Ещё такая мысль появилась: если обозначать века арабскими цифрами, то у читателей может сложиться впечатление, что текст писал кто-то довольно ленивый. Мы узнаем, как менялись цифры, используемые для обозначения веков, и какие резонансные эффекты они имели на развитие идеологии и культуры.
История Славянского летоисчисления
Некоторые предлагают использовать «фиктивные» буквы для обозначения нуля, но это не распространено и вызывает дополнительные трудности при определении века. Век 20-й и век 21-й. В чём отличия, какие знаки времени можно выделить? В статье перечислены обозначения римских цифр, рассмотрено, как их напечатать, используя клавиатуру, приведена таблица соответствия римских и арабских чисел от 1 до 1000 и т.д. *Именно поэтому абсолютно неверно утверждение о том, что в 2020 году Россия вступила в новое десятилетие XXI века. Смотреть бесплатно видео пользователя Elena *** в социальной сети Мой Мир. В результате, в династической истории XV–XVI веков мог и даже должен был возникнуть 53-летний РАЗРЫВ.
С какого года начался 21 век: с 2000 или с 2001?
Математические обозначения: Прошлое и будущее / Хабр | В середине XIX века аристократы наряжали рождественскую елку и соревновались, чья выше и богаче украшена. |
10. РЕФОРМА ЗАПИСИ ДАТ В XVI — НАЧАЛЕ XVII ВЕКА | История средних веков: эпоха средневековья. |
Наша эра - Common Era
Лексическое ядро... Мир имен и названий...
И получаете ноль баллов! Присмотритесь к списку повнимательнее и уловите логику. Подсказка: десятилетие равно 10 лет.
Как и в ситуации с любым обычным языком, математические записи практически всегда выглядят одинаково. Компьютеры Вот вопрос: можно ли сделать так, чтобы компьютеры понимали эти обозначения?
Это зависит от того, насколько они систематизированы и как много смысла можно извлечь из некоторого заданного фрагмента математической записи. Ну, надеюсь, мне удалось донести мысль о том, что нотация развивалась в результате непродуманных случайных исторических процессов. Было несколько людей, таких как Лейбниц и Пеано, которые пытались подойти к этому вопросу более системно. Но в основном обозначения появлялись по ходу решения каких-то конкретных задач — подобно тому, как это происходит в обычных разговорных языках. И одна из вещей, которая меня удивила, заключается в том, что по сути никогда не проводилось интроспективного изучения структуры математической нотации. Грамматика обычных разговорных языков развивалась веками. Без сомнения, многие римские и греческие философы и ораторы уделяли ей много внимания.
И, по сути, уже примерно в 500 года до н. Панини удивительно подробно и ясно расписал грамматику для санскрита. Фактически, грамматика Панини была удивительно похожа по структуре на спецификацию правил создания компьютерных языков в форме Бэкуса-Наура , которая используется в настоящее время. И были грамматики не только для языков — в последнее столетие появилось бесконечное количество научных работ по правильному использованию языка и тому подобному. Но, несмотря на всю эту активность в отношении обычных языков, по сути, абсолютно ничего не было сделано для языка математики и математической нотации. Это действительно довольно странно. Были даже математики, которые работали над грамматиками обычных языков.
Ранним примером являлся Джон Уоллис, который придумал формулу произведения Уоллиса для числа пи, и вот он писал работы по грамматике английского языка в 1658 году. Уоллис был тем самым человеком, который начал всю эту суматоху с правильным использованием "will" или "shall". В начале 20 века в математической логике говорили о разных слоях правильно сформированного математического выражения: переменные внутри функций внутри предикатов внутри функций внутри соединительных слов внутри кванторов. Но не о том, что же это всё значило для обозначений выражений. Некоторая определённость появилась в 50-е годы 20 века, когда Хомский и Бакус, независимо разработали идею контекстно-свободных языков. Идея пришла походу работы над правилами подстановки в математической логике, в основном благодаря Эмилю Посту в 20-х годах 20 века. Но, любопытно, что и у Хомского, и у Бакуса возникла одна и та же идея именно в 1950-е.
