Новости что такое анодирование

Что такое анодированный алюминиевый профиль и для чего он нужен? Узнайте о принципе и преимуществах анодирования алюминиевого корпуса. Анодированный алюминий: черный, матовый, листовой Сферы применения материала, методики и технологии анодирования в промышленности и в домашних условиях.

Что называют анодированием и зачем его применяют

Анодируют, как правило, алюминий и его сплавы, при этом образуются оксидные плёнки толщиной 5 25 мкм,… … Энциклопедия техники анодирование — электрохимическое оксидирование , электролитическое нанесение оксидной плёнки на поверхность металлов, сплавов и полупроводников. Плёнка защищает изделие от коррозии, обладает электроизоляционными свойствами, служит хорошим основанием для… … Энциклопедический словарь Анодирование — Anodizing Анодирование. Формирование покрытия на металлической поверхности путем анодного окисления, наиболее часто применяемое для алюминия. Источник: «Металлы и сплавы.

Для этого нужно специальное оборудование.

Защитная пленка из окиси алюминия на поверхности алюминия образуется сама собой в атмосферных условиях. Ее можно сделать более толстой путем анодирования, поместив алюминиевую деталь раствор поваренной соли и соды и проложив к алюминевой детали отрицательное напряжение. Анодирование алюминия не имеет ничего общего с анодированием золотом.

Применение анодированного алюминия Анодированный алюминий выгодно отличается от других металлов малым весом и относительной дешевизной, которые в сочетании с повышенной стойкостью к изнашиванию ставят его вне конкуренции в качестве материала для изготовления строительных конструкций. Этими свойствами обусловлено широкое применение алюминия в производстве автомобилей, самолетов, судов, ракет и различного бытового и коммунального оборудования. Эстетичное и прочное оксидированное покрытие позволяет повсеместно применять алюминиевые сплавы для изготовления спортивных товаров, посуды, фурнитуры и множества других изделий. Особенности ухода за анодированным покрытием Разберемся, как ухаживать за деталями с оксидированным покрытием на примере велосипедных вилок. Выход из строя деталей на любимом байке — большая неприятность. Защитное покрытие спасает металл от ржавления и повреждений, но только при условии его целостности. Вот почему так важен уход.

Читайте также: Хромированная сталь: свойства, преимущества, недостатки Когда речь идет о деталях, которые играют важную роль в работе всей конструкции, таких, например, как вилка и шток амортизатора, то последствием повреждения защитного покрытия могут стать не только коррозия и испорченный внешний вид. Гораздо более серьезной проблемой окажется масло, протекающее через образовавшиеся щели. Хотя и эстетика также очень важна для любого велосипедиста. Анодированный металл выглядит намного интереснее, чем крашенный. На рынке можно найти разнообразные детали и запасные части в огромном ассортименте. Это разнообразные выносы, педали, бонки, колпачки для камер и т. Отдельного упоминания заслуживают различные варианты бесцветных анодированных покрытий, которые благодаря интерференции световых лучей придают деталям велосипеда роскошный вид. А светоотражающий эффект оксидных пленок делает велосипедистов заметными в темное время суток. Особого внимания и ухода требуют вилки и амортизаторы. Если поцарапанное или потертое покрытие на руле — проблема исключительно эстетическая, то его повреждение на подвижных частях конструкции, таких как ноги вилки, ведет к более серьезным неприятностям.

Малейшие дефекты на этой детали могут стать причиной огромных проблем. По большому счету необходимо следить, чтобы на ногах вообще не было никаких изъянов.

Данная технология разработана и для целого ряда других цветных металлов: титана, магния, цинка, циркония и тантала. Некоторые особенности Изучаемый процесс, помимо изменения микроскопической текстуры на поверхности, также изменяет и кристаллическую структуру металла на границе с защитной пленкой. Однако при большой толщине анодированного покрытия сам защитный слой, как правило, обладает значительной пористостью. Поэтому для достижения коррозионной устойчивости материала требуется его дополнительная герметизация. Вместе с тем толстый слой обеспечивает повышенную износостойкость, гораздо большую по сравнению с красками или другими покрытиями, например, напылением. Вместе с повышением прочности поверхности она становится более хрупкой, то есть более восприимчивой к растрескиванию от теплового и химического воздействия, а также от ударов. Трещины анодированного покрытия при штамповке — отнюдь не редкое явление, и разработанные рекомендации тут не всегда помогают. Изобретение Первое документально зафиксированное использование анодирования произошло в 1923 году в Англии для защиты от коррозии деталей гидросамолета.

Изначально применялась хромовая кислота. Позднее в Японии была использована щавелевая кислота, однако сегодня в большинстве случаев для создания анодированного покрытия в составе электролита применяется классическая серная кислота, что значительно удешевляет процесс. Технология постоянно совершенствуется и развивается. Алюминий Анодированное покрытие выполняется для повышения коррозионной устойчивости и подготовки к покраске. А также, в зависимости от применяемой технологии - либо для увеличения шероховатости, либо для создания гладкой поверхности. При этом анодирование само по себе не способно существенно увеличить прочность изделий, изготовленных из этого металла. При контакте алюминия с воздухом или любым другим газом, содержащим кислород, металл естественным путем формирует на своей поверхности слой оксида толщиной 2-3 нм, а на сплавах его величина достигает 5-15 нм. Толщина анодированного покрытия алюминия составляет 15-20 микрон, то есть разница в два порядка 1 микрон равен 1000 нм. Хотя при помощи анодирования возникает плотное и равномерное покрытие, имеющиеся в нем микроскопические трещины могут привести к коррозии. Кроме этого, сам поверхностный защитный слой подвержен химическому распаду вследствие воздействия среды с высокими показателями кислотности.

Для борьбы с этим явлением применяются технологии, сокращающие количество микротрещин и внедряющие в состав оксида более стабильные химические элементы. Применение Применяются обработанные материалы весьма широко.

Анодирование, что это такое? (стр. 1 )

Осуществляется в процессе электролиза, когда эти изделия являются анодом. Анодируют, как правило, алюминий и его сплавы, при этом образуются оксидные плёнки толщиной 5 25 мкм,… … Энциклопедия техники анодирование — электрохимическое оксидирование , электролитическое нанесение оксидной плёнки на поверхность металлов, сплавов и полупроводников. Плёнка защищает изделие от коррозии, обладает электроизоляционными свойствами, служит хорошим основанием для… … Энциклопедический словарь Анодирование — Anodizing Анодирование. Формирование покрытия на металлической поверхности путем анодного окисления, наиболее часто применяемое для алюминия.

Или « оксидированием ».

Варьируя силу тока и использование специальных добавок-присадок, можно добиться практически любой окраски анодированного покрытия. Что дает анодирование Чем-то анодирование похоже на гальванические процессы, возникающие во время хромирования или оцинковки стали. Но есть существенная разница: исключено использование посторонних веществ, пусть даже похожих по свойствам и химическому составу. Оксидирование ведётся на основе самого металла, подвергаемого электрохимическому воздействию.

При анодировании процесс поддаётся регуляции, оксидному слою придаются заранее заданные свойства, а результатом служит прочность оксидируемого участка. Лучше всего защитный слой в результате анодирования образуется на таких металлах, как алюминий, титан, сталь, тантал. Главное же требование к технологии, чтобы металл имел только один оксид с высокими адгезивными свойствами. Но для обеспечения адгезии нужна пористая структура, которая обеспечит соприкосновение рабочей смеси с чистым металлом поверхности, что значительно ускоряет процесс оксидирования.

Получается, что при электрохимическом процессе могут образовываться два типа оксидных защитных покрытий, отличающиеся как назначением, так и строением. Первый тип — пористая поверхность оксидной плёнки. Получается при воздействии на металл кислых электролитов. Структурированная порами поверхность служит отличной основой для того, чтобы на неё легли лакокрасочные материалы, которые своей структурой, образующейся в процессе полимеризации основы, закрепляется во фракталах пор.

То есть анодированная поверхность способствует повышенной адгезии. Относится ко второму типу. Это самостоятельное защитное покрытие, которое защищает металл от контактов с внешней агрессивной средой. Впрочем, созданием защитных слоёв процесс анодирования не ограничивается.

Применяя разные материалы и меняя уровень напряжения, можно получить разные оттенки анодированной плёнки. Чем активно пользуются дизайнеры при оформлении интерьеров, когда облицовочным материалом служит алюминий. Устройства, оборудование, реактивы В промышленных масштабах анодирование делается в растворах серной кислоты разной концентрации. Они обеспечивают как большую скорость процесса, так и заданную глубину оксидной плёнки.

Делают их в течение не менее получаса, иногда помешивая получившийся раствор. После этого растворы отстаиваются в течение пятнадцати минут и фильтруют. Затем нужно приготовить электролит, смешав девять объемных частей питьевой соды с одной объемной частью раствора соли. Перед тем как проводить анодирование деталей, нужно тщательно зачистить наждачной бумагой или напильником, а потом обезжирить. После этого нужно провести химическое полирование. Для этого алюминиевая деталь помещается на десять минут в состав из 75 объемных долей ортофосфорной кислоты и 25 серной кислоты. Затем ее можно погружать в раствор электролита. Положительный заряд источника тока присоединяется к детали, а отрицательный — к токопроводящей емкости с электролитом.

Анодировка длится обычно примерно 90 минут.

У деталей, обработанных таким способом, есть две отрицательные особенности: Не очень высокий показатель антикоррозионной стойкости. Контактируя с химически агрессивной средой или металлом, анодированный слой подвергается воздействию кислорода. Невысокая степень защиты от механических воздействий. Острым наконечником вполне реально нанести анодированному слою механическое повреждение.

Процесс тёплого анодирования состоит из шести этапов: очистка поверхности детали от жира. Слои плёнки, полученной методом теплого анодирования, получаются исключительно красивыми. Такой алюминий лучше использовать в конструкциях, не подвергающихся резким внешним воздействиям. Кроме того, анодированный слой является отличной основой для повторного окрашивания из-за высочайшего показателя адгезии красителей. Нанесённая краска будет держаться очень долго.

Качество металла, обработанного таким образом, несравненно выше, чем при тёплом анодировании. Алюминий получает отличные физические характеристики: высокую прочность.

анодирование

Анодирование алюминия или его анодное окислениерассматривается многими предпринимателями, как одно из самых перспективных направлений обработки алюминия и его сплавов. Анодирование – это метод повышения коррозионной стойкости металлического изделия путем формирования слоя оксида на его поверхности. Предлагаем вам рассмотреть вопрос о том, что такое анодированный алюминий, какие существуют его разновидности, в каких сферах используется анодированный алюминий и можно ли анодировать этот материал своими руками.

Анодирование разных металлов, преимущества метода, оборудование

Оно также обладает следующими плюсами: Барьерная защита от коррозии, в том числе проникающего характера. Толстый оксидный слой предотвращает проникновение влаги к металлу, из-за чего может образоваться разрушающая коррозия. Механическая прочность и стойкость к истиранию. Пленка закрепляется на молекулярном уровне, что обеспечивает высокие механические показатели. Свойства диэлектрика. Сформированная на поверхности металла оксидная пленка практически не электропроводна. Отсутствие какого-либо негативного воздействия на окружающую среду. Покрытие не выделяет никаких летучих частиц, способных нанести вред человеку, животным или растениям.

Технология анодирования металла вместе с защитной оксидной пленкой также позволяет придавать изделиям различные цветовые оттенки. Это обеспечивается изменением концентрации солей и времени. Область применения Применимость анодирования очень разнообразна. Алюминиевые детали с таким покрытием используют в любом оборудовании и технике: Строительство.

Прям по Салтыкову-Шедрину излагаю… «мужик везде должен быть! Анодирование- процесс тонкий, требующий постоянного надзора за деталью. А людям выпить надо, побазарить… Вот и жгут они каждую вторую- третью деталь. И воевать с ними абсолютно бесполезно. В ответ всегда одно мычание… Соответственно, взял да и научился сам. И не жалею.

С этого места подробнее, пожалуйста! Химия и физика процесса. Как вы думаете, для чего железо ржавеет? Именно, не «почему» а «для чего»? Детский, казалось бы вопрос. Ответ вам покажется не менее странным: для того чтобы не ржаветь дальше! Дело в том, что скорость коррозии железа или стали, находящейся в агрессивной среде, очень сильно зависит от толщины слоя окисла. В начале процесса скорость очень высока, но по мере роста слоя ржавчины скорость «разъедания» металла падает в десятки и сотни раз. Потому то и стоят всевозможные морские сооружения десятилетиями, ржавые сверху донизу. Металл, ржавея, сам пытается заботиться о себе:-.

Причем это правило справедливо не только для железа, но и для других металлов. Чем толще окисной слой на поверхности металла, тем медленнее развивается коррозия. Правда не всем металлам повезло так же, как и железу: некоторые из них не умеют наращивать по настоящему толстый слой. По разным причинам, которые мы сейчас не будем обсуждать. Такими недостатками обладает и алюминий. С одной стороны, окисная пленка вырастает на его поверхности просто моментально, гораздо быстрее чем на железе. Именно поэтому алюминий так трудно паять! Но с другой стороны- эта пленка никогда не бывает толстой. Из за малой своей толщины она непрочна и неустойчива. По сути, она постоянно разрушается снаружи, и постоянно же нарастает внутри в процессе коррозии.

Увы, за счет потери массы основной детали. Надо также заметить, что не только толщина окисной пленки влияет на коррозионностойкость металла. Но также и ее структура, плотность. Плотная, твердая пленка лучше защищает металл чем мягкая и рыхлая. Таким образом, если научиться создавать на поверхности металла толстую и плотную окисную пленку, этого может оказаться вполне достаточно для полного торможения дальнейшей коррозии окисления. Именно это и получается в процессе анодирования алюминия. Причем, самые толстые и механически прочные пленки получаются именно при низкотемпературном тонкослойном анодировании. Которое мы и будем пытаться воспроизвести. Как это выглядит? В процессе анодирования на поверхности металла выделяется кислород и нарастает слой оксида алюминия Al2O3.

Между прочим, это- корунд! Тот самый, который приклеивают на наждачную бумагу. Это к вопросу о твердости… Когда его толщина становится достаточной, деталь заметно меняет окраску, приобретая выраженный темный оттенок. Это и служит сигналом к окончанию процесса. Вблизи качественный «холодный» анодный слой выглядит вот так: А если подобраться еще ближе с помощью микроскопа то можно рассмотреть слой и совсем близко. Вид на излом анодного слоя сбоку: Фото качественного слоя сверху: Как видите, все это подозрительно напоминает пчелиные соты. Так оно и есть. Хороший, твердый и качественный слой на микроуровне напоминает множество вертикальных трубочек, сросшихся друг с другом стенками. При этом сверху трубочки открыты- это важная их особенность. Диаметр трубочек крайне мал- 100-300 ангстрем.

Толщина стенки- тоже около 100-200 ангстрем. Кстати диаметр «трубочек»сильно зависит от температуры анодирования: чем холоднее, тем он меньше. А чем тоньше «трубочки», тем прочнее пленка, из них состоящая!. Но не всегда пленка имеет такой вид. Если анодный слой у нас получился рыхлый, непрочный, в основном, из за завышенной температуры процесса то и смотрится он совсем по другому. Вот так простым трезвым глазом. Царапины сделаны ногтем- настолько мала прочность анодного слоя: а так сверху под микроскопом: Как вы видите, именно в упорядоченности микроструктуры «пчелиных сот» кроется залог прочности анодного слоя! Точность выдерживания техпроцесса анодирования прежде всего- температуры! А значит- и высокой прочности анодного слоя! Два процесса, две большие разницы.

Есть два основных, отличающихся друг от друга процесса анодирования. Коренным образом их отличает лишь температура процесса. Хотя она, эта температура, влияет настолько сильно, что в итоге получаются очень разные результаты. В случае «теплого» процесса размеры «трубочек»велики, что ведет к двум следствиям: во первых анодный слой получается не очень прочным и твердым- это минус. Но во вторых- в «трубочки» большого диаметра легко ввести краситель , мельчайшие частицы которого еще проходят в эти «ворота». И таким образом- окрасить слой в любой цвет. Причем, что интересно: в качестве красителя применяются самые обычные анилиновые красители. Те, которыми красят джинсы и пасхальные яйца! К тому же существует очень простой способ обеспечить водостойкость подобного окрашивания. Достаточно лишь просто поварить окрашенную деталь в том же красителе, или после окраски обработать паром.

При этом верхушки «трубочек» закупориваются, оставляя краситель запертым внутри. После этого- вода уже не в силах вымыть краситель из анодного слоя. Несмотря на то что сам по себе краситель- водорастворим. Ну и что еще надо отметить- относительная «крупнотрубочность» слоя — это прекрасная основа для сцепления с краской или клеем. Такие детали можно красить нитро- или даже эпоксидными красками. Результат получается очень эстетичный и надежный в плане защиты от коррозии. Краска держится очень прочно. Теперь об особенностях «холодного» процесса. Как я уже упоминал, размер диаметр «трубочек» получается значительно меньше, чем в «теплых» условиях. Опять же из этого следуют две вещи: во первых прочность и твердость такого слоя гораздо выше!

Выше настолько, что ее смело можно пилить напильником- лишь при сильном нажиме, после растрескивания анодного слоя, напильник доберется до металла! Механическая износостойкость такого покрытия- бешеная! А что же вы хотели- это ведь корунд! Ну и во вторых- есть все же и минус. Хотя это как посмотреть. Дело в том, что опять же из за крайне малого диаметра «трубочек», частицы красителя попросту не могут в них протиснуться! Потому окрасить такой анодный слой с помощью анилиновых красителей невозможно. С другой стороны, анодный слой сам в процессе роста способен приобретать окраску. Ее оттенок зависит от состава алюминиевого сплава, и бывает от коричнево-зеленого до темно серого. Единственное что следует заметить, цвет у слоя появляется не при любой плотности тока процесса, а лишь начиная с некоторого значения примерно 1,5 ампера на кв дм.

При низких плотностях тока, анодный слой хоть и прочен, но бесцветен. Лично меня весьма устраивает способность анодного слоя «самоокрашиваться»- это экономит мои усилия по окраске. Тем более, что получающиеся оттенки- имхо, вполне подходят для подводных ружей. Алгоритмы процесса анодирования. Если делать это долго- пункт д не нужен. Обработка на пару в течении получаса. Холодный процесс: а обезжиривание детали, надежное закрепление ее в подвеске. Варка в дистиллированной воде или выдержка на пару. Пол часа. Немного об необходимости закрепления слоя.

В случае «теплого» процесса необходимость закрепления уплотнения слоя очевидна. Если этого не сделать- то при попадании детали в воду краска из незакупоренных «трубочек» попросту вымоется. И деталь станет обесцвеченной. Такой результат не устроит никого. Тут все просто. Но не только в эстетике дело. Дело в том, что разрез слоя с незакупоренными «трубочками» выглядит следующим образом: Механическую защиту он обеспечивает вполне достаточную- высота слоя ведь вполне приличная. А вот химическую- не так чтобы очень… Ведь «трубочки» открыты, и в них свободно заходит вода. И реальная толщина защитного слоя получается очень малой- это лишь «донышко» каждой из «трубочек». А такой тонкий защитный слой все же не способен хорошо защитить металл от коррозии.

Таким образом, уплотнение слоя необходимо для повышения защиты от коррозии при обоих процессах. Не ленитесь это делать! На практике это выглядит несложно: при наличии дистиллированной воды детали надо просто поварить в ней с пол часа. А при отсутствии дистиллированной воды- подержать детали на паровой бане то же время. Кстати, кухонная пароварка- роскошная вещь для этого! Варить в недистиллированной воде не рекомендуется- качество все же страдает. При «теплом» процессе после окраски варить в воде нельзя- поры анодного слоя закрываются не сразу, краситель успеет вымыться. Лучше держать на пару. Другое дело в данном случае- варить в самом красителе, до закрытия пор. Те же пол-часа.

Кстати пару слов о химии этого явления. Учебник по химии я скурил еще в 6 классе, так что не ждите формул :. Суть в том, что оксид алюминия Al2O3 при обработке паром варке в воде частично превращается в гидрат, при этом значительно увеличиваясь в объеме. Ну а коль стенки наших «трубочек»распухают, становятся толще и толще, то в итоге они и перекрывают собой отверстие «входа». Вот так на микроуровне и обстоят дела с уплотнением анодного слоя. Закон Ома, температура и некоторые особенности процесса. У «холодного» процесса есть целый ряд интересных особенностей и зависимостей, которые стоит знать. Знание их- залог грамотного понимания своих ошибок, а значит, и способов их исправления. Потому, вкратце- о них. Это- аксиома.

Дело в том, что температура на поверхности детали и в углу ванны, где стоит ваш термометр,- это две большие разницы. Ведь во время процесса выделяется весьма приличная энергия в виде тепла. Если у вас нет принудительного перемешивания електролита- не верьте термометру! Из любопытства- попробуйте измерить температуру електролита в конвективном потоке над вашей деталью- по ней и ориентируйтесь. Тем более, что и достичь ее не так уж и сложно. Ведь в бытовом морозильнике достижима и температура -24 градуса. А если на улице- крутая зима, то и -40 не предел… Но на практике такие температуры мало применимы. Дело в том, что при температуре ниже -10 резко возрастает электрическое сопротивление електролита. Возрастает настолько, что для выхода на необходимую для процесса плотность тока, требуется гораздо более высокое напряжение на вашем блоке питания. Понадобятся и 60, и 80 и даже 100 вольт.

Категорически не советую делать такой блок питания- эти напряжения опасны для жизни. К тому же, по мере прогрева электролита, столь высокие напряжения могут привести к чрезмерному току через деталь. Не уследите вовремя за ростом тока- и ваша деталь растравится. Потому и советую начинать процесс при температуре не ниже -10.

Особенность — использование одновременно нескольких электролитов в определенном соотношении, при котором их свойства будут усиливаться. Подавляющее большинство составов, а также методика их применения защищены патентами. Главные плюсы анодированного металла Анодированная сталь выгодно отличается от незащищенных изделий следующими качествами: Стойкость к коррозии. Барьерная пленка препятствует контакту металла с влагой, а также химически активными соединениями. Высокая прочность. Защитный слой обладает высокой устойчивостью к механическим повреждениям. Диэлектрические свойства. Оксидная пленка практически не проводит ток. Обработанная посуда приобретает устойчивость к интенсивным перепадам температур. В процессе приготовления пища не подгорает. Декоративные свойства. Некоторые металлы подвергают обработке для изменения визуальных качеств. В основном, для этих целей используют алюминий как обладающий хорошим соединением с кислородом. Добавление определенных солей в раствор электролита позволит поменять исходный цвет, придавая окрашенным изделиям ровные и глубокие оттенки. Оксидирование также позволяет скрыть незначительные дефекты поверхности, такие как царапины или потертости.

Выбирать тот или иной вариант следует в зависимости от ваших целей и особенностей запланированных эксплуатационных мероприятий. Жесткий вариант достаточно часто выбирается для обработки боковой поверхности колесных конструкций. В результате деталь получается более прочной и устойчивой к внешнему воздействию. Важно помнить о том, что рассматриваемая обработка имеет и свои минусы. В частности, речь идет о том, что у обработанной детали существенно снижается свойство сцепления. Следует быть готовыми и к тому, что обработка данного типа в некоторых случаях может привести к возникновению трещин. Поэтому если для вашего изделия такие негативные последствия являются крайне нежелательными или же вовсе недопустимыми, следует отдать предпочтение другим типам обработки или же оставить металлическую деталь в ее изначальном виде. Анодирование алюминия, технология которого была рассмотрена выше, должно использоваться только в том случае, если вы уверены в необходимости и качестве итогового результата.

Анодированные украшения: особенности технологии, советы по выбору и уходу

Анодирование, что это такое? (стр. 1 ) Анодирование – это метод повышения коррозионной стойкости металлического изделия путем формирования слоя оксида на его поверхности.
Анодированный алюминий Смотрите видео онлайн «Подробно об анодировании-нужно ли анодирование на деталях из алюминия?
Анодирование, что это такое? (стр. 1 ) | Авторская платформа Его характеристики можно улучшить благодаря анодированию, в результате которого на поверхности образуется прочный и устойчивый защитный слой. Что такое анодирование.
Анодирование алюминия: основы Анодирование производится посредством процесса электролитической диссоциации, когда покрываемую деталь присоединяют к электроду и погружают ее в электролит.

Анодированный алюминий, полученный в домашних условиях

В процессе поверхность металла может быть окрашена. Данный метод позволяет добиться более толстого и прочного защитного слоя. Процесс анодирования в сернокислом электролите подразумевает снижение температуры до — 10С. В зависимости от состава сплава металл приобретает тот или иной цвет. Покрытие металла после анодирования становится невероятно прочным и износостойким.

Оксид алюминия является плохим проводником электричества, а поры, хотя и заполнены электролитом, имеют весьма малый диаметр, поэтому сопротивление анода во много раз выше сопротивления на катоде и сопротивления электролита. Изменение потенциалов самих электродов вследствие поляризации незначительно по сравнению с прикладываемым напряжением, поэтому изменение напряжения во времени при постоянной плотности тока определяется изменением омического сопротивления анода. Если проводить процесс при постоянной плотности тока, то есть при постоянной скорости формирования оксида, то рост пленки будет тормозиться возрастающим сопротивлением электролита в порах. Для дальнейшего роста требуется либо увеличение прилагаемого напряжения, либо растравливание пор. На практике преобладает второй фактор.

Этому способствует значительное выделение теплоты в процессе анодного окисления, причем основная часть тепла выделяется в барьерном слое на дне пор. Поэтому рост оксидной пленки при постоянной плотности тока сопровождается непрерывным увеличением скорости растворения оксида. Предельная толщина пленки достигается тогда, когда скорость ее образования под действием электрического тока станет равна скорости химического растворения электролитом. Чрезмерный перегрев электролита у основания пор и местное повышение его агрессивности может привести к растравливанию оксидного слоя и получению некачественных покрытий с повышенной пористостью и слабой адгезии к металлу. Скорость химического растворения оксида алюминия сравнительно велика, особенно в агрессивных растворах серной кислоты. Растворение оксида выражается не только в стравливании поверхностного слоя формирующегося покрытия, но и в увеличении его пористости. Присутствие в алюминиевых сплавах меди и магния также несколько увеличивает скорость растворения оксида в серной кислоте. Таким образом, соотношение скоростей формирования оксида и его химического растворения предопределяет и толщину и структуру получаемых анодно-окисных покрытий на алюминии. Ввиду того, что образующийся оксидный слой имеет высокое сопротивление, электрический ток в процессе оксидирования автоматически перераспределяется на те участки, где сопротивление меньше.

Тем самым создаются условия для получения равномерного по толщине оксидного слоя на деталях сложной конфигурации. Поэтому рассеивающая способность электролитов для анодного оксидирования алюминия и его сплавов весьма высока. Однако следует учитывать, что при недостаточном отводе тепла от формирующегося покрытия возникает возможность локального растравливания отдельных участков покрытия, которая не будет компенсирована увеличением на этих участках плотности тока. Это приведет к локальным дефектам покрытия, вплоть до полного его отсутствия. Постепенно неудовлетворительные условия для формирования покрытия могут охватить и всю деталь. Он уменьшается с ростом температуры и продолжительности электролиза. Свойства оксидных покрытий на анодированном алюминии. Аноднооксидное покрытие на поверхности алюминия и его сплавов благотворно сказывается на его коррозионной стойкости во многих средах, где оксид более стоек, чем основной металл. Оно успешно защищают алюминий от атмосферной коррозии, в нейтральных и слабокислых растворах неорганических солей: стойкость анодно-окисных покрытий в морской атмосфере и морской воде подтверждена многолетней эксплуатацией оксидированных алюминиевых деталей.

На рисунке 13 показаны коррозионные кривые для чистого алюминия и алюминия с аноднооксидными покрытиями. Рисунок 13 — Коррозионные кривые для чистого и анодированного алюминия: SAA - покрытие с уплотнением в воде, IC - покрытие с наполнением в неорганическом красителе, BD - покрытие с наполнением в органическом красителе, EC - электрохимическое окрашивание, Bare Al - чистый алюминий. Для чистого алюминия коррозионное сопротивление составляет 0,5953 кОм, ток коррозии 130,86 мА. После анодирования коррозионное сопротивление возрастает до 24,216 кОм, а ток коррозии падает до 7,494 мА. В этом же ряду снижается и коррозионная стойкость алюминия. Микроизображения поверхности анодированного алюминия с различными видами уплотнения и наполнения до и после коррозии приведены на рисунке 14. Рисунок 14 — Микроизображения в режиме топографического контраста аноднооксидных покрытий: SAA - анодирование металла с уплотнением в воде; BD - с наполнением в черном органическом красителе; IC - с наполнением в неорганическом красителе; EC - с электрохимическим окрашиванием в солях олова. Наилучшая коррозионная стойкость отмечена для покрытий, полученных на чистом алюминии. Добавление к алюминию меди, кремния, железа, магния, марганца улучшают механические свойства сплава, но ухудшают защитную способность получаемых оксидных покрытий.

Кремний и интерметаллид Al6Mg окисляются гораздо медленнее, чем алюминий, и остаются в виде вкраплений в покрытии.

Стоит отметить, что обработка может быть различной по степени своей жесткости. Выбирать тот или иной вариант следует в зависимости от ваших целей и особенностей запланированных эксплуатационных мероприятий. Жесткий вариант достаточно часто выбирается для обработки боковой поверхности колесных конструкций. В результате деталь получается более прочной и устойчивой к внешнему воздействию. Важно помнить о том, что рассматриваемая обработка имеет и свои минусы.

В частности, речь идет о том, что у обработанной детали существенно снижается свойство сцепления. Следует быть готовыми и к тому, что обработка данного типа в некоторых случаях может привести к возникновению трещин. Поэтому если для вашего изделия такие негативные последствия являются крайне нежелательными или же вовсе недопустимыми, следует отдать предпочтение другим типам обработки или же оставить металлическую деталь в ее изначальном виде.

Ванночка должна быть выполнена из алюминия и соединяется с минусом источника тока через последовательно включенный амперметр можно использовать авометр в режиме амперметра и переменный резистор для регулирования тока. Подвешенная деталь не должна касаться ванночки, а минимальное расстояние между ними должно быть порядка 10 мм. В ванночку заливается электролит до такого уровня, чтобы им была покрыта вся деталь, и деталь соединяется с плюсом источника тока. В процессе анодирования видно, что вся поверхность детали начинает покрываться пузырьками газа и легким серым налетом, что указывает на начало процесса. Эту плотность тока нужно умножить на площадь поверхности детали, выраженную в квадратных сантиметрах, и полученное значение тока поддерживается переменным резистором по амперметру. Продолжительность анодирования составляет от одного до полутора часов, ее можно определять и визуально. Когда вся деталь покроется ровным голубовато-серым налетом, процесс анодирования можно считать законченным. Если будет использоваться регулируемый источник тока, необходимость в переменном резисторе отпадает. После окончания анодирования деталь промывается в проточной воде, а затем при помощи ватного тампона, смоченного теплым раствором марганцовокислого калия, очищается от продуктов электрохимической реакции. Поверхность детали после этого становится гладкой и приобретает светло-серый оттенок. Раствор марганцовки должен быть густо темным, но в нем не должно быть нерастворившихся крупинок. Затем деталь вновь промывается в проточной воде и высушивается.

Анодирование алюминия: каким бывает и какие результаты дает

Анодирование алюминия — наиболее эффективный способ защиты поверхности профиля от коррозии, исключающий отслоение покрытия и подпленочную коррозию. Анодирование производится посредством процесса электролитической диссоциации, когда покрываемую деталь присоединяют к электроду и погружают ее в электролит. Анодирование — процесс создания оксидной плёнки на поверхности некоторых металлов и сплавов путём их анодной поляризации в проводящей среде. Что такое анодирование алюминия. Анодирование представляет собой метод повышения коррозионной стойкости металлических деталей за счет образования на их поверхности оксидного слоя. Роль анодирования алюминия в защите от коррозии, повышении прочности и эстетической привлекательности алюминиевых изделий. Анодирование алюминия — наиболее эффективный способ защиты поверхности профиля от коррозии, исключающий отслоение покрытия и подпленочную коррозию.

Чем отличается анодированный алюминий от обычного

Анодирование металла выполняется с целью улучшения его прочностных и эстетических качеств, повышения коррозийной устойчивости и срока службы. Обычно анодирование проводят при постоянном токе в гальваностатическом или потенциостатическом режиме. Анодирование производится посредством процесса электролитической диссоциации, когда покрываемую деталь присоединяют к электроду и погружают ее в электролит.

Как анодировать металл в домашних условиях?

Что такое анодированная металлическая поверхность. Название анодирования носит процесс, протекающий при использовании электролита и электрического тока различной величины и позволяющий получить на изделии прочную оксидную пенку. Анодирование алюминиевых и стальных конструкций;Статьи/Статьи по алюминиевым конструкциям. По своей сути анодирование является востребованным процессом для металлов из-за его впечатляющей способности повышать коррозионную стойкость. Что такое анодирование алюминиевого профиля. Если обратиться к научным терминам, то анодирование представляет собой процесс создания оксидной пленки на поверхности металлов и сплавов путём их анодной поляризации в проводящей среде. Описание значения термина "анодирование" и ответ на вопрос, "Что такое анодирование?".

Анодирование (техническая информация)

Для чего необходимо анодирование Если вас интересует Узнайте, что такое анодирование и анодированное покрытие. Что такое анодирование. Анодированием называется электролитический процесс, который используется для увеличения толщины слоя природных окислов на поверхности изделий. Анодирование металла выполняется с целью улучшения его прочностных и эстетических качеств, повышения коррозийной устойчивости и срока службы. Анодирование — это процесс, который используется с 1920-х годов для защиты и придания цвета металлическим поверхностям.

Похожие новости:

Оцените статью
Добавить комментарий