Несмотря на то, что искусственный интеллект сегодня является одной из основополагающих технологий в здравоохранении и персонализированной медицине, в профессиональной среде возникает вопрос: а так ли умен ИИ и какие риски связаны с его применением? Однако внедрение искусственного интеллекта в медицину сопряжено с некоторыми рисками и ограничениями. Президентом РФ было поручено уделить особое внимание внедрению искусственного интеллекта в медицине. Сегодня искусственный интеллект помогает находить признаки заболеваний по более чем 20 направлениям, а количество обработанных с помощью него лучевых исследований уже превысило 11 миллионов.
Искусственный интеллект в клинической медицине
Почти полувековой опыт применения роботизированных систем в сегменте лабораторной диагностики подтверждает слова эксперта. С помощью лабораторных анализов, сделанных посредством искусственного интеллекта, можно выявить широкий спектр заболеваний, включая инфекционные, воспалительные, онкологические и наследственные. Первые автоматические анализаторы, которые могли проводить измерения одновременно нескольких биохимических параметров и оперативно выполнять комплекс исследований в одном образце биоматериала, появились ещё в 70—х годах прошлого века. При этом необходимо нивелировать риск ошибок по причине человеческого фактора, а также защитить сотрудников от контакта с потенциально опасным биологическим материалом. Современное оборудование может также исключить из исследования некачественный биоматериал на основе тестирования пробы в процессе постановки, а также выполнять дополнительные исследования по предустановленным правилам и назначениям", — поясняет Ирина Скибо. В соответствии с идентификатором он получает из лабораторной информационной системы ЛИС задание, включающее перечень аналитов, которые нужно в этой пробе определить. Далее анализатор берёт нужный объём крови на исследование, помещает в реакционную ячейку внутри прибора, добавляет необходимые реагенты, проводит реакцию, одновременно записывая в память её протокол, считывает результат исследования и передаёт его в ЛИС. Врачу остаётся только принять результат и проконтролировать на соответствие установленным требованиям значение, полученное с прибора. Или, если есть необходимость, отправить пробу на повторное исследование". Робот со скальпелем Однако использование роботов в медицине не ограничивается только диагностическими автоматизированными системами.
Его создал выходец из СССР Средство для лечения идиопатического легочного фиброза было создано целиком искусственным интеллектом. Сейчас оно проходит уже вторую фазу испытаний с применением плацебо. Только в США от этого заболевания сейчас страдают до 100 тыс.
Без лечения оно способно свести пациента в могилу в течение 2-5 лет. Применяемые на сегодняшний день лекарства преимущественно нацелены на замедление развития заболевания, но нередко дают крайне неприятные побочные эффекты. Фото: ru.
Врачу не всегда удается правильно интерпретировать результаты анализов, тестов и других видов обследований, потому что у него нет полной картины со всеми необходимыми данными. Технология блокчейн — это новый подход в хранении и управлении данными пациентов. Позволяет сегментировать и защитить информацию, быстро обмениваться всеми необходимыми медицинскими данными. В фармацевтике и медицине блокчейн применяют в следующих направлениях: управление цепочками поставок лекарственных препаратов; борьба с контрафактной продукцией; заполнение электронных медкарт и управление ими; анализ результатов обследования; улучшение процессов страхования и выставление счетов; удаленный мониторинг состояния пациентов; проведение исследований разного характера. Приложение от Google Deepmind Health быстро анализирует все симптомы и результаты диагностики, предлагает несколько диагнозов, соответствующих полученным результатам. ИИ помогает диагностировать даже редкие, плохо изученные патологии.
Сервис MedClueRx может не только проанализировать клинические проявления и диагностировать заболевание. Он также ориентирован на подбор эффективных лекарственных препаратов с учетом индивидуальных особенностей пациента. ИИ для автоматизации процессов в медицине Практически во всех странах наблюдается дисбаланс и нехватка квалифицированного медицинского персонала среднего и высшего звена. По статистике ВОЗ, чтобы каждый человек, даже в странах с низким уровнем доходов, к 2030 году имел доступ к услугам здравоохранения, потребуется 18 млн. Перспективы улучшить ситуацию с доступностью медицинского обслуживания ничтожны: население растет, общество стареет. Проблема усугубляется еще и тем, что многие патогены мутируют, меняется клиническая картина заболеваний.
Все эти факторы увеличивают спрос на квалифицированных врачей и медицинский медперсонал, пациентам становится все сложнее быстро получить необходимую медицинскую помощь. ИИ и другие инновационные технологии помогают освободить врачей от многих повседневных рутинных задач. Внедрение технологий ИИ позволяет быстро и правильно вносить данные в медкарту, проводить детальный анализ проведенных исследований, формировать историю болезни, отслеживать и корректировать ход лечения. Это позволит специалисту больше времени уделять каждому пациенту, заниматься решением серьезных диагностических вопросов, сконцентрироваться на поиске причин патологии и эффективной схемы лечения. Применение искусственного интеллекта в медицине позволит повысить удовлетворенность пациентов работой медицинского персонала, снизить нагрузку на врачей, уменьшить стоимость услуг и повысить качество медицинской помощи. Удаленные консультации Консультации врачей онлайн — это возможность получить качественную медицинскую помощь большему количеству людей.
Удаленные консультации особенно актуальны для жителей малонаселенных пунктов или во время эпидемий и пандемий. Онлайн-консультации — это возможность значительно снизить расходы и здравоохранение, быстро получить еще одно мнение при спорном диагнозе. ИИ делает телемедицину более простой и удобной. Его применяют для удаленной диагностики, сбора необходимых данных и показателей анализа информации о пациентах.
Причем что примечательно, у руля компании стоит наш соотечественник Алекс Жаворонков. Господин Жаворонков еще в середине 2000-х годов получил степень магистра в Университете Джона Хопкинса, а затем и докторскую степень в Московском Государственном Университете, где его исследования были сосредоточены на использовании машинного обучения для изучения физики молекулярных взаимодействий в биологических системах. В 2014 году Алекс основал уже упомянутую Insilico Medicine, имея за плечами опыт работы в индустрии высоких технологий и заинтересовавшись вопросами фармации. Это интересно: Как работает искусственный интеллект Если вернуться к ИИ, то сами разработчики называют основную технологию работы искусственного интеллекта «генеративным тензорным обучением». Она позволяет ИИ, если не вдаваться в подробности, более эффективно и быстро обучаться требуемым навыкам. Мы подумали: можем ли мы заставить машины придумывать с нуля новые молекулы с определенными свойствами вместо того, чтобы заставлять их перебирать десятки доступных вариантов, — говорит Алекс Жаворонков. Insilico использовали GENTRL для того, чтобы создать несколько а если быть точным, то 6 вариантов лекарств для лечения мышечного фиброза.
Искусственный интеллект в медицине — не конкурент, но помощник
А повышение уровня качества обслуживания в медицине влияет и на улучшение показателей здоровья населения всей нашей страны. Что, конечно же, особенно актуально в последние два года, когда идёт борьба с коронавирусом. Это стало очевидно уже в 2020 году, и касалось не только напрямую сферы медицины, но и смежных областей. Стали очевидны такие проблемы, которые в обычной обстановке и со стандартной нагрузкой не так бросались в глаза. И в то же время пандемия стала наиболее эффективным стимулом для развития и внедрения инновационных методов решения различных задач. Разумеется, максимум внимания в исследовательской работе стало уделяться таким направлениям, которые целиком либо в какой-то мере были направлены на борьбу с пандемией, на снижение нагрузки врачей, на оптимизацию здравоохранения.
И, конечно же, отдельно стоит упомянуть разработки, нацеленные на предиктивную аналитику и моделирование сценариев развития событий с учётом вероятности возникновения иных эпидемий. Подготовка к таким событиям становится залогом успеха в борьбе с ними. Существуют ли какие-то разработки, позволяющие в будущем действовать на упреждение и успешнее бороться с такими проблемами, как SARS-CoV-2? Столкнувшись с трудностями борьбы с коронавирусом, мы в очередной раз заострили внимание исследователей на важности аналитики, в частности, аналитики эпидемиологической обстановки в мире.
Эта проблема рождается в самом алгоритме: он гибкий и критерий «не навреди» не всегда самый быстрый или дешевый способ лечения пациента. Разработчики могут установить параметры для системы, которые не совпадают с медицинской этикой и это также может повредить здоровью пациентов. Вопрос потери конфиденциальности тоже стоит довольно остро — данные пациента должны быть защищены от несанкционированного доступа, а использование ИИ в медицине может невольно повысить риск утечки личной информации.
Еще одна проблема — неуместное лечение. Может возникнуть ситуация, когда ИИ предлагает протокол, который не подходит пациенту или его приоритетному заболеванию, что может привести к серьезным последствиям. Алгоритмы ИИ могут быть недостаточно точными в отношении определенных групп пациентов, таких как дети, пожилые люди и беременные женщины. Наконец, использование ИИ может создать зависимость от технологии и уменьшить важность роли врача в лечебном процессе или даже вызвать что-то новое — типа «киосков самолечения». Перспективы ИИ-медицины Медицина с использованием искусственного интеллекта уже начинает широко применяться в рутинной практике. Нейросети и другие формы ИИ используются для диагностики, лечения и прогнозирования различных заболеваний. В будущем мы можем ожидать ещё большего расширения использования нейронных сетей в медицине, и она может стать одной из главных областей применения ИИ.
Однако, необходимо учитывать, что использование нейросетей требует от специалистов тщательного контроля работы систем и ответственного подхода к принятию решений на основе анализа данных. Перспективны любые направления — от назначений индивидуальной программы диспансеризации, до ранжирования рисков пациентов. Последнее особенно интересно: рисковое управление на математическом уровне, позволит намного эффективнее использовать ресурсы. Еще одно важное направление — снижение отчетно-аналитической нагрузки на врача и медицинскую организацию в целом.
Примеры применения ИИ в здравоохранении на протяжении жизни человека Проблема состоит в том, что большинство исследований и отчетов все еще существуют только в виде препринта. Они не опубликованы и не проверены рецензентами.
В препринтах проверка работоспособности алгоритмов осуществляется с точки зрения точности, что еще не равно клинической эффективности. Эффективность подтверждается с помощью недешевых клинических испытаний. Нейронные сети для пациентов Алгоритмы, которые пациенты могут использовать самостоятельно, развиваются медленнее, чем те, которые используют клиницисты. Датчики на часах определяют частоту сердечных сокращений пользователя в состоянии покоя и при физической нагрузке, и когда происходит сильное отклонение от ожидаемого, пользователю выдается предупреждение о записи ЭКГ через часы, результаты которого затем интерпретирует алгоритм. Некоторые приложения для смартфонов используют нейронные сети для мониторинга и контроля приема лекарств, например AiCure заставляет пациента делать селфи-видео во время проглатывания предписанной таблетки. AiCure контролирует прием лекарства Алгоритмы, основанные на том, как повышаются или понижаются значения глюкозы, используются пациентами с диабетом. Они помогли предотвратить эпизоды гипогликемии.
Таким образом, распространенные хронические состояния, такие как гипертония, депрессия и астма, теоретически можно лучше контролировать с помощью приложений.
На наш взгляд, такая фиксация времени необходима ввиду бурного развития рассматриваемой области. В 2020 г. Экспоненциальный рост числа исследований, как правило, сопровождается постоянным расширением круга решаемых задач. Поэтому мы не будем претендовать на исчерпывающую картину применения ИИ в медицине, а попытаемся очертить наиболее успешные или перспективные с нашей точки зрения направления. ИИ в хирургии Речь идет о роботах, участвующих в хирургических операциях и сопровождающих хирургические операции и послеоперационных больных. В 2018 г. Важно заметить, что термин «робот» часто создает неправильное представление о том, что роботы выполняют хирургические операции.
Это не совсем так. Роботы с искусственным интеллектом применяются все чаще в микрохирургических процедурах. Но не следует считать, что скоро будут оперировать только роботы-хирурги. Зато справедливы ожидания, что роботы с ИИ помогут хирургам работать лучше. Роботизированная хирургия — это активно развивающаяся и эффективная технология, которая приобретает все большее значение при различных медицинских процедурах в неврологии, гинекологии, ортопедии, торакальной и общей хирургии, при установке зубных имплантатов, а также трансплантации волос. Роботизированные технологии позволяют врачам с минимальным опытом или практикующим врачам, плохо знакомым с той или иной операционной процедурой, проводить лечение на уровне, которого они не смогли бы достичь даже в результате многолетней практики. Помощь робота во время операции уменьшает последствия тремора рук оперирующего врача, а также устраняет случайные движения. Робот Da Vinci, который считается одним из самых передовых в мире хирургических роботов, предоставляет врачу набор хирургических инструментов, которые можно использовать при проведении минимально инвазивной хирургии, и обеспечивает лучший контроль над обычными процедурами.
Приобрел большую популярность и миниатюрный мобильный робот Heartlander. Он минимизирует повреждения, которые необходимо причинить пациенту для доступа к сердцу во время операции. Робот входит в грудную клетку через небольшой разрез ниже грудины.
Нейросеть для медиков: искусственный интеллект научился ставить диагнозы
На это ушло еще 25 дней. Таким образом на выбор потенциального лекарства потребовалось всего 46 дней. Для сравнения, традиционный процесс разработки кандидатов на звание лекарства занимает около 8 лет и обходится компаниям в несколько миллионов долларов США. В то время как на создание ИИ ушло всего 150 тысяч долларов. Слева — нормальная мышечная ткань. Справа — ткань с развитием фиброза При этом Insilico подчеркивают, что они еще не доказали, что новый препарат эффективнее существующих лекарств. Однако время и затраты, которые ушли у ученых на создание потенциальных лекарств, куда меньше, чем у традиционных методов фармации.
AI, которая должна была помочь врачам находить патологии на снимках томографии.
Отмечается, что данное решение принято в связи с «угрозой причинения вреда жизни и здоровью». AI — очень расхваленная, распиаренная история. Так что для меня неудивительно, что приостановлено его использование. У нас это первый, но далеко не последний случай, когда проект в области медицинского ИИ провалится. В мире уже приостановлено использование огромного количества так называемых алгоритмов. Списаны миллиарды долларов инвесторов, которые вкладывались в эти самые алгоритмы, но пока ИИ в здравоохранении толком не взлетает нигде», — говорит Кузнецов. Он объясняет, что провалы данных систем в медицине происходят потому, что на самом деле это никакой не ИИ: «Современный медицинский искусственный интеллект — это «искусственный», но не интеллект вовсе.
Эти алгоритмы напоминают скорее систему распознавания лиц. Соответственно, они не «думают», не анализируют, а лишь сопоставляют данные пациентов с загруженной в них базой. И на основе этого сопоставления делают выводы». В пример собеседник приводит типовой алгоритм, который, как заявлялось, способен выявлять коронавирус по КТ. Однако если на снимке пациента есть какие-то отклонения от нормы, погрешности которые, например, появляются из-за использования разного оборудования или индивидуальных особенностей пациента — врожденных или приобретенных , то точность сопоставления начинает падать. Подобная проблема встречается и при определении алгоритмами онкологических болезней, инсульта, инфаркта и других диагнозов. У распознавания «по аналогии» есть набор всем известных проблем, поясняет эксперт.
