Зачем физики ищут симметрию между элементарными частицами, и почему для работы теории струн нужно двадцать шесть измерений. Основной проблемой теории струн является её незавершенность, то есть, нет какой-то единой теории, способной объяснить все процессы, происходящие во Вселенной, как например уравнение Эйнштейна для гравитации или уравнение Максвелла для электромагнетизма. Теория струн рассматривалась как возможная «теория всего», единая структура, которая могла бы объединить общую теорию относительности и квантовую механику, две теории, лежащие в основе современной физики. •Краткая история теории струн.
Теория струн
Квантовая теория струн | Теория струн естественно включает в себя и гравитацию с ее гипотетическим переносчиком — гравитоном. |
Что такое теория струн? | Теория струн. Кратко и понятно. В связи с этим видео возникла ассоциация с фразой из Библии о том, что во время Апокалипсиса "небеса свернутся, как свиток". |
Теория струн — кратко и понятно | После того, как плавная и предсказуемая Общая теория относительности оказалась в неразрешимом конфликте с плутоватой квантовой механикой, лучшие умы человечества, начиная с Эйнштейна, принялись формулировать новую теорию. |
Простыми словами: что такое теория суперструн? | Пикабу | Теория струн кратко и струн — это одна из революционных и самых противоречивых теорий в физике, целью которой является объединение всех частиц и фундаментальных сил природы в единую тео. |
Теория струн | Наука | Fandom | Теория струн естественно включает в себя и гравитацию с ее гипотетическим переносчиком — гравитоном. |
Современное состояние теории струн
Теория струн предполагает, что в нашей Вселенной существует гораздо больше измерений, чем четыре нам привычные: три пространственных плюс время. Зачем физики ищут симметрию между элементарными частицами, и почему для работы теории струн нужно двадцать шесть измерений. Теория струн позволила устранить эту проблему, хотя они и не опирается на теорию поля. Теория струн воспринималась как теория ядерного взаимодействия (в ядре атома удерживаются нейтроны и протоны). Не так давно физический мир облетела новость: знаменитая теория струн несовместима с существованием тёмной энергии, какой её себе представляет большинство космологов. Теория струн воспринималась как теория ядерного взаимодействия (в ядре атома удерживаются нейтроны и протоны).
Теория струн, или Теория всего
Теория струн, или Теория всего | Самые интересные и оперативные новости из мира высоких технологий. |
Мы заколебались: объясняем простым языком теорию струн | Теория струн кратко и струн — это одна из революционных и самых противоречивых теорий в физике, целью которой является объединение всех частиц и фундаментальных сил природы в единую тео. |
Популярно о теории струн | Теория струн позволила устранить эту проблему, хотя они и не опирается на теорию поля. |
Что такое Теория струн и существует ли 10-ое измерение | Самые интересные и оперативные новости из мира высоких технологий. |
Теория струн простым языком
Что такое теория струн, какие пять основных элементов в нее входят, является ли она теорией всего, какие у нее недостатки в статье на Теория струн применима к познанию строения микромира не в том смысле, что там кругом висят верёвочки, а что описание происходящих в микромире процессов математически сходно с описанием неких “струн”. Понятно, что с математиче ской точки зрения с гладкими поверхностями работать гораздо лучше и плодотворнее, чем с сингулярными — в этом объяснение успехов математи ческого аппарата теории струн.
Мы заколебались: объясняем простым языком теорию струн
Дамир Зарипов Профи 683 , закрыт 6 лет назад Арсений Енин Мыслитель 5536 10 лет назад Теория струн — направление теоретической физики, изучающее динамику и взаимодействия не точечных частиц, а одномерных протяжённых объектов, так называемых квантовых струн. Теория струн сочетает в себе идеи квантовой механики и теории относительности, поэтому на её основе, возможно, будет построена будущая теория квантовой гравитации. Данный подход, с одной стороны, позволяет избежать таких трудностей квантовой теории поля, как перенормировка, а с другой стороны, приводит к более глубокому взгляду на структуру материи и пространства-времени.
Читайте также: Ученые утверждают, что много кофе сердцу не вредит Конечный вариант принципа суперструн разработан Эдвардом Виттеном и называется «м-теория», согласно которой для объединения всех различных версий суперструнной теории следует ввести 11-тое измерение. На этом, пожалуй, можно и закончить. Работы по решению проблем и доработки имеющейся математической модели усердно ведутся физиками-теоретиками разных стран мира. Возможно, вскоре мы наконец-то сможем понять структуру окружающего нас мира, однако оглядываясь на объем и сложность вышесказанного, очевидно, что полученное описание мира не будет понятно без определенной базы знаний в области физики и математики.
Мечты об окончательной теории: физика в поисках самых фундаментальных законов природы: Пер. Теории струн посвящена 9-я глава «Контуры окончательной теории». Грин Б. Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории : Пер. Ткань космоса: Пространство, время и текстура реальности. The Fabric of the Cosmos. Малышенко, А.
Панова ; перевод Б. Митио Каку. Параллельные миры. Об устройстве мироздания, высших измерениях и будущем Космоса: Пер. Уравнение Бога. Рэндалл Л. Warped Passages. Сасскинд Л.
The Black Hole War. Теории струн посвящены главы с 18-й и далее. Хокинг С. Теории струн посвящена 10-я глава «Объединение физики». Теория струн и скрытые измерения Вселенной: Пер.
Гравитация, о которой догадался еще Ньютон , никак не укладывалась в стандартную модель физики. Разбирая мир до микрочастиц, ученым приходилось делать вид, будто нет никакой силы притяжения между звездами, галактиками, планетами и Солнцем. Теория струн стала вмиг популярна, потому что она выступила объединяющим мостиком между квантовой механикой и общей теорией относительности, которые имели противоречия и никак не могли ужиться друг с другом. Объяснить все и сразу — это была давняя мечта Эйнштейна и многих других ученых, осознававших, что существующие теории не решают всех загадок макро- и микромира. Некоторые даже думали, что все законы физики возможно объяснить одним уравнением — осталось лишь догадаться, что это за формула. Почти приблизились к этому Джоэль Шерк и Джон Шварц. Позже они с обидой говорили, что теория струн изначально потерпела неудачу потому, что физики недооценили ее масштаб. Игры нашего разума Какая польза от этих знаний, спросите вы? Ну, во-первых, она раздвигает границы воображения. Люди задумались над тем, что мир может быть устроен совсем не так, как кажется: возможно, Вселенная суперсимметрична и имеет 11 измерений. Не исключено, что есть частицы, которые еще не открыты и мы о них не догадываемся. Теория струн — это лишь теоретическая физика, отталкивающаяся от математических расчетов и родившаяся из любопытства ученых, любящих задавать вопрос «А что, если?.. Несколько досадных нестыковок и противоречий мешают ее сторонникам спать по ночам и восклицать на публику: «Осанна! Мы наконец-то объяснили все!
Что такое теория струн?
Причина, по которой теория струн является потенциальной теорией всего, заключается в том, что она предсказывает, что все формы материи состоят из струн, и, следовательно, все на самом деле состоит из одного и того же «вещества». Как и любая неподтвержденная теория, теория струн имеет ряд проблем, которые говорят о том, что она требует доработки. Теория струн расширила симметрию до суперсимметрии, из которой следовало, что моды колебаний струны реализуются парами суперпартнёров, спин которых отличается на. Зачем физики ищут симметрию между элементарными частицами, и почему для работы теории струн нужно двадцать шесть измерений.
Теория струн. Теория всего
Майкл Дуглас разработал ландшафтную теорию струн с понятием ложного вакуума. Теория квантовых струн Ключевыми объектами в новой научной парадигме являются тончайшие объекты, которые своими колебательными движениями сообщают массу и заряд всякой элементарной частице. Основные свойства струн согласно современным представлениям: Длина их чрезвычайно мала — около 10-35 метров. В подобном масштабе становятся различимы квантовые взаимодействия; Однако в обыкновенных лабораторных условиях, которые не имеют дела с такими мелкими объектами, струна абсолютно неотличима от безразмерного точечного объекта; Важной характеристикой струнного объекта является ориентация. Струны, обладающие ей, имеют пару с противоположным направлением. Существуют также неориентированные экземпляры. Струны могут существовать как в виде отрезка, ограниченного с обоих концов, так и в виде замкнутой петли.
Причем возможны такие превращения: Отрезок или петля могут «размножиться», дав начало паре соответствующих объектов; Отрезок дает начало петле, если часть его «закольцуется»; Петля разрывается и становится открытой струной; Два отрезка обмениваются сегментами. Прочие фундаментальные объекты В 1995 году оказалось, что не одни только одномерные объекты являются кирпичиками нашего мироздания. Было предсказано существование необычных формаций — бранов — в виде цилиндра или объемного кольца, которые имеют такие особенности: Они в несколько миллиардов раз меньше атомов; Могут распространяться через пространство и время, имеют массу и заряд; В нашей Вселенной они представляют собой трехмерные объекты.
Чтобы представить себе это, надо вообразить струну размером с дерево, тогда атом должен быть размером со всю видимую Вселенную.
В этом случае мы сможем оценить всю безумную малость этой энергетической колеблющейся струны. Другая особенность суперструн — они, по мнению ученых, существуют в одиннадцатимерном пространстве. Что такое одиннадцать измерений, представить наглядно невозможно. Я могу объяснить, что такое пять измерений.
Если представить водопроводный шланг, по которому насекомое спокойно может передвигаться вдоль и поперек — это нормальное наше измерение. Представьте, что эта трубочка свернута до планковской длины волны.
Она предлагает полное описание с самого начала. Во-вторых, среди возможных вибраций струны есть одна, обладающая всеми нужными свойствами для того, чтобы быть квантовой частицей гравитационного поля. Исследования выявили свойства, которыми будет обладать гипотетическая частица — получившая название гравитон, — соответствующая квантовому гравитационному полю. Было показано, что гравитон должен быть безмассовым, не иметь заряда и обладать квантовомеханическим свойством, известным как спин-2. В-третьих, как бы ни была радикальна теория струн, она идёт по протоптанному пути, известному в истории физики. Специальная теория относительности расширяет наше понимание мира высоких скоростей; общая теория относительности идёт дальше и учитывает большие массы; квантовая механика и квантовая теория поля вводят нас в мир малых расстояний.
Понятия, привлекаемые этими теориями, и предсказываемые ими свойства непохожи ни на что известное ранее. Более того, если применять эти теории в привычных рамках доступных нам скоростей, размеров и масс, они сведутся к описаниям, открытым до XX столетия — к классической механике Ньютона и классическим полям Фарадея, Максвелла и других. Теория струн могла бы претендовать на существенный отрыв от своих предшественников и отступить от нарисованной схемы ниже. Замечательно, что этого не происходит. Теория струн достаточно революционна для преодоления барьеров физики двадцатого столетия. При этом она достаточно консервативна, чтобы прошедшие три столетия открытий смогли уютно разместиться в её математическом аппарате. Пространственные измерения В первые годы исследований по теории струн физики столкнулись с фатальными математическими изъянами, например, спонтанное возникновение или исчезновение энергии. В 1970-х многие думали, что от теории струн необходимо отказаться.
Но некоторые исследователи упорно придерживались другой точки зрения. В результате сложных исследований было выяснено, что проблемные свойства тесно связаны с числом пространственных измерений. В уравнениях теории струн нет изъянов во вселенной с девятью пространственными измерениями и одним временным, что в совокупности составляет десять измерений. Автор книги подмечает, что без технических подробностей будет тяжело или даже невозможно по крайней мере, для него объяснить, как это происходит. Так что здесь он дает некую техническую наводку. В теории струн есть одно уравнение, в котором присутствует вклад вида D - 10 умножить на проблему , где D — это число пространственно-временных измерений, а проблема — это некое математическое выражение, приводящее к проблемному физическому явлению, подобному ранее упомянутому нарушению закона сохранения энергии. Автор не может предложить никакого интуитивного, нетехнического объяснения, почему уравнение имеет именно этот вид. Но в вычислениях возникает именно оно.
Простое, но ключевое наблюдение состоит в том, что, если число измерений равно десяти, а не четырём, как можно было бы ожидать, вклад в уравнение становится 0 умножить на проблему. Поскольку умножение на ноль всегда даёт ноль, во вселенной с десятью пространственно-временными измерениями проблема исчезает. Именно поэтому физики, занимающиеся теорией струн, рассматривают вселенную, в которой более четырёх пространственно-временных измерений. В начале XX столетия в нескольких статьях математика Калуцы и физика Клейна было высказано предположение о существовании измерений, легко ускользающих от обнаружения. Они предсказывали, что в отличие от привычных пространственных измерений, простирающихся на большие или даже бесконечные расстояния, могут существовать дополнительные измерения, настолько малые и скрученные, что их очень трудно увидеть. На рисунке поверхность высокой трубочки имеет два измерения; длинное вертикальное измерение легко увидеть, а малое круговое измерение обнаружить труднее. Из предложения Калуцы—Клейна следует, что похожее различие между одними измерениями, большими и легко видимыми, и другими, малыми и слабо различимыми, может иметь место и для структуры самого пространства. Причина, по которой мы всё знаем о привычных трёх пространственных измерениях, может быть в том, что их протяжённость велика может даже бесконечны.
Однако если дополнительное пространственное измерение скручено и имеет чрезвычайно малый размер, то оно совершенно равноправно обычным нескрученным измерениям и при этом остаётся невидимым даже для самого мощного современного увеличивающего оборудования. Так начиналась теория Калуцы—Клейна, гипотеза о том, что наша Вселенная имеет больше трёх пространственных измерений. Если вернуться в 1920-е годы, откуда вообще возникла такая экзотическая идея? Калуца заинтересовался этим, потому что вскоре после публикации Эйнштейном общей теории относительности ему на ум пришла одна идея. Он обнаружил, что может модифицировать уравнения Эйнштейна и применить их ко вселенной с одним дополнительным пространственным измерением. Результат изучения модифицированных уравнений оказался захватывающим. Среди модифицированных уравнений Калуца обнаружил уравнения, уже применённые Эйнштейном для описания гравитации в трёх пространственных и одном временном измерениях. Но поскольку новая формулировка включала одно дополнительное пространственное измерение, Калуца обнаружил дополнительное уравнение.
Получив это уравнение, Калуца распознал в нём уравнение электромагнитного поля, обнаруженное Максвеллом полувеком ранее. Как показал Калуца, во вселенной с одним дополнительным пространственным измерением гравитация и электромагнетизм могут быть описаны единым образом как пространственно-временные искривления. Но гравитация рябит в привычных трёх пространственных измерениях, а электромагнетизм — в четвёртом. Огромной проблемой для гипотезы Калуцы стало объяснение того, почему мы не видим четвёртое пространственное измерение. Именно тогда Калуца предложил описанное выше решение: дополнительные измерения, если они достаточно малы, могут ускользать от фиксации нашими органами чувств и оборудованием. Однако последующие исследования показали, что программа Калуцы—Клейна сталкивается с некоторыми препятствиями, самым трудным из которых является невозможность встроить детальные свойства частиц материи, таких как электрон, в математическую структуру. В течение двух десятилетий предлагались и отвергались различные способы обойти эту проблему. Однако поскольку не было предложено ни одного подхода, свободного от этих недостатков, то к середине 1940-х годов идея объединения через дополнительные измерения практически была забыта.
Спустя тридцать лет возникла теория струн. Математический аппарат теории струн не просто разрешал существование во Вселенной дополнительных измерений, он требовал их присутствия. Теория струн возродила программу Калуцы—Клейна, и к середине 1980-х годов учёные во всём мире воодушевлённо полагали, что это только вопрос времени, когда теория струн приведёт к полному описанию всей материи и взаимодействий. Большие надежды В первые годы теории струн развитие происходило настолько быстро, что уследить за всеми новостями было практически невозможно. При таком возбуждении понятно, что некоторые теоретики заговорили о скорой революции в решении основных проблем фундаментальной физики: слиянии гравитации и квантовой механики, объединении всех сил в природе, выяснении происхождения Вселенной. Но более умудрённые физики полагали, что такие надежды преждевременны. Теория струн настолько насыщена, обширна и математически трудна, что спустя почти три десятилетия после первой эйфории современные учёные одолели лишь часть исследовательского пути. С учётом того, что мир квантовой гравитации в сотни миллиардов миллиардов раз меньше чем всё, что мы сегодня можем экспериментально измерить, дорога будет длинная, даже по самым скромным оценкам.
Теория струн и свойства частиц Один из самых основных вопросов всей физики стоит так: почему частицы, которые наблюдаются в природе, являются именно такими, а не какими-нибудь другими? Интерес к этому вопросу непросто академический, он отражает очень важный факт.
Сейчас, путем математических построений, ученые пришли к интересной идее — идее «суперструн». Чтобы представить себе это, надо вообразить струну размером с дерево, тогда атом должен быть размером со всю видимую Вселенную. В этом случае мы сможем оценить всю безумную малость этой энергетической колеблющейся струны. Другая особенность суперструн — они, по мнению ученых, существуют в одиннадцатимерном пространстве. Что такое одиннадцать измерений, представить наглядно невозможно. Я могу объяснить, что такое пять измерений. Если представить водопроводный шланг, по которому насекомое спокойно может передвигаться вдоль и поперек — это нормальное наше измерение.