Новости теория струн кратко и понятно

Теория струн — это теория о том, что фундаментальными составляющими Вселенной являются одномерные "струны", а не точечные частицы (как это принято наукой). Та материя, сутью которой являются струны, составляет только 5% массы Вселенной — ее видимая часть. Сравнительно недавно появился подход, дающий возможность разрешить это противоречие — теория струн.

Теория струн. Что это?

«Что такое теория струн простыми словами (насколько это возможно)?» — Яндекс Кью Стало отчетливо понятно, что эта программа на самом деле является отнюдь не содержанием теории струн, а только еще одной областью ее приложения.
Современное состояние теории струн Что такое теория струн, какие пять основных элементов в нее входят, является ли она теорией всего, какие у нее недостатки в статье на
Популярно о теории струн Теория струн кратко и понятно.
Теория струн. Теория всего / Интересное / Статьи / Еще / Обо всем О чем теория струн? Самое простое и понятное объяснение.
Теория струн для чайников Главное преимущество теории струн является ее способность объединить общую теорию относительности Эйнштейна и квантовую механику.

В чем смысл теории струн?

  • Теория струн в математической физике: кратко и простыми словами
  • Космический эксперимент поставил под сомнение теорию струн
  • Теория струн, или Теория всего
  • Космический эксперимент поставил под сомнение теорию струн
  • Из Википедии — свободной энциклопедии

Обнаружено новое доказательство теории струн

Теория струн действительно решила множество вопросов , которые возникали у исследователей того времени, ведь раньше даже было непонятно, почему частицы столько весят а у некоторых из них масса вообще отсутствует. Плюс существует стандартная модель, основы которой, теория квантового поля про взаимодействие между частицами и общая теория относительности объясняющая гравитацию , никак не могли подружиться между собой. И тут теория струн очень сильно пригодилась, связала все между собой, а через десятки лет ее постигла участь предшественников. Со временем для объяснения некоторых задач современной физики уже пришлось создать теорию суперструн, в которой были такие загадочные вещи, как десятки измерений или симметричные частицы даже не спрашивайте.

Это означает, что как минимум часть материи, попавшей в черную дыру, попадает наружу в виде излучения. Свое открытие Хокинг сделал, добавив в теорию относительности немного квантовой механики. Он не объединил эти теории полностью, но объединил их в достаточной мере, чтобы делать конкретные космологические предсказания, которые позволяли кое-что в этой самой космологии объяснить. В 1997 году Хокинг уже на пару с Кипом Торном заключил пари на полное издание Британской энциклопедии с Джоном Прескиллом, профессором Калифорнийского технологического института и директором Института квантовой информации. Прескилл утверждал, что информация в черной дыре не исчезает — просто мы не в состоянии расшифровать то, что дыра излучает.

В августе 2004 года на Международной конференции по общей теории относительности и космологии в Дублине Хокинг признал правоту Прескилла и предложил примерный механизм излучения информации правда, не принятый до конца научным сообществом. Как бы то ни было, возник вопрос. Квантовая механика требует, чтобы информация сохранялась. Это означает, что излучение дыры должно нести информацию о том, что в нее попало. Однако расчеты Хокинга показали, что излучение дыры имеет тепловой спектр. Это означает, что дыра излучает как абсолютно черное тело определенной температуры — в частности, это излучение не несет никакой информации о том, что в эту самую дыру упало. Возникает проблема исчезновения информации в черной дыре, которую сам Хокинг считал вовсе не проблемой, а просто законом природы. Мол, так устроена жизнь и информацию можно уничтожить.

Потом пришла теория струн. И только совсем недавно, летом 2012 года, когда физики стали разбираться в тонкостях того, что происходит с информацией в черной дыре, как она «вырывается» наружу, они обнаружили, что три факта о черных дырах, которые до последнего времени считались верными, на самом деле противоречат друг другу. Речь идет о представлении горизонта событий черной дыры как гладкого региона пространства, в окрестностях которого ничего особенного, вообще говоря, не происходит; представлении о том, что квантовая механика унитарна то есть, в частности, требует сохранения информации , а также о том, что при достаточно низких энергиях на достаточном удалении от самой дыры применимы методы квантовой теории поля. Как разрешить это противоречие, пока никто не знает. Это, кстати, заставляет уже многих ученых ставить под сомнение саму теорию струн. Например, тот же Леонард Зюскинд, которого я упоминал выше, в связи с этим парадоксом выдвинул гипотезу, что, мол, теория струн в современном понимании, возможно, не полностью квантует гравитацию. А мы в это верили многие десятилетия. И это здорово, это именно то, что нужно — пусть не реальные эксперименты, а теоретические, но они заставляют ученых пересматривать теорию.

Это чем-то напоминает зеркальную симметрию, о которой мы говорили раньше, только это соответствие более кардинальное. Дело в том, что на первый взгляд между этими теориями нет вообще ничего общего, ничего, что даже отдаленно могло бы их связывать. Но дело даже не в том, что две такие разные теории оказываются одним и тем же. Ее просто нет в уравнениях. А раз нет гравитации, то, значит, нет и проблем с унитарностью — ведь они появляются только в присутствии гравитации. Из этого, например, можно с уверенностью заключить, что всякая квантовая теория гравитации должна быть унитарной. Я даже больше скажу — в ту половину двойственности, которая с гравитацией, можно вписать черную дыру. Но при переходе к суперсимметричной части двойственности черная дыра превращается просто в нагретое скопление частиц.

Такой объект, конечно, унитарен. Значит, и черные дыры в теории струн должны быть унитарны и никакая информация никуда не девается. Кроме таких вот теоретических построений эта двойственность где-нибудь еще используется? Да, конечно. Оказалось, например, что если вам нужно работать с кварк-глюонной плазмой этим, в частности, занимаются физики на Релятивистском коллайдере тяжелых ионов в Нью-Йорке , стандартные методы теории поля не очень помогают — математика оказывается очень сложной. А в теории струн математика, как ни странно, оказывается проще. То есть эта двойственность помогает при помощи теории струн узнать что-то о частицах. Тут, правда, надо сделать замечание.

Но она в некотором смысле близка к действительности — эта близость объясняется высокими температурами. И эта близость позволяет получать результаты, которые остаются верны и на самом деле. В заметке в Quanta Magazine утверждалось, что физикам удалось обнаружить связанный с ней замечательный объект... О, вы говорите про амплитуэдр! Да, про него. Амплитуэдр глазами художника Это очень интересный и важный результат. Дело в том, что может так случиться, что традиционные методы вычислений в квантовой теории поля, разработанные еще самим Ричардом Фейнманом, не оптимальны. Точнее, даже совсем не оптимальны — вычисления можно делать легче и быстрее.

В частности, это может объяснить, почему эти самые вычисления такие сложные — редко когда удается посчитать что-то с точностью выше второго-третьего порядков. Авторы работы про амплитуэдр, по сути, пытаются свести расчеты к вычислению объема некоторой очень сложной, красивой, многомерной фигуры. Как вычислить объем такой фигуры? Нужно поместить ее в подходящую многомерную воду и посмотреть на объем, который она вытолкнет. Но если я разобью эту фигуру на миллион кусков, то измерить тот же объем в миллион раз сложнее — нужно померить объем каждого куска и сложить их. Диаграмма Фейнмана Вполне может оказаться, что диаграммы Фейнмана — это и есть разбиение амплитуэдра на куски и последовательное измерение объема каждого из них. А физики под руководством профессора физики Института перспективных исследований в Принстоне Нима Аркани-Хамеда просто хотят вычислить все вещи скопом. В заключение не могу не спросить вас о вашей книге и мультимедийном спектакле «Икар на краю времени».

Моя книжка, на основе которой поставлен спектакль, — для детей и немного для родителей. Это довольно сильно отличается от того, что я делал раньше. Это переосмысление древнегреческого мифа об Икаре — мальчике, который вопреки предостережениям своего отца подлетел слишком близко к Солнцу. Его крылья, как мы помним, сделанные из перьев и воска, растаяли как отец и говорил , он упал и разбился. В моей книжке у мальчика нет крыльев из воска — у него космический корабль. И летит он не к Солнцу, а к черной дыре. Он не гибнет, но из-за эффекта замедления времени после возвращения выясняет, что с момента старта прошло 10 тысяч лет. На написание этой книжки меня подтолкнуло вот что.

Сам миф об Икаре мне никогда не нравился. Что, по сути, говорит этот миф? Делай то, что тебе говорят старшие, иначе умрешь. Сцена из спектакля «Икар на краю земли» Фото: polymus. Вот, например, «Чарли и шоколадная фабрика» утверждает, что ты не просто умрешь, а умрешь довольно неприятной смертью Надо понимать, что весь этот социальный контроль, весь посыл этой легенды в точности противоположен тому, что должен делать настоящий ученый.

Считается, что после этого больше ничего нет. Однако согласно теории струн, внутри этих кварков существуют тончайшие вибрирующие струны. Эта недоказанная теория в физике элементарных частиц объединяет квантовую механику и общую теорию относительности Эйнштейна. Некоторые физики считают, что при объединении квантовой физики и гравитации в одну именно у этой теории больше всего шансов стать "теорией всего" гипотетический фундамент, который объясняет абсолютно все физические явления.

Однако есть и другие учёные, которые думают, что она является почти псевдонаукой, поскольку её практически невозможно проверить экспериментальным путём. Теория суперструн Теория суперструн — это сокращение от "суперсимметричная теория струн"; это ещё одна версия теории струн, которая для моделирования гравитации: учитывает фермионы частица с полуцелым значением спина , учитывает бозоны частица с целым значением спина , включает суперсимметрию связь между фермионами и бозонами. Теория струн — это общее название всей области. Главное теоретическое отличие между теорией струн и теорией суперструн заключается в существовании суперсимметрии.

И усилия их не прошли даром: ученые сумели устранить некоторые противоречия теории. Каково же было изумление этих двоих, уже привыкших к тому, что их теорию пропускают мимо ушей, когда реакция ученого сообщества взорвала научный мир. Меньше чем за год число струнных теоретиков подпрыгнуло до сотен человек. Именно тогда теорию струн наградили титулом теории всего.

Новая теория, казалось, способна описать все составляющие мироздания. И вот эти составляющие. Каждый атом, как известно, состоит из еще меньших частиц - электронов, которые кружатся вокруг ядра, состоящего из протонов и нейтронов. Протоны и нейтроны, в свою очередь, состоят из еще меньших частиц - кварков. Но теория струн утверждает, что на кварках дело не заканчивается. Кварки состоят из крошечных извивающихся нитей энергии, которые напоминают струны. Каждая из таких струн невообразимо мала. Мала настолько, что если бы атом был увеличен до размеров солнечной системы, струна была бы размером с дерево.

Так же, как различные колебания струны виолончели создают то, что мы слышим, как разные музыкальные ноты, различные способы моды вибрации струны придают частицам их уникальные свойства - массу, заряд и прочее. Знаете, чем, условно говоря, отличаются протоны в кончике вашего ногтя от пока не открытого гравитона? Только набором крошечных струн, которые их составляют, и тем, как эти струны колеблются. Конечно, все это более чем удивительно. Еще со времен древней Греции физики привыкли к тому, что все в этом мире состоит из чего-то вроде шаров, крошечных частиц. И вот, не успев привыкнуть к алогичному поведению этих шаров, вытекающему из квантовой механики, им предлагается вовсе оставить парадигму и оперировать какими-то обрезками спагетти. Как устроен мир. Науке сегодня известен набор чисел, которые являются фундаментальными постоянными вселенной.

Именно они свойства и характеристики всего вокруг нас определяют. Среди таких констант, например, заряд электрона, гравитационная постоянная, скорость света в вакууме. И если мы изменим эти числа даже в незначительное число раз - последствия будут катастрофическими. Предположим, мы увеличили силу электромагнитного взаимодействия. Что же произошло? Мы можем вдруг обнаружить, что ионы стали сильнее отталкиваться друг от друга, и термоядерный синтез, который заставляет звезды светить и излучать тепло, вдруг дал сбой. Все звезды погаснут. Но причем здесь теория струн с ее дополнительными измерениями?

Дело в том, что, согласно ей, именно дополнительные измерения определяют точное значение фундаментальных констант. Одни формы измерений заставляют одну струну вибрировать определенным образом, и порождают то, что мы видим, как фотон. В других формах струны вибрируют по-другому, и порождают электрон. Воистину бог кроется в "Мелочах" - именно эти крошечные формы определяют все основополагающие константы этого мира. Теория суперструн. В середине 1980-х годов теория струн приобрела величественный и стройный вид, но внутри этого монумента царила путаница. Всего за несколько лет возникло целых пять версий теории струн. И хотя каждая из них построена на струнах и дополнительных измерениях все пять версий объединены в общую теорию суперструн - NS , в деталях эти версии расходились значительно.

Так, в одних версиях струны имели открытые концы, в других - напоминали кольца. А в некоторых вариантах теория даже требовала не 10, а целых 26 измерений. Парадокс в том, что все пять версий на сегодняшний день можно назвать одинаково верными. Но какая из них действительно описывает нашу вселенную? Это очередная загадка теории струн. Именно поэтому многие физики снова рукой на "Сумасбродную" теорию махнули. Но самая главная проблема струн, как уже было сказано, в невозможности по крайней мере, пока доказать их наличие экспериментальным путем. Некоторые ученые, однако, все же поговаривают, что на следующем поколении ускорителей есть очень минимальная, но все же возможность проверить гипотезу о дополнительных измерениях.

Хотя большинство, конечно, уверено, что если это и возможно, то произойти это, увы, должно еще очень нескоро - как минимум через десятилетия, как максимум - даже через сотню лет. Теория семи струн кратко и понятно. Объяснение материи и массы Одна из основных задач современных исследований — поиск решения для реальных частиц. Теория струн начиналась как концепция, описывающая такие частицы, как адроны, различными высшими колебательными состояниями струны. В большинстве современных формулировок, материя, наблюдаемая в нашей вселенной, является результатом колебаний струн и бран с наименьшей энергией. Вибрации с большей порождают высокоэнергичные частицы, которые в настоящее время в нашем мире не существуют. Масса этих элементарных частиц является проявлением того, как струны и браны завернуты в компактифицированных дополнительных измерениях. Например, в упрощенном случае, когда они свернуты в форме бублика, называемом математиками и физиками тором, струна может обернуть эту форму двумя способами: короткая петля через середину тора; длинная петля вокруг всей внешней окружности тора.

Короткая петля будет легкой частицей, а большая — тяжелой. При оборачивании струн вокруг торообразных компактифицированных измерений образуются новые элементы с различными массами. Теория суперструн кратко и понятно, просто и элегантно объясняет переход длины в массу. Свернутые измерения здесь гораздо сложнее тора, но в принципе они работают также. Возможно даже, хотя это трудно представить, что струна оборачивает тор в двух направлениях одновременно, результатом чего будет другая частица с другой массой.

Мы заколебались: объясняем простым языком теорию струн

Оказалось, что при представлении элементарных частиц маленькими колеблющимися одномерными струнами идет сильное взаимодействие этих частиц, что в точности описывается с помощью функции Эйлера. Исследователи предположили, что раз отрезки струн являются достаточно малыми, то они смогут выглядеть точечными частицами, и не будут противоречить результатам экспериментальных наблюдений. Однако через короткое время и эти предположения не смогли полностью объяснить всех происходящих процессов, поскольку выяснились дополнительные несостыковки. Эта формула нуждалась в дополнительном объяснении. Через некоторое время даже пришлось забыть о перспективной теории струн, так как возникали новые предпосылки в квантовой хромодинамики.

В ней использовалась точечная модель частиц. Позже часть ученых не смогла полностью отказаться от теории струн, и были найдены отдельные конфигурации колеблющихся струн. Они напоминали свойства глюонов. Это давало возможность предположить, что существует теория сильного взаимодействия.

В 70-е годы прошлого века европейские ученые смогли сделать громкое предположение, что превращало недостаток и пробел в квантовой теории струн в достоинство. Они изучили странные моды колебаний струн, которые напоминали частицы-переносчики.

То есть не во всех экспериментах элементарные частицы похожи на какие-то маленькие шарики. Например, при достаточно высоких энергиях они иногда ведут себя, как волны.

Кроме того, исследователи поняли, что их длина связана с переносимой ими энергией: чем выше энергия, тем короче длина волны. Частицы действительно выглядят как струны? Заряженные частицы получают в ускорителе частиц. Чем больше становится энергия частиц при столкновении в нем, тем значительнее уменьшаются расстояния, которые мы можем на нем «прощупать».

На ускорителях физики и проверяют свои умозрительные заключения. Теория струн предсказывает, что если провести эксперимент при еще более высоких энергиях намного больше, чем те огромные энергии, что реализуются на современных коллайдерах , то каждая элементарная частица будет вести себя как двумерная вселенная, которая в заданный момент времени похожа на струну или очень тонкую резинку. И только с больших расстояний такая струна выглядит, как точка. Индустрия 4.

Но разные состояния теории отвечают разным типам элементарных частиц. Ситуация аналогична той, что возникает в случае с гитарной струной: если ее дернуть, возникнет стоячая волна. Тогда первая мода когда между зажимами умещается одна полуволна может отвечать, например, фотону.

Есиро Намбу развил эту идею и описал ядерные силы как вибрационные одномерные струны; 1974—1994 гг. Открытие суперструн, во многом благодаря работам российского ученого Александра Полякова; 1994—2003 гг.

Появление М-теории, допустила большее, чем 11, количество измерений; 2003 — н. Майкл Дуглас разработал ландшафтную теорию струн с понятием ложного вакуума. Теория квантовых струн Ключевыми объектами в новой научной парадигме являются тончайшие объекты, которые своими колебательными движениями сообщают массу и заряд всякой элементарной частице. Основные свойства струн согласно современным представлениям: Длина их чрезвычайно мала — около 10-35 метров. В подобном масштабе становятся различимы квантовые взаимодействия; Однако в обыкновенных лабораторных условиях, которые не имеют дела с такими мелкими объектами, струна абсолютно неотличима от безразмерного точечного объекта; Важной характеристикой струнного объекта является ориентация.

Струны, обладающие ей, имеют пару с противоположным направлением. Существуют также неориентированные экземпляры. Струны могут существовать как в виде отрезка, ограниченного с обоих концов, так и в виде замкнутой петли.

Теория струн в настоящее время стала самой противоречивой концепцией в физике, целью которой является объединение двух столпов физики 20-го века: теории относительности Эйнштейна и квантовой механики. Проще говоря, это всеобъемлющая структура, которая может объяснить всю физическую реальность если она доказана. Основная идея теории струн Выбери что-нибудь вокруг себя. Допустим, вы взяли яблоко со стола.

Из чего сделано яблоко? Ну, чтобы ответить на этот вопрос, вам нужно заглянуть в него. Если вы продолжите увеличивать его, рано или поздно вы начнете видеть молекулы. Но это не конец истории, если вы еще больше увеличите их и сделаете их достаточно большими, вы начнете видеть атомы. Атомы не являются концом истории, потому что, если вы увеличите масштаб, вы увидите электроны и ядра. Ядро само состоит из протонов и нейтронов. Если вы возьмете одну из этих частиц скажем, нейтрон и увеличите ее, вы найдете еще больше крошечных частиц внутри, называемых кварками.

Теперь это то, где традиционная идея останавливается и теория струн приходит, предполагая, что внутри этих крошечных частиц есть что-то еще. Обычная идея гласит, что внутри кварков нет ничего, но теория струн гласит, что вы найдете крошечную нитку, похожую на струну. Они похожи на струну на скрипке: когда вы отрываете струну, она вибрирует и создает небольшую музыкальную ноту. Иллюстрация струны Однако крошечные струны в теории струн не дают музыкальных нот. Вместо этого, когда они вибрируют, они сами производят частицы. Каждый тип вибрации соответствует различным частицам. Следовательно, кварк - это не что иное, как струна, вибрирующая по одной схеме, а электрон - это не что иное, как струна, вибрирующая по другой схеме.

Так что, если вы соберете все эти частицы обратно вместе, яблоко будет не чем иным, как связкой вибраций в струнах. Если теория струн верна она все еще не доказана , все вещи во вселенной - не что иное, как танцующая вибрирующая космическая симфония струн. Дополнительное измерение На данный момент теория струн является простой идеей.

Квантовые поля

  • Что такое теория струн
  • Что такое теория струн? Простой обзор
  • Где почитать о теории струн?
  • Особенности Теории струн
  • Теория струн кратко и понятно. Теория струн для чайников.
  • Читайте также

Теория струн. Теория всего

Струна принципиально не может иметь размер меньше планковской длины. В теории точечных частиц физики привыкли, что чем больше энергия частицы, тем в меньшей области пространства частица может быть локализована. Совсем иное дело со струнами: дополнительная энергия приводит не к уменьшению, а к увеличению размера струны. Поэтому расстояние, которое меньше планковской длины, принципиально недостижимо.

Струны бывают открытыми и замкнутыми. И те и другие имеют определённые устойчивые формы колебаний — моды. Механическая аналогия: зажимая по-разному скрипичные струны, можно извлекать самые разные звуки.

Каждая колебательная мода струны соответствует той или иной частице и обеспечивает ей все наблюдаемые характеристики: массу, спин, заряд и прочее.

Исследователи предположили, что раз отрезки струн являются достаточно малыми, то они смогут выглядеть точечными частицами, и не будут противоречить результатам экспериментальных наблюдений. Однако через короткое время и эти предположения не смогли полностью объяснить всех происходящих процессов, поскольку выяснились дополнительные несостыковки. Эта формула нуждалась в дополнительном объяснении.

Через некоторое время даже пришлось забыть о перспективной теории струн, так как возникали новые предпосылки в квантовой хромодинамики. В ней использовалась точечная модель частиц. Позже часть ученых не смогла полностью отказаться от теории струн, и были найдены отдельные конфигурации колеблющихся струн. Они напоминали свойства глюонов.

Это давало возможность предположить, что существует теория сильного взаимодействия. В 70-е годы прошлого века европейские ученые смогли сделать громкое предположение, что превращало недостаток и пробел в квантовой теории струн в достоинство. Они изучили странные моды колебаний струн, которые напоминали частицы-переносчики. Свойства точным образом совпадали с предполагаемыми свойствами гипотетической частицы-переносчика гравитационного взаимодействия.

Она представляет собой постановление о том, что все микрочастицы не шарообразной формы, а формы вытянутых струн, которые пронизывают всю нашу вселенную. Такие величины как масса, скорость частиц и прочее устанавливаются колебаниями этих струн. Каждая такая струна по теории находится в многообразии Калаби-Яу. Эти многообразия представляют собой очень искривленное пространство. По теории многообразия ничем не соединены в пространстве и находятся маленькими клубочками по отдельности. Теория струн буквально стирает четкие границы у процесса соединения двух микрочастиц. Когда микрочастицы представлены шарами, то мы четко можем отследить границу в пространстве-времени, когда они соединяются.

Однако, если соединяются две струны, то место их «склеивания» можно рассмотреть под разными углами. А под разными углами мы получим совершенно разные результаты границы их соединения, то есть точного понятия такой границы просто нет! На первом этапе изучения теория струн, рассказанная даже простыми словами кажется загадочной, странной и даже просто вымышленной, но за нее говорят не голословные слова, а исследования, которые по многим уравнениям и параметрам подтверждают вероятность существования частиц-струн. И, напоследок, еще одно видео, объясняющее теорию струн простым языком от интернет — журнала QWRT.

Если теория струн верна она все еще не доказана , все вещи во вселенной - не что иное, как танцующая вибрирующая космическая симфония струн. Дополнительное измерение На данный момент теория струн является простой идеей. Нет прямых экспериментальных доказательств того, что это правильное описание природы. Теория струн требует от нас принять существование дополнительного измерения во вселенной.

Суперсимметрия Во Вселенной существует два основных класса элементарных частиц: бозоны и фермионы. Теория струн предсказывает, что между этими двумя частицами существует связь, называемая суперсимметрией, при которой для каждого фермиона должен существовать бозон, и наоборот. Принцип суперсимметрии был открыт вне теории струн. Однако его включение в теорию струн позволяет определенному члену в уравнениях вычеркнуть и придать смысл. Без этого принципа уравнения теории струн приводят к физическим несоответствиям, таким как воображаемые уровни энергии и бесконечные значения. Другими словами, объединение идеи суперсимметрии с теорией струн дает лучшую теорию, теорию суперструн. Физики надеются, что эксперименты с ускорителями частиц и астрономические наблюдения позволят выявить несколько суперсимметричных частиц, что обеспечит поддержку теоретических основ теории струн. Объединение сил Современная физика имеет два совершенно разных закона: общая теория относительности и квантовая механика.

Относительность изучает большие объекты в масштабе планет, галактик и вселенной, в то время как квантовая механика имеет тенденцию изучать крошечные объекты в природе на самых маленьких масштабах энергетических уровней атомов и субатомных частиц. Не совсем понятно, как гравитация влияет на мельчайшие частицы. Теории, которые стремятся описать гравитацию в соответствии с принципами квантовой механики, называются теориями квантовой гравитации, и одной из наиболее многообещающих из всех таких теорий является теория струн. Открытые и закрытые струны 5 фундаментальных взаимодействий струны типа I Струны в теории струн имеют две формы: открытые и закрытые струны. Две открытые струны могут соединяться с обоих концов, образуя закрытую струну. Или несколько открытых струн могут присоединиться к одному концу, чтобы сформировать новую открытую струну. Такие струны, известные как струны типа I, могут проходить через 5 основных типов взаимодействий. Эти взаимодействия зависят от способности струны соединять и разделять концы концов.

Ученые считают, что у замкнутых струн есть особые атрибуты, которые могут описывать гравитацию в квантовой механике.

Симфония вселенной: теория струн для начинающих

Зачем физики ищут симметрию между элементарными частицами, и почему для работы теории струн нужно двадцать шесть измерений. Как известно, теория струн была предложена в 1970-х годах для решения проблем квантовой гравитации и Стандартной модели. Если теория струн это, в том числе, и теория гравитации, то как она соотносится с теорией тяготения Эйнштейна? Объединить эти два подхода призвана теория струн. Кратко и понятно объяснить ее можно, используя аналогии в повседневной жизни.

Теория струн кратко и понятно

Понятно, что с математиче ской точки зрения с гладкими поверхностями работать гораздо лучше и плодотворнее, чем с сингулярными — в этом объяснение успехов математи ческого аппарата теории струн. Стало отчетливо понятно, что эта программа на самом деле является отнюдь не содержанием теории струн, а только еще одной областью ее приложения. А теория струн может объединить эти две теории, например если сказать что световая волна это и есть струна с набором гармоник, которая и соответствует фотону. Рассказать о теории струн кратко вряд ли получится.

Что такое теория струн простыми словами (насколько это возможно)?

Теория струн основана на гипотезе[5] о том, что все элементарные частицы и их фундаментальные взаимодействия возникают в результате колебаний и взаимодействий ультрамикроскопических квантовых струн на масштабах порядка планковской длины 10−35 м. Квантовая теория струн – это фундаментальная теория, которая стремится объединить квантовую механику и общую теорию относительности. Новости науки, высокие технологии и научные открытия.

Теория струн: кратко и понятно о сложном. В чем она заключается?

Теория струн — это теория о том, что фундаментальными составляющими Вселенной являются одномерные "струны", а не точечные частицы (как это принято наукой). Теория струн сочетает в себе идеи квантовой механики и теории относительности, поэтому на её основе, возможно, будет построена будущая теория квантовой гравитации. Теория струн, вероятно, это одна из самых интригующих гипотез в мире науки.

Похожие новости:

Оцените статью
Добавить комментарий