Он раскрыл суть работы клеточного иммунитета. Клетки организма непрерывно синтезируют различные виды белков, за их работой следят другие клетки.
Ствол и ветки: стволовые клетки
Студариум тесты. Беллевичем Юрием Сергеевичем. Студариум биология ОГЭ. Студариум биология ЕГЭ губки. ЕГЭ усложнили. ЕГЭ биология 2023.
Анатомия студариум. Студариум химия. Общая биология ЕГЭ студариум. Studarium PNG. Студариум ЕГЭ по химии.
Студариум биология ЕГЭ 2023. Студариум тесты биология. Студариум биология 11 класс. Студариум тесты по биологии. Studarium ru биология.
Строение инфузории туфельки. Инфузория туфелька рисунок. Инфузория эукариот. Кораллы студариум. Студариум 20137.
Studarium Gyu. K2cr2o7 hbr.
Он раскрыл суть работы клеточного иммунитета. Клетки организма непрерывно синтезируют различные виды белков, за их работой следят другие клетки. Если клетка, к примеру, заражена вирусом и производит неправильные вещества, она погибает, а вместе с ней и вирус.
Второй вид приобретённого иммунитета — гуморальный. Механизм его действия заключается в активизации антител, которые привлекают другие клетки к чужеродным веществам, чтобы уничтожить угрозу. Ранее заведующая отделением частной клиники врач иммунолог-аллерголог высшей категории Оксана Шабалина прокомментировала прогноз учёных о том, что к середине века половина населения планеты будет страдать от аллергии.
Из i-клеток образуются половые клетки, железистые клетки, нервные и стрекательные клетки. Кожно-мускульные клетки эктодермы и энтодермы — самостоятельные клеточные линии.
В средней части тела гидры кожно-мускульные клетки имеют свойства СК и постоянно делятся. Постепенно эти клетки сдвигаются к подошве, ротовому конусу и щупальцам. По ходу дела они дифференцируются: например, клетки эктодермы на щупальцах превращаются в клетки стрекательных батарей, а на подошве — в клетки, выделяющие слизь. Затем эти клетки гибнут. Но сама гидра, чьё тело состоит чуть ли не целиком из СК, по-видимому, может в благоприятных условиях жить вечно. Геном гидры сейчас расшифрован. Разработан способ получения генетически модифицированных гидр. Можно получать химерных гидр, у которых генетически различаются i-клетки и кожно-мускульные клетки. Наконец, можно получить «безнервных гидр», химическим путем лишив их i-клеток. У таких гидр кожно-мускульные клетки продолжают делиться.
Они могут расти и почковаться, если им насильно запихивать пищу в рот сами они не могут ни ловить добычу, так как лишены стрекательных клеток, ни глотать её — для этого нужны нервные клетки. Со времен Трамбле гидра — один из главных модельных объектов для изучения регенерации. Уже довольно давно из гидры выделены пептиды, усиливающие регенерацию «головы» и подошвы. Интересно, что у «безнервных» гидр регенерация не нарушена, хотя в норме эти пептиды образуются в нервных клетках. Если же нервных клеток нет, необходимые для регенерации гены активируются в кожно-мускульных клетках. Все это делает гидру прекрасным объектом и для изучения дифференцировки клеток. А многие гены, задействованные в развитии и дифференцировке у гидры, не так уж сильно отличаются от человеческих. Все яйца в одной корзине Другой популярный объект для изучения регенерации — планарии. Яйца они, правда, откладывают обычно в нескольких «корзинах»-коконах. А вот СК у них — только один тип.
Эти плюрипотентные СК — необласты — расположены в рыхлой мезодермальной ткани планарий, паренхиме. Делясь, необласты могут дифференцироваться в любые типы клеток, в том числе в клетки покровов и нервной системы эктодермы. Только необласты отвечают у планарий за регенерацию. После дифференцировки их потомки перестают делиться. Необласты служат также для бесполого размножения и могут превращаться в половые клетки. Ну как же без дрозофилы... Хорошо изучены и СК насекомых. Большинство типов этих клеток есть у зародышей или личинок и отсутствуют у имаго взрослой особи. Типичные для насекомых с полным превращением СК — это клетки имагинальных дисков. Из этих небольших групп клеток личинки развивается большинство органов имаго.
Интересная особенность этих клеток — их способность к трансдетерминации. На довольно ранней стадии в имагинальном диске уже есть «разметка» будущего органа: например, известно, какие из клеток крылового диска станут клетками передней половины крыла, а какие — задней. Внешне эти клетки еще не различаются, но их судьба предопределена детерминирована. Однако при удалении части диска судьба клеток меняется так, что может восстанавливаться нормальная структура крыла. У большинства взрослых насекомых не так уж много СК. Удивительно, что у многих видов с неполным превращением они сохраняются в особом отделе головного мозга — грибовидных телах. Эти центры мозга насекомых отвечают за многие формы научения. Нейробласты грибовидных тел СК мозга у взрослых сверчков постоянно образуют новые интернейроны. Их число увеличивается при усиленной стимуляции органов зрения и обоняния например, у самцов — при драках с соперниками. У большинства насекомых с полным превращением СК грибовидных тел гибнут на стадии куколки, и пластичность поведения имаго связана с ростом аксонов и образованием новых синапсов.
Из ядущего вышло едомое Сравнительно новый модельный объект для изучения СК — оболочники. У этих ближайших родственников позвоночных высока способность к регенерации, а многие из них размножаются бесполым путем и образуют колонии. Только у сидячих оболочников — асцидий — насчитывается чуть ли не десяток разных способов деления и почкования! На асцидиях часто изучают способность различать «свое и чужое» — основу иммунитета. В последние годы чаще всего используют для таких исследований мелкую, широко распространенную колониальную асцидию Botryllus schlosseri. В норме колония живет 1—5 лет, а каждый зооид — всего неделю. За это время он успевает сформировать почку — зачаток нового зооида. После этого старый зооид распадается, и его клетки гибнут путем апоптоза; затем клетки растущей почки фагоцитируют остатки зооида, и почка его заменяет. Рисунок 2. Образование колоний у Botryllus schlosseri вид сверху.
После оседания личинки исходная особь оозооид начинает почковаться и образует розетки генетически идентичных зооидов. Колония может включать от одной такой розетки до сотни. В небольших слепых выростах кровеносных сосудов — ампулах — скапливаются лимфоцитоподобные клетки крови. Это — тотипотентные СК асцидии. Из них образуются похожие на бластулы шарики, а затем почки. Одним из первых обособляется в такой почке сердце, затем формируются остальные органы, и новый зооид начинает почковаться обычным способом. Если две колонии асцидий соприкасаются при росте, они могут либо сливаться, либо разделяться после отторжения и гибели тканей. Этот ген похож на гены, отвечающие за отторжение чужеродных тканей у позвоночных а возможно, и гомологичен им. Если у двух колоний совпадает хотя бы один аллель этого гена из пары, то они срастаются. Первыми вступают в контакт ампулы, и происходит объединение кровеносной системы колоний.
Самые удивительные события происходят после слияния. У одного из «партнеров» начинается массовая гибель клеток, и все его зооиды полностью разрушаются. Но оказалось, что у «победителя» довольно часто все клетки зародышевого пути имеют генотип «съеденного» партнера! Это означает, что тотипотентные СК «съеденной» особи сохраняются и заселяют «победителя». Иногда и соматические ткани «победителя» целиком или частично заменяются клетками «побежденного». Вот уж действительно — «из ядущего вышло едомое»! Исход «конкуренции» соматических и половых клеток зависит от генотипов сросшихся колоний. Роль этого явления в эволюции и экологии асцидий интенсивно изучается. И пришивают голову и хвост туда, где нужно... Для позвоночных бесполое размножение нехарактерно если не считать полиэмбрионии , но способность к регенерации у них достаточно хорошо развита.
Рекордсмены в этом плане — хвостатые амфибии. У саламандр — даже взрослых — регенерируют хвост, глаза, ноги, челюсти, участки миокарда и спинного мозга и другие органы. Классический объект для изучения регенерации — конечности саламандр и тритонов. После ампутации конечности рана быстро затягивается эпидермисом, а под ним формируется «шапочка» из недифференцированных клеток — бластема. Откуда берутся эти клетки? Этот вопрос был источником споров в течение десятилетий. И сейчас тут не все еще ясно. Известно, что многие клетки в районе ампутации гибнут, а оставшиеся дедифференцируются. Например, многоядерные клетки скелетных мышц распадаются на одноядерные клетки, а потомки этих одноядерных клеток, возможно, могут превращаться в фибробласты — клетки соединительной ткани. Но насколько они плюрипотентны?
Банк заданий ЕГЭ-2024: Биология
Определение набора хромосом растительных клеток, имеющих различное происхождение Для решения задач необходимо знать процессы, которые происходят с хромосомами при. На страницах Студариума биологии 2024 вы найдете множество статей, обзоров, научных исследований, интересных фактов и новостей из мира биологии. Фотосинтез студариум. Световая и темновая фаза фотосинтеза картинка. Французские ученые построили модель старения одноклеточных, согласно которой каждое их деление асимметрично — даже если внешне обе клетки-потомка одинаковы. Автомобильные новости.
онлайн-школа вебиум
РАСТИТЕЛЬНАЯ КЛЕТКА. Такая форма клеток ранее никогда не встречалась, поэтому ей дали собственное название. Студариум химия егэ. Химия реальные варианты 2021. По словам команды, клетки используют мультимодальное восприятие, чтобы учесть внешние сигналы и информацию изнутри клетки, например, количество клеточных органелл. Строение клетки органоиды клетки. Функции органоидов животной клетки.
Строение клетки. Цитология
Растительная клетка. Ткани. Вегетативные органы 165 заданий. Студариум биосинтез белков. ЕГЭ биология 2022 задачи на Синтез белка. S-клетка — S-клетки — эндокринные клетки слизистой оболочки тонкой кишки, секретирующие секретин. S-клетки относятся к апудоцитам и входят в состав состав гастроэнтеропанкреатической эндокринной системы. Клеточное дыхание, митохондрии 6. Обмен веществ. 53. Строение эукариотической клетки 2. Отличия растений, животных и грибов 1. Отличия прокариот и эукариот. Клеточное дыхание делится на следующие этапы: гликолиз, окисление пирувата, цикл трикарбоновых кислот (или цикл Кребса) и окислительное фосфорилирование.
Биология ЕГЭ 2024 | Studarium
Патологические проявления, связанные с работой резидентных Т-клеток, включают органоспецифичные аутоиммунные синдромы и синдромы хронического воспаления в ткани. Примеры хронического воспаления, поддерживаемого резидентными Т-лимфоцитами, — контактный дерматит и псориаз, а механизмом служит выделение воспалительных факторов IL-17 резидентными Т-киллерами и IL-22 резидентными Т-хелперами дермы. Неясно, однако, есть ли в норме в головном мозге популяция TRM или же это Т-лимфоциты, оставшиеся в ткани после нейротропной вирусной инфекции [8]. Функции резидентных клеток памяти в норме — при отсутствии инфекции или хронического воспаления - могут включать cross-talk взаимную регуляцию преимущественно через секрецию цитокинов и костимуляторные молекулы с неклассическими малоизученными лимфоидными клетками. Предполагаемые функции резидентных Т-лимфоцитов тканей. Часть функций может выполняться во взаимодействии с резидентными макрофагами Прим. Подобно естественным киллерам они являются «врожденными» цитотоксическими эффекторными клетками и не требуют сенсибилизации антигеном для активирования. Они являются первой линией защиты при бактериальных инфекциях, в частности микобактериальных, и играют важную роль в иммунной защите слизистых оболочек. TRM клетки контактируют с антигенпрезентирующими клетками тканей — дендритными клетками кожи и резидентными макрофагами тканей.
