этом считается, что тёмная энергия распределена достаточно равномерно. Как они связаны и что это вообще такое? Тёмная энергия — это, по сути, величина, которая была введена Эйнштейном в своё время для объяснения стационарной модели Вселенной. Необходимость в этой переменной, казалось бы, отпала, когда Александр Фридман представил модель нестационарной Вселенной, и позже было экспериментально установлено, что Вселенная расширяется. Однако впоследствии выяснилось, что Вселенная не просто расширяется, а делает это с ускорением — это означает, что всё же существует некая дополнительная сила, о свойствах и природе которой мы пока ничего не знаем.
Пока что есть только гипотезы, объясняющие, что это такое: например, что это некая энергия вакуума, отрицательное давление, которое и приводит к расширению Вселенной. Здесь можно вспомнить о существовании эффекта Казимира — экспериментально подтверждённого эффекта, где незаряженные тела притягиваются друг к другу в вакууме в результате энергетических колебаний физического вакуума. Хотя этот эффект не связан с тёмной энергией и объясняется в рамках современных научных теорий, он показывает, что вакуум не является абсолютной пустотой. Думаю, что, когда мы лучше узнаем природу тёмной материи, мы многое узнаем и о тёмной энергии. Может ли у этого открытия быть какое-то практическое применение — например, в космонавтике? Первые наблюдения за природными явлениями делали ещё в Древней Греции. Потом был период «Тёмных веков», когда развитие науки в Европе застопорилось, но затем появились такие учёные, как Галилей, Браге, Кеплер... На основе их работ свои открытия сделали Ньютон, Эйнштейн...
Сейчас мы пожинаем плоды научных исследований, основы которых были заложены сотни и тысячи лет назад. Возвращаясь к вопросу о тёмной материи, могу сказать, что путь тоже будет долгим — сначала будут развиваться технологии для её регистрации, становиться всё более точными.
Расчеты обещают быть простыми благодаря равному числу победителей и проигравших — по 20. Издание отмечает, что на мероприятии присутствовал знаменитый британский физик Стивен Хокинг, который в свое время воздержался от участия пари.
Эта энергия в миллионы раз больше, чем энергия, выделяемая в единичном акте термоядерного синтеза. Кроме того, будут проводиться эксперименты с ядрами свинца, сталкивающимися при энергии 1150 ТэВ.
Ускоритель БАК обеспечит новую ступень в ряду открытий частиц, которые начались столетие назад. Тогда ученые еще только обнаружили всевозможные виды таинственных лучей: рентгеновские, катодное излучение. Откуда они возникают, одинаковой ли природы их происхождение и, если да, то какова она?
Сегодня мы имеем ответы на вопросы, позволяющие гораздо лучше понять происхождение Вселенной. Однако в самом начале XXI века перед нами стоят новые вопросы, ответы на которые ученые надеются получить с помощью ускорителя БАК. И кто знает, развитие каких новых областей человеческих знаний повлекут за собой предстоящие исследования.
А пока же наши знания о Вселенной недостаточны.
Словарик к статье Адроны от греч. Киральная симметрия от греч. Это глобальная симметрия — она не зависит от координат пространства-времени.
Киральная симметрия скомбинирована из двух различных симметрий, одна из которых — симметрия взаимодействия адронов относительно преобразований в группе частиц с очень похожими свойствами в так называемом изотопическом пространстве , другая — так называемая внутренняя чётность, которая характеризует поведение волновой функции частицы при инверсии пространственных координат. Нарушение киральной симметрии приводит к появлению связанных фермионов, подобно куперовским парам в сверхпроводниках. Когерентность — согласованное протекание во времени и в пространстве нескольких колебательных или волновых процессов. Мезоны от греч.
Существует множество мезонов с самой разной массой, временем жизни, квантовыми характеристиками, заряженных и нейтральных. Все мезоны состоят из кварка и антикварка. Фермионы — частицы, подчиняющиеся принципу Паули: два фермиона не могут одновременно находиться в одном квантовом состоянии. К фермионам относятся нуклоны, нейтрино, кварки и другие частицы с полуцелым спином.
Названы в честь Э. Ферми, который одновременно с П. Дираком исследовал их свойства. Бозоны — частицы с нулевым или целым спином.
В отличие от фермионов в одном квантовом состоянии может находиться любое количество бозонов. Названы в честь Д. Бозе и А. Эйнштейна, рассмотревших их свойства.
Кварки — по современным представлениям, шесть «истинно элементарных», то есть бесструктурных частиц, из которых состоят адроны. Глюоны от англ. В отличие от нейтральных фотонов — переносчиков электромагнитного взаимодействия — глюоны несут цветовой заряд и поэтому непосредственно взаимодействуют между собой. Барионы от греч.
Барионы участвуют во всех фундаментальных взаимодействиях — сильном, слабом, электромагнитном и гравитационном. Барионный заряд — внутренняя характеристика частиц, равная 1 у барионов, —1 у антибарионов и 0 у всех остальных частиц. Читайте в любое время о — они всегда рождаются парами. Эти сравнительно долгоживущие частицы успевают пролететь почти 0,5 мм, прежде чем распасться на более лёгкие частицы.
Очевидно, что эти реакции получаются одна из другой посредством СР-преобразования. Поэтому СР-симметрия требует того, чтобы число тех и других было одинаково. Но оказалось, что первый распад происходит примерно на 10 процентов чаще. Источник Доказательство суперсимметрии полностью изменит наше понимание Вселенной Большой адронный коллайдер очень скоро снова заработает с удвоенной скоростью.
Физики полагают, что столкновения частиц на околосветовых скоростях помогут раскрыть целый набор новых частиц, открывающих изнанку физики: суперсимметрию. В прошлый раз мы немного затронули эту тему, пришло время обсудить, что это за суперсимметрия и зачем она нам. На данный момент главенствующей теорией физики элементарных частиц является Стандартная модель. Она отлично объясняет, как взаимодействуют основные строительные блоки материи, создавая Вселенную, которую мы видим вокруг.
Стандартная модель — лучшее описание, которое у нас есть, но оно далеко от совершенства. Неполная теория Стандартная модель образовалась в 1970-х годах. Это набор уравнений, который описывает, как все известные элементарные частицы взаимодействуют с четырьмя фундаментальными силами: сильным и слабым взаимодействием, электромагнетизмом и гравитацией.
Читайте также
- Неполная теория
- Экзамены суперсимметричной модели вселенной 1978 - Помощь в подготовке к экзаменам и поступлению
- Комментарии:
- Содержание
- Физики в Копенгагене подвели итоги 15-летнего пари о теории суперсимметрии – Новости науки