Иногда не всегда то, что распознается как болезнь, является болезнью — это «ложноположительный результат». В других случаях наоборот: система это не распознает как болезнь, хотя болезнь есть — это «ложноотрицательный результат». Кроме того, бывает, что медицинская информация не поддается в полной мере алгоритмическому анализу — это так называемые эксквизитные случаи, специфика пациента, орфанные болезни и так далее. Возможно, следующие поколения алгоритмов будут избавлены от этих проблем, но пока надежды на медицинский ИИ, как диагностический философский камень — очевидный самообман», — заключил Кузнецов. По информации местных Telegram-каналов, агрессором является Богдан Ш. На видеороликах, которые сам блогер публикует в социальных сетях, видно, как он нападает на прохожих, бьет их по лицу и издевается над ними. Сообщается, что от его действий уже пострадали около 50 человек.
Мотивы своих поступков он не объясняет. Помимо видео избиений, в блоге Ш.
Например, анализируя КТ, МРТ, маммографию или рентген, компьютерное зрение распознает 37 заболеваний. Собянин сообщил, что благодаря использованию ИИ врачи Москвы получат «цифровых помощников», которые помогут подобрать лечение пациентам. Информация будет регистрироваться и обрабатываться только в цифровом формате, врачи смогут больше времени уделять задачам, где нужны их компетенции.
Фото: ru. Цифровизация По словам Жаворонкова, когда компания создавалась, ее основатели сразу же сосредоточились на алгоритмах — на разработке технологии, способной самостоятельно обнаруживать и конструировать новые молекулы. Но мы поняли, что для адекватной проверки нашей ИИ-платформы необходимо не только создать новые препараты с новым механизмом действия, но и довести их до клинической проверки. Только тогда можно будет сказать, что наша технология работает», — отметил Жаворонков. Фаза 2 В настоящее время лекарство проходит двойное слепое рандомизированное плацебо-контролируемое исследование, в котором участвуют 60 пациентов в 40 разных клиниках США и Китая. Если эта фаза пройдет успешно, испытание продолжится с большим количеством вовлеченных людей.
Роман Душкин: «Медицина — это область доверия»
Искусственный интеллект (ИИ) применяется во многих отраслях медицины и кажется, что его преимущества по сравнению с человеком очевидны. Некоторые из созданных с помощью искусственного интеллекта редакторов генов демонстрируют сравнимую или улучшенную активность. На сессии «Внедрение искусственного интеллекта в здравоохранении: новые возможности для стартапов и цифрового бизнеса» RIW-2022 эксперты обсудили эффективные практики внедрения искусственного интеллекта и перспективы технологий в России. О том, как искусственный интеллект внедряют в сфере медицины, рассказал директор АИИ Роман Душкин. Медицина с использованием искусственного интеллекта уже начинает широко применяться в рутинной практике.
Искусственный интеллект в медицине: добро или зло?
Несмотря на обширные возможности, применение ИИ в медицине сталкивается с рядом препятствий и сопряжено с некоторыми рисками. Теперь же искусственный интеллект готов прийти на помощь к профессионалам медицины. Сценарии применения искусственного интеллекта в медицине.
Эксперимент по внедрению технологий искусственного интеллекта
Он опрашивает пациента и передает данные врачу. Таким образом, врач тратит меньше времени на сбор жалоб и анамнеза. Сервис был запущен в 2021 г. И четвертый — анализ электрокардиограмм. Все взрослые поликлиники в Москве оснастили цифровыми электрокардиографами с ИИ. Как сообщала Ракова, с помощью умного помощника терапевты и врачи общей практики уже поставили более 10 млн предварительных диагнозов, из них с начала этого года — более миллиона. Сегодня умные алгоритмы доступны рентгенологам более чем 150 медицинских организаций, в том числе детских.
К концу 2023 г. Недоверие и интерес бизнеса Несмотря на столь массовое внедрение ИИ в столичное здравоохранение, эксперты отмечают несколько принципиальных проблем. Первая, как это ни странно, недоверие не только пациентов, но самих врачей к нейросетям. Об этом, в частности, говорится в докладе АНО «Цифровая экономика» — «Эффективные решения на базе ИИ в здравоохранении», который есть в распоряжении редакции. Специалисты признают и дефицит кадров, способных эффективно работать со сложными нейросетями. В свою очередь, врач-эксперт Тимур Пестерев считает, что большинство нейросетей имеют достаточно простой в использовании интерфейс.
Вы вводите определенные показатели — и нейросеть выдает какие-то вероятности относительно того или иного диагноза. Нейросеть может указывать на определенные ошибки, подсвечивать места, провисающие в диагностике, по принципу «вы сделали все, но не сделали вот это». Есть, конечно, и более сложные нейросети, пользоваться которыми может только подготовленный человек. Но в целом сейчас нейросети унифицируются», — отметил Пестерев.
Нейросети, созданные и обученные людьми, могут способствовать разработке новых лекарств, улучшить систему диагностики, повысить качество медицинских услуг, систематизировать большие объемы данных и многое другое.
Однако, несмотря на столь широкие возможности, здесь есть свои подводные камни. Виктория Егорова Виктория Егорова В последнее время появляется все больше новостей о применении искусственного интеллекта ИИ в медицине и здравоохранении. Чем так хорош искусственный интеллект в медицине? Технологии ИИ проникают во все сферы деятельности человека, в числе которых и медицина со здравоохранением. К примеру, не так давно Министерство здравоохранения РФ вместе с Ростехом создали первую версию федеральной платформы ИИ для здравоохранения.
С ее помощью ИТ-разработчики смогут получать доступ к обезличенным медицинским данным жителей России из медицинских карт. Главная цель этого проекта заключается в том, чтобы объединить обезличенные медицинские данные в верифицированные датасеты наборы данных , а также дать отечественным ИТ-компаниям площадку для разработки и тестирования сервисов ИИ в сфере здравоохранения. Компаниям нужен доступ к структурированным данным для разработки алгоритмов, которые смогут стать основой систем поддержки врачебных решений. Появление подобных сервисов поможет усовершенствовать систему здравоохранения. Врачам нужно на постоянной основе обновлять информацию о последних исследованиях в медицине.
Они не способны это делать с такой же скоростью, что и искусственный интеллект, так как врач не может одновременно и лечить людей, и отдыхать, и обновлять информацию, а еще и держать ее в голове. Искусственный интеллект может регулярно обновлять данные об исследованиях и хранить всю полученную информацию. Внедрение такой технологии облегчит жизнь медикам и поможет спасти чьи-то жизни.
Однако в 2023 году были запущены еще более значимые приложения искусственного интеллекта, связанные с наукой, — от AlphaDev, который делает алгоритмическую сортировку более эффективной, до GNoME, который облегчает процесс обнаружения материалов. Количество нормативных актов, связанных с искусственным интеллектом, в США значительно выросло за последний год и за последние пять лет. В 2023 году было принято 25 нормативных актов, связанных с искусственным интеллектом, по сравнению с одним в 2016 году. Люди во всем мире лучше осведомлены о потенциальном влиянии ИИ и больше нервничают. Подробнее о результатах исследования мы расскажем подробнее в отдельной статье в ближайшие недели! В условиях быстро меняющейся ситуации в сфере цифровизации сектор здравоохранения переживает глубокую трансформацию, характеризующуюся растущей интеграцией технологий цифрового здравоохранения, телемедицины, единых реестров и ИИ. Этот сдвиг не только предлагает множество преимуществ, но и меняет динамику отношений между пациентами и поставщиками медицинских услуг в рамках системы здравоохранения.
Отчет представляет из себя большой обзор всех стран - участников региона по основным показателям.
Я сам несколько раз был на таких операциях, чтобы понимать, как это работает. Хирург о чём-то говорит с человеком и при этом удаляет какие-то участки. И так несколько часов. Желательно локализацию этих зон хотя бы примерно знать до операции, когда череп еще не вскрыт.
Здесь и выручает ФМРТ, которая при наложении на структурную МРТ позволяет получить карту функциональных зон, которые для наглядности можно раскрасить в разные цвета. Если нейрохирург увидит такую трехмерную модель до операции, он сможет спланировать ее ход. А если мы загрузим эту модель в нейронавигационную систему, то хирург в реальном времени будет видеть на экране, где находится его скальпель относительно конкретных зон. Лаборатория изучает мозг человека, больше половины проектов связаны с нейровизуализацией Источник: Анастасия Пешкова — Недавно вы начали совместный проект с Университетом Шарджи ОАЭ. Это ваше первое сотрудничество с арабскими коллегами?
Российскую часть возглавляю я, а арабскую — Рифат Хамуди, профессор и директор Научно-инновационного центра точной медицины в Университете Шарджи. Они в большей степени отвечают за медицину и биологию, сбор данных, мы как центр ИИ — за анализ данных, обработку и построение моделей. Стартовым проектом совместной лаборатории стало создание методов и моделей исследования гетерогенности раковых опухолей. Но проблема в том, что в этом образце присутствует много разных типов клеток, которые содержат разную информацию. Если мы берем полностью часть ткани и проводим генетический или транскриптомный анализ, то мы смотрим «среднюю температуру».
Мы считаем, что всё гомогенно и однообразно, но это не так. Часть клеток могут откликаться на какую-то одну терапию, а другие — только на другую. Чтобы не терять информацию об отдельных структурах, правильнее делать одноклеточный анализ. Из каждой однородной подгруппы клеток выделять «представителя» и анализировать его. Таким образом получаются генетические и транскриптомные профили каждого отдельного участка.
Имея профили большого числа участков в этом кусочке ткани, можно строить биологические модели о генетических путях, механизмах регулирования клеток. Например, модель эволюции этой ткани во времени: что будет происходить с разными типами клеток через определенный период. И тогда мы сможем моделировать на компьютере взаимодействие каких-то веществ и тканей.
Национальная база медицинских знаний
Искусственный интеллект (ИИ) в медицине в значительной степени уже сейчас заменяет человека в разработке новых лекарств, диагностике болезней, а также улучшает медицинские услуги в целом. Искусственный интеллект (ИИ) в медицине в значительной степени уже сейчас заменяет человека в разработке новых лекарств, диагностике болезней, а также улучшает медицинские услуги в целом. Практически все основные технологии искусственного интеллекта сегодня находят применение в реальной практике организаций здравоохранения, повышая качество медицинских услуг и тем самым увеличивая продолжительность и качество жизни граждан. Глава Минздрава отметил: искусственный интеллект будут использовать для получения снимков с различных видов цифровых приборов.
Национальная база медицинских знаний
Искусственный интеллект в медицине: применение, технологии, вызовы, нормативное обеспечение и регулирование, программы практического внедрения. По прогнозу генерального директора Ассоциации разработчиков и пользователей систем искусственного интеллекта в медицине «Национальная база медицинских знаний» Бориса Зингермана, ИИ будет активно закрывать ниши, в которых не хватает квалифицированных. «Открытие Центра искусственного интеллекта ознаменовало важный шаг движения в сторону пациента, движения в сторону той медицины, которая называется персонализированной. Искусственный интеллект на службе отечественной медицины. Петербургские врачи освоили инновационную методику, она позволяет ставить диагноз в случаях, когда однозначно определить причину болезни данные не позволяют. Таким образом, применение искусственного интеллекта в медицине стало ведущим трендом здравоохранения.