Резидентные миелоидные клетки в разных тканях дифференцированы и слабо похожи друг на друга. К примеру, макрофаги маргинальной зоны селезенки, макрофаги печени и микроглия макрофаги мозга будут сильно отличаться и по морфологии, и по спектру функций. Кроме обнаружения антигенов в ткани, резидентные макрофаги заняты регуляцией процессов старения и самообновления тканей, в частности, выделяют факторы роста и цитокины, стимулирующие деление стволовых клеток тканей. В жировой ткани, к примеру, макрофаги стимулируют дифференцировку новых жировых клеток, но при переходе в активированное M1-состояние запускают воспаление и вместо дифференцировки заставляют увеличиваться и набухать имеющиеся жировые клетки. Сопутствующие изменения метаболизма жировой ткани приводят к накоплению жировой массы и в последние годы связываются с механизмами развития ожирения и диабета II типа. Можно предположить, что хелперные TRM-клетки при патрулировании эпителия и образовании контактов с тканевыми макрофагами могут модулировать спектр и объем выделяемых последними факторов роста для стволовых клеток, воспалительных цитокинов и факторов ремоделирования эпителия — и тем самым участвовать в обновлении тканей. Что изучение TRM может дать медицине? Понимание принципов работы резидентных Т-клеток абсолютно необходимо для борьбы с инфекциями, которые не поступают сразу в кровь, а проникают в организм через барьерные ткани, то есть для подавляющего большинства инфекций.
Рациональный дизайн вакцин для защиты от этой группы инфекций может быть направлен именно на усиление первого этапа защиты с помощью резидентных клеток. Ситуация, при которой оптимально активированные специфичные к антигену клетки элиминируют патоген в барьерной ткани, куда выгоднее, чем запуск острого воспаления для вызова Т-лимфоцитов из крови, поскольку меньше повреждается ткань. Репертуар TCR, ассоциированных со слизистыми барьерных тканей, считается частично вырожденным и наиболее распространенным, то есть идентичным для многих людей в популяции. Тем не менее искажения при выделении Т-клеток из органов, перекос данных в результате отбора в когорты только определенных европеоидных доноров и общее небольшое количество накопленных данных секвенирования не дают уверенности в публичности репертуаров Т-клеточных рецепторов TRM-клеток. Впрочем, это было бы удобно: дизайн вакцин мог бы сводиться к поиску и модификации наиболее аффинных и иммуногенных пептидов в патогене, взаимодействующих с одним из распространенных вариантов ТCR в барьерной для этого патогена ткани. Конечно, представления о том, какие TCR несут на своей поверхности TRM-клетки, недостаточно для того, чтобы эффективно манипулировать иммунными реакциями в ткани. Предстоит детально изучить факторы, влияющие на заселение тканей определенными клонами Т-клеток, и разобраться в механизмах активации местного тканевого иммунитета и индукции толерантности TRM. Как заселяются ниши Т-лимфоцитов в слизистых у ребенка до встречи с большим числом патогенов и, соответственно, до формирования значительного пула эффекторных Т-клеток памяти — предшественников резидентных клеток и клеток центральной памяти?
Почему и как вместо классической активации лимфоцитов формируется реакция толерантности к микробам непатогенной флоры слизистых? Эти вопросы стоят на повестке дня в изучении резидентных клеток иммунной системы. Определение закономерностей хоминга Т-лимфоцитов в определенные ткани может дать преимущество в клеточной иммунотерапии опухолевых заболеваний. Теоретически киллерные Т-клетки нужной специфичности к опухолевому антигену, активированные in vitro, должны убивать опухолевые клетки пациента. На практике подобная иммунотерапия осложняется тем, что опухолевые клетки способны подавлять иммунные реакции и приводить в неактивное состояние приближающиеся к опухоли Т-киллеры. Зачастую в массе растущей опухоли и вокруг нее накапливаются анергичные Т-лимфоциты - в первую очередь TRMданной ткани. Из множества инъецированных пациенту активных опухолеспецифичных Т-клеток до цели дойдут немногие, и даже они могут оказаться практически бесполезными в иммуносупрессивном микроокружении опухоли. Расшифровка механизмов, которые обеспечивают попадание конкретных клонов Т-клеток в определенные ткани, может позволить более эффективно направлять к опухоли сконструированные в лаборатории Т-лимфоциты и приблизить эру доступной персонализированной иммунотерапии.
Исследователи предположили, что градиенты представляют собой огромный резервуар информации, который позволяет клеткам постоянно контролировать окружающую среду. Когда информация поступает в какой-то момент клеточной мембраны, она взаимодействует со специализированными воротами в ион-специфичных каналах, которые затем открываются, позволяя этим ионам течь по ранее существовавшим градиентам, образуя канал связи. Потоки ионов запускают каскад событий вблизи мембраны, позволяя клетке анализировать информацию и быстро реагировать на нее. Когда потоки ионов велики или продолжительны, они могут вызвать самосборку микротрубочек и микрофиламентов цитоскелета. Обычно сеть цитоскелета обеспечивает механическую поддержку клетки и отвечает за ее форму и движение.
Однако исследователи отметили, что белки цитоскелета также являются отличными проводниками ионов.
Однако каждая клетка колонии, как и каждый человек из группы, может существовать и отдельно от этого сообщества. Но большинство Простейших все-таки именно одноклеточные. Так давайте же узнаем, какой должна быть клетка, чтобы обеспечивать функционирование себя, как целого организма. Строение клетки У нас с вами, то есть у человека, разные органы выполняют разные функции. Например, желудок отвечает за переработку пищи, глаз — за восприятие окружающего мира, а мозг — за управление всеми органами.
У простейших же одна клетка выполняет все функции целого организма. Ей приходится нелегко: в одиночку нужно успевать и питаться, и размножаться, и выделять продукты обмена, а также многое другое. Поэтому клетки протистов имеют достаточно сложное строение. Давайте рассмотрим их основные структуры на примере клетки Инфузории-туфельки — одного из представителей царства Простейшие, типа Инфузории, класса Ресничные инфузории. Цитоплазма — это полужидкое содержимое клетки, ее внутренняя среда. Здесь находятся все органоиды клетки — постоянные структурные компоненты, выполняющие определенные функции, например, ядро, пищеварительная вакуоль и другие.
В цитоплазме многих простейших выделяют: эктоплазму — наружный, более плотный слой цитоплазмы; эндоплазму — внутренний зернистый слой цитоплазмы, менее плотный, подвижный. Пелликула — это наружный уплотненный слой клетки, который служит для защиты и прикрепления. Также за счет нее клетка организма имеет постоянную форму. Например, у амебы ее нет, поэтому форма клетки непостоянная. Сократительная вакуоль. Сократительные вакуоли — специальные структуры, отвечающие за осморегуляцию поддержание постоянного осмотического давления , то есть за сохранение состава внутренней среды организма.
Осмотическое давление осмос — это сила, которая пытается уравнять концентрации веществ внутри клетки и вне ее. С помощью сократительных вакуолей удаляются излишки воды из клетки, чтобы внутри нее оставался относительно постоянный химический состав растворенных веществ и чтобы клетку просто не разорвало от избыточного количества воды. Найти сократительную вакуоль на изображении клетки инфузории очень легко: она будет напоминать солнышко. Этот органоид состоит из: центральной полости — своеобразного накопительного резервуара, лучистых канальцев — трубочек, которые похожи на лучики солнца. Сначала лучистые канальцы, части вакуоли, накапливают воду и изливают ее в центральную полость. Затем вакуоль сокращается, и избыток воды удаляется из клетки во внешнюю среду.
Таким образом, разрыв клетки предотвращается. Однако лучистые канальцы можно заметить на изображении не у всех простейших. Например, у амёбы сократительная вакуоль выглядит как небольшой пузырек и внешне похожа на ядро. В таком случае органоид можно «узнать» по более округлой, чем у ядра, форме. Сократительная вакуоль в форме солнышка есть только у инфузорий. Отличительной особенностью будет также то, что у них таких вакуолей всегда две.
Представители типа Инфузории имеют 2 ядра: большое — макронуклеус — осуществляет контроль над процессами жизнедеятельности в клетке; малое — микронуклеус — участвует в процессе полового размножения. Распределение обязанностей у ядер инфузории похоже на распределение обязанностей директоров в торговой организации. Большое ядро, как гендиректор, будет руководить большим количеством процессов: это и питание, и транспорт веществ, и обменные процессы. У него много работы, поэтому макронуклеусу нужно быть крупным, иначе он не справится с обязанностями. Малое ядро, как директор по развитию сети, занят одним делом: увеличением количества точек продаж, в переносе на роль ядер простейших — размножением. У других типов простейших одно ядро, поэтому оно будет отвечать за все процессы жизнедеятельности.
Органоиды движения. У Простейших есть три вида структур для передвижения: реснички, псевдоподии, жгутики. Реснички — это тонкие множественные выросты на поверхности клетки, которые помогают передвигаться, так как способны выполнять ритмичные сократительные движения. За счет их последовательного сокращения — они по очереди то напрягаются, то расслабляются — инфузория как будто плывет, отталкиваясь множеством маленьких коротких «ручек». Органоиды движения инфузории действительно похожи на ресницы человека. При этом реснички характерны для инфузорий, у амёбы данных структур нет.
Амёба обыкновенная передвигается с помощью псевдоподий. Псевдоподии ложноножки — цитоплазматические выросты, используемые для передвижения клетки. Принцип движения: выпячивания цитоплазмы то появляются, то исчезают, обеспечивая как бы «перетекание» клетки с места на место. На этом изображении амебы отчетливо видны двигательные выросты — псевдоподии. Другие простейшие эвглена зелёная, лямблия имеют жгутики, с помощью которых перемещаются в пространстве. Жгутик — поверхностная структура клетки, служащая для передвижения.
Это длинные и тонкие, обычно единичные образования, которые вращаются как винт моторной лодки, тем самым двигая клетку в нужном направлении. Только у лодки винт сзади, а у простейших — спереди. Простейшие при этом будут двигаться в сторону вращения жгутика. А вот так выглядят жгутики хламидомонад под электронным микроскопом. Органоиды пищеварения. Их функции — питание и выведение ненужных веществ.
Что касается человеческого мозга — мой коллега Йонас Фризен из Каролинского института подсчитал, что мы производим 700 новых нейронов каждый день в гиппокампе. Вам покажется, что это не так много по сравнению с миллиардами уже имеющихся у нас нейронов. Но к 50 годам все имеющиеся у нас с рождения нейроны заменяются на нейроны, образовавшиеся уже во взрослом мозге. Почему эти новые нейроны так важны и каковы их функциии? Во-первых, мы знаем, что они нужны для обучения и памяти. Мы экспериментально доказали, что если заблокировать способность взрослого мозга генерировать новые нейроны в гиппокампе, то блокируются определенные свойства памяти. Это особенно ново и верно в отношении пространственного распознавания — того, как вы, к примеру, ориентируетесь в городе. Нам еще многое предстоит узнать, и нейроны важны не только для объема памяти, но и для качества памяти.
Они помогают памяти работать дольше, они могут помочь различить очень похожие воспоминания, например, отыскать велосипед, который вы оставляете на станции каждый день на одной и той же стоянке, но немного в разных местах. Моему коллеге Роберту наиболее интересным показалось наше исследование о взаимосвязи нейрогенеза и депрессии. При исследовании депрессии у животных мы увидели, что у нас более низкий уровень нейрогенеза. Если мы принимаем антидепрессанты, мы увеличиваем производство этих новорожденных нейронов и уменьшаем симптомы депрессии, тем самым устанавливая четкую связь между нейрогенезом и депрессией. Более того, если просто заблокировать нейрогенез, одновременно падает эффективность антидепрессантов. К тому моменту Роберт согласился, что его пациенты продолжают страдать от депрессии даже после избавления от рака из-за того, что препараты от рака препятствуют образованию новых нейронов. И нужно какое-то время на появление новых нейронов и восстановления их нормального функционирования. Итак, сообща мы пришли к выводу, что имеем достаточно оснований для того, чтобы направить наши усилия на нейрогенез, если мы хотим улучшить формирование памяти, настроение и даже предотвратить проблемы, связанные с возрастом или со стрессом.
Поэтому следующий вопрос таков: можем ли мы управлять нейрогенезом? Ответ — да. Сейчас мы проведем маленький тест. Я представлю вам ряд действий и состояний, а вы скажете мне, уменьшают они или увеличивают нейрогенез. Обучение будет увеличивать производство новых нейронов. А как насчет стресса? Да, стресс уменьшает производство новых нейронов в гиппокампе. Безусловно, это снижает нейрогенез.