И он заметил, что алгебраические выражения могут быть представлены в контекстно-свободной грамматике. Хомский применил эту идею к обычному человеческому языку. И он отмечал, что с некоторой степенью точности обычные человеческие языки так же могут быть представлены контекстно-свободными грамматиками. Конечно, лингвисты включая Хомского, потратили годы на демонстрацию того, насколько всё же эта идея не соответствует действительности. Но вещь, которую я всегда отмечал, а с научной точки зрения считал самой важной, состоит в том, что в первом приближении это всё-таки истина — то, что обычные естественные языки контекстно-свободны. Однако никто из них не рассматривал вопрос разработки более продвинутой математики, чем простой алгебраический язык. И, насколько я могу судить, практически никто с тех времён не занимался этим вопросом.
Но, если вы хотите посмотреть, сможете ли вы интерпретировать некоторые математические обозначения, вы должны знать, грамматику какого типа они используют. Сейчас я должен сказать вам, что считал математическую нотацию чем-то слишком случайным для того, чтобы её мог корректно интерпретировать компьютер. В начале девяностых мы горели идеей предоставить возможность Mathematica работать с математической нотацией. И по ходу реализации этой идеи нам пришлось разобраться с тем, что происходит с математической нотацией. Нил Сойффер потратил множество лет, работая над редактированием и интерпретацией математической нотации, и когда он присоединился к нам в 1991, он пытаться убедить меня, что с математической нотацией вполне можно работать — как с вводом, так и с выводом. Вопрос заключался во вводе данных. На самом деле, мы уже кое-что выяснили для себя касательно вывода.
Мы поняли, что хотя бы на некотором уровне многие математические обозначения могут быть представлены в некоторой контекстно-свободной форме. Поскольку многие знают подобный принцип из, скажем, TEX, то можно было бы всё настроить через работу со вложенными структурами. Но что насчёт входных данных? Один из самых важных моментов заключался в том, с чем всегда сталкиваются при парсинге: если у вас есть строка текста с операторами и операндами, то как задать, что и с чем группируется? Итак, допустим, у вас есть подобное математическое выражение. Чтобы это понять, нужно знать приоритеты операторов — какие действуют сильнее, а какие слабее в отношении операндов. Я подозревал, что для этого нет какого-то серьёзного обоснования ни в каких статьях, посвящённых математике.
И я решил исследовать это. Я прошёлся по самой разнообразной математической литературе, показывал разным людям какие-то случайные фрагменты математической нотации и спрашивал у них, как бы они их интерпретировали. И я обнаружил весьма любопытную вещь: была удивительная слаженность мнений людей в определении приоритетов операторов. Таким образом, можно утверждать: имеется определённая последовательность приоритетов математических операторов. Можно с некоторой уверенностью сказать, что люди представляют именно эту последовательность приоритетов, когда смотрят на фрагменты математической нотации. Обнаружив этот факт, я стал значительно более оптимистично оценивать возможность интерпретации вводимых математических обозначений. Один из способов, с помощью которого всегда можно это реализовать — использовать шаблоны.
То есть достаточно просто иметь шаблон для интеграла и заполнять ячейки подынтегрального выражения, переменной и так далее. И когда шаблон вставляется в документ, то всё выглядит как надо, однако всё ещё содержится информация о том, что это за шаблон, и программа понимает, как это интерпретировать. И многие программы действительно так и работают. Но в целом это крайне неудобно. Потому что если вы попытаетесь быстро вводить данные или редактировать, вы будете обнаруживать, что компьютер вам бикает beeping и не даёт делать те вещи, которые, очевидно, должны быть вам доступны для реализации. Дать людям возможность ввода в свободной форме — значительно более сложная задача. Но это то, что мы хотим реализовать.
Итак, что это влечёт? Прежде всего, математический синтаксис должен быть тщательно продуманным и однозначным. Очевидно, получить подобный синтаксис можно, если использовать обычный язык программирования с основанным на строках синтаксисом. Но тогда вы не получите знакомую математическую нотацию. Вот ключевая проблема: традиционная математическая нотация содержит неоднозначности. По крайней мере, если вы захотите представить её в достаточно общем виде. Возьмём, к примеру, "i".
Что это — Sqrt[-1] или переменная "i"? В обычном текстовом InputForm в Mathematica все подобные неоднозначности решены простым путём: все встроенные объекты Mathematica начинаются с заглавной буквы. Но заглавная "I" не очень то и похожа на то, чем обозначается Sqrt[-1] в математических текстах. И что с этим делать? И вот ключевая идея: можно сделать другой символ, который вроде тоже прописная «i», однако это будет не обычная прописная «i», а квадратный корень из -1. Можно было бы подумать: Ну, а почему бы просто не использовать две «i», которые бы выглядели одинаково, — прям как в математических текстах — однако из них будет особой? Ну, это бы точно сбивало с толку.
Вы должны будете знать, какую именно «i» вы печатаете, а если вы её куда-то передвинете или сделаете что-то подобное, то получится неразбериха. Итак, значит, должно быть два "i". Как должна выглядеть особая версия этого символа? У нас была идея — использовать двойное начертание для символа. Мы перепробовали самые разные графические представления. Но идея с двойным начертанием оказалась лучшей. В некотором роде она отвечает традиции в математике обозначать специфичные объекты двойным начертанием.
Так, к примеру, прописная R могла бы быть переменной в математических записях. А вот R с двойным начертанием — уже специфический объект, которым обозначают множество действительных чисел. Таким образом, "i" с двойным начертанием есть специфичный объект, который мы называем ImaginaryI. Вот как это работает: Идея с двойным начертанием решает множество проблем. В том числе и самую большую — интегралы. Допустим, вы пытаетесь разработать синтаксис для интегралов. Один из ключевых вопросов — что может означать "d" в интеграле?
Что, если это параметр в подынтегральном выражении? Или переменная? Получается ужасная путаница. Всё становится очень просто, если использовать DifferentialD или "d" с двойным начертанием. И получается хорошо определённый синтаксис. Вот как это работает: Оказывается, что требуется всего лишь несколько маленьких изменений в основании математического обозначения, чтобы сделать его однозначным. Это удивительно.
И весьма здорово. Потому что вы можете просто ввести что-то, состоящее из математических обозначений, в свободной форме, и оно будет прекрасно понято системой. И это то, что мы реализовали в Mathematica 3. Конечно, чтобы всё работало так, как надо, нужно разобраться с некоторыми нюансами. К примеру, иметь возможность вводить что бы то ни было эффективным и легко запоминающимся путём. Мы долго думали над этим. И мы придумали несколько хороших и общих схем для реализации подобного.
Одна из них — ввод таких вещей, как степени, в качестве верхних индексов. Наличие ясного набора принципов подобных этому важно для того, чтобы заставить всё вместе работать на практике. И оно работает. Вот как мог бы выглядеть ввод довольно сложного выражения: Но мы можем брать фрагменты из этого результата и работать с ними. И смысл в том, что это выражение полностью понятно для Mathematica, то есть оно может быть вычислено. Из этого следует, что результаты выполнения Out — объекты той же природы, что и входные данные In , то есть их можно редактировать, использовать их части по отдельности, использовать их фрагменты в качестве входных данных и так далее. Чтобы заставить всё это работать, нам пришлось обобщить обычные языки программирования и кое-что проанализировать.
Прежде была внедрена возможность работать с целым «зоопарком» специальных символов в качестве операторов. Однако, вероятно, более важно то, что мы внедрили поддержку двумерных структур. Так, помимо префиксных операторов, имеется поддержка оверфиксных операторов и прочего. Если вы посмотрите на это выражение, вы можете сказать, что оно не совсем похоже на традиционную математическую нотацию. Но оно очень близко. И оно несомненно содержит все особенности структуры и форм записи обычной математической нотации. И важная вещь заключается в том, что ни у кого, владеющим обычной математической нотацией, не возникнет трудностей в интерпретации этого выражения.
Конечно, есть некоторые косметические отличия от того, что можно было бы увидеть в обычном учебнике по математике. К примеру, как записываются тригонометрические функции, ну и тому подобное. Однако я готов поспорить, что StandardForm в Mathematica лучше и яснее для представления этого выражения. И в книге, которую я писал много лет о научном проекте, которым я занимался, для представления чего бы то ни было я использовал только StandardForm. Однако если нужно полное соответствие с обычными учебниками, то понадобится уже что-то другое. Любое выражение я всегда могу сконвертировать в TraditionalForm. И в действительности TraditionalForm всегда содержит достаточно информации, чтобы быть однозначно сконвертированным обратно в StandardForm.
Но TraditionalForm выглядит практически как обычные математические обозначения. Со всеми этими довольно странными вещами в традиционной математической нотации, как запись синус в квадрате x вместо синус x в квадрате и так далее. Так что насчёт ввода TraditionalForm? Вы могли заметить пунктир справа от ячейки [в других выводах ячейки были скрыты для упрощения картинок — прим. Они означают, что есть какой-то опасный момент. Однако давайте попробуем кое-что отредактировать. Мы прекрасно можем всё редактировать.
Давайте посмотрим, что случится, если мы попытаемся это вычислить. Вот, возникло предупреждение. В любом случае, всё равно продолжим. Что ж, система поняла, что мы хотим. Фактически, у нас есть несколько сотен эвристических правил интерпретации выражений в традиционной форме. И они работают весьма хорошо. Достаточно хорошо, чтобы пройти через большие объёмы устаревших математических обозначений, определённых, скажем, в TEX, и автоматически и однозначно сконвертировать их в осмысленные данные в Mathematica.
И эта возможность весьма вдохновляет. Потому что для того же устаревшего текста на естественном языке нет никакого способа сконвертировать его во что-то значимое. Однако в математике есть такая возможность. Конечно, есть некоторые вещи, связанные с математикой, в основном на стороне выхода, с которыми существенно больше сложностей, чем с обычным текстом. Часть проблемы в том, что от математики часто ожидают автоматической работы. Нельзя автоматически сгенерировать много текста, который будет достаточно осмысленным. Однако в математике производятся вычисления, которые могут выдавать большие выражения.
Так что вам нужно придумывать, как разбивать выражение по строкам так, чтобы всё выглядело достаточно аккуратно, и в Mathematica мы хорошо поработали над этой задачей. И с ней связано несколько интересных вопросов, как, например, то, что во время редактирования выражения оптимальное разбиение на строки постоянно может меняться по ходу работы. И это значит, что будут возникать такие противные моменты, как если вы печатаете, и вдруг курсор перескакивает назад. Что ж, эту проблему, полагаю, мы решили довольно изящным образом. Давайте рассмотрим пример. Вы видели это? Была забавная анимация, которая появляется на мгновение, когда курсор должен передвинуться назад.
Возможно, вы её заметили. Однако если бы вы печатали, вы бы, вероятно, и не заметили бы, что курсор передвинулся назад, хотя вы могли бы её и заметить, потому что эта анимация заставляет ваши глаза автоматически посмотреть на это место. С точки зрения физиологии, полагаю, это работает за счёт нервных импульсов, которые поступают не в зрительную кору, а прямо в мозговой ствол, который контролирует движения глаз. Итак, эта анимация заставляет вас подсознательно переместить свой взор в нужное место. Таким образом, мы смогли найти способ интерпретировать стандартную математическую нотацию. Означает ли это, что теперь вся работа в Mathematica должна теперь проводиться в рамках традиционных математических обозначений? Должны ли мы ввести специальные символы для всех представленных операций в Mathematica?
Таким образом можно получить весьма компактную нотацию. Но насколько это разумно? Будет ли это читаемо? Пожалуй, ответом будет нет. Думаю, тут сокрыт фундаментальный принцип: кто-то хочет всё представлять в обозначениях, и не использовать ничего другого. А кому-то не нужны специальные обозначения. А кто-то пользуется в Mathematica FullForm.
Однако с этой формой весьма утомительно работать. Другая возможность заключается в том, что всему можно присвоить специальные обозначения. Получится что-то наподобие APL или каких-то фрагментов математической логики. Вот пример этого. Довольно трудно читать. Вот другой пример из оригинальной статьи Тьюринга, в которой содержатся обозначения для универсальной машины Тьюринга, опять-таки — пример не самой лучшей нотации. Она тоже относительно нечитабельная.
Думаю, эта проблема очень близка к той, что возникала при использовании очень коротких имён для команд. К примеру, Unix.
Созиген — александрийский астроном, создатель «юлианского» календаря, принятого Юлием Цезарем в 42 г. Теперь запомним несколько правил, зная которые, вы уже не будете путаться в датах: 1 правило: даты всех событий, произошедших до 1918 года, пишутся по старому стилю, а в скобках дается дата по новому — Григорианскому — календарю: 26 августа 7 сентября 1812 года.
Для этого нужна вот эта табличка: с 05. Проверим себя: царь Федор Иоаннович родился 18 марта 1584 года по юлианскому календарю. Смотрим в табличку — надо прибавить 10 дней. Итого по григорианскому календарю день рождения Федора Иоанновича — 28 марта 1584 года.
А вот Полтавская битва произошла 27 июня 1709 года. Сколько надо прибавить? Уже 11 дней. Получается 8 июля.
Год в век — перевод и таблица соответствия
Мы уже указывали, что эти даты всегда писались в виде I. Например, I. Сегодня такую дату, проставленную, скажем на рисунке XVI века, нам предлагают воспринимать как 1500 год. Однако, эта дата могла означать совсем не 1500, а 1553 год. Другими словами, не 1500, а 1553 год мог иметь в виду художник XVI века, когда проставлял эту дату на своем рисунке.
Так будет, если он пользовался старой традицией датировать рождение Христа 1053 годом в пересчете на новую эру. Тогда «500 год от рождения Христа» для него означал 1553 год по новой эре! Который художник записал в виде I.
Здесь возможны два варианта. Первый вариант: il quattordicesimo secolo Второй вариант: il Trecento. В этом случае слово пишется с заглавной буквы и ему предшествует определенный артикль il.
Этот вариант используется в искусствоведческих текстах и путеводителях для обозначения отдельных периодов в истории искусства. Мы с учениками с удовольствием читаем эту книгу. Там главного героя зовут именно так — Novecento. Поздравляю метрологов с профессиональным праздником!
Мусоргский, Письмо В. Стасову, 10 авг. Всегда, вечно. Крылов, Кукушка и Петух. Гончаров, Обломов. Уж лучше бы век учиться да не уезжать, не расставаться с матушкой. Толстой, Детство. Во веки веков устар. В кои-то веки — очень редко, после большого промежутка времени. До скончания века см. На века — на долгие времена. От века; от века веков; испокон или спокон веку веков — с незапамятных времен, искони. Аредовы веки жить см. Мафусаилов век жить см. Заесть век чей см. Кончить век см. Жить в веках — надолго, навсегда остаться в памяти потомков.
XIII век — с 1201 по 1300 г. XII век — с 1101 по 1200 г. XI век — с 1001 по 1100 г. VIII век — с 701 по 800 г. VII век — с 601 по 700 г. III век — с 201 по 300 год II век — длился с 101 по 200 год. I век нашей эры, согласно юлианскому календарю начался 1 января 1 года и закончился 31 декабря 100 года. О том как нужно считать и переводить года в столетия вы узнаете из статьи. Содержание Как считаются века, столетия в истории? Какое соотношение существует между веком и годом? Соотношение веков и годов: таблица Видео: О столетии История отсчитывается порой минутами, а чаще всего — столетиями. Последние единицы измерения для нее особенно значимы, ведь в них вписаны события и даты, которые мы называем эпохами. Как не «потеряться во времени» и правильно определить период истории, о котором идет речь? Как считаются века, столетия в истории? Год, а также век — это наиболее используемые для временного определения исторических событий понятия.
Григорианский календарь
- Первобытное общество
- XX век. Знаки времени
- «2020-й год» или «2020 год»? Самые популярные вопросы о написании дат - Лайфхакер
- Григорианский календарь
- Наша эра - Common Era
Значение слова «век»
Согласно древнегреческому мифу время появилось во Вселенной первым, а уж потом появились огонь, воздух, вода. Любое историческое событие имеет свою дату. Изучать историю без дат нельзя. Человек стал записывать даты только с появлением письменности. Самый простой способ отсчёта времени — смена дня и ночи. Наблюдая за луной, древние люди заметили, что она меняет свой вид от серпа до круга за 29,5 суток. Продолжительные отрезки времени измеряли, например, временами года, разливами реки. Продолжительность года рассчитали древние египтяне, их год составлял 365 дней. В некоторых странах, когда одного царя сменял другой, счёт прерывали и начинали заново. Позднее люди придумали более удобный способ: отсчёт лет начинали от памятного события. Например, для жителей Рима это 753 год до нашей эры — легендарная дата основания этого города.
В нашем календаре точка отсчёта лет эра — условный год рождения Иисуса Христа. Вся история поделилась на два больших периода или эры — до рождения Христа и после. Время после рождения Христа называется нашей эрой, а время с глубокой древности до Р. Х называется временем до нашей эры. Для того чтобы было удобнее представить очерёдность событий, произошедших в разное время, мы используем «ленту времени».
В 1917 году, сразу после Октябрьского переворота «мракобесный» календарь заменили на «прогрессивный». В 1923 году Русскую Православную Церковь пытались перевести на «новый стиль», но даже при давлении на Святейшего Патриарха Тихона, от Церкви последовал категорический отказ. Православные христиане, руководствуясь наставлениями апостолов, рассчитывают праздники по Юлианскому календарю. Католики и протестанты считают праздники по Григорианскому календарю. Вопрос о календарях — это также богословская проблема. Несмотря на то, что Папа Григорий XIII считал основном вопросом астрономический, а не религиозный аспект, позднее появились рассуждения о правильности того или иного календаря по отношению к Библии. В православии считается, что Григорианский календарь нарушает последовательность событий в Библии и приводит к каноническим нарушениям: Апостольские правила не допускают празднование святой Пасхи ранее Пасхи иудейской. Переход на новый календарь означал бы разрушение пасхалии. Ученый-астроном профессор Е. Предтеченский в своей работе «Церковное время: счисление и критический обзор существующих правил определения Пасхи» отмечал: «Этот коллективный труд Прим. Позднейшая римская пасхалия, принятая теперь западной церковью, является, по сравнению с александрийской, до такой степени тяжеловесною и неуклюжею, что напоминает лубочную картинку рядом с художественным изображением того же предмета.
XXI 21 2001 - 2100 гг до н. XIX 19 1801 - 1900 гг до н. XVIII 18 1701 - 1800 гг до н. XVII 17 1601 - 1700 гг до н. XVI 16 1501 - 1600 гг до н. XV 15 1401 - 1500 гг до н. XIV 14 1301 - 1400 гг до н. XIII 13 1201 - 1300 гг до н. XII 12 1101 - 1200 гг до н. XI 11 1001 - 1100 гг до н.
Сколько надо прибавить? Уже 11 дней. Получается 8 июля. Юлианский календарь продолжает использовать Русская православная церковь. Гражданское летоисчисление в России ведется по григорианскому календарю. Так как же правильно писать даты исторических событий? Когда же произошла Бородинская битва — 26 августа или 7 сентября? Ответ один, и другого быть не может: правильно писать ту дату, которой соответствовал актуальный на тот момент календарь. То есть — 26 августа. В залах Исторического музея и музея Отечественной войны 1812 года вы можете отыскать документы с разными датами и проверить себя.
Века обозначают какими цифрами
Календарь событий на 2024 год. Список государственных и церковных праздников. Производственный календарь на год и по месяцам. Лунные календари стрижки волос, садовода. Ещё такая мысль появилась: если обозначать века арабскими цифрами, то у читателей может сложиться впечатление, что текст писал кто-то довольно ленивый. Так 100 лет составляют столетие или 1 век, а 10 веков = 1 тысячелетию. день, месяц, тысячелетие; еще реже – час, минута. Именно такой способ обозначения веков позволяет учитывать границы временных периодов и упорядочивать исторические события по хронологии. История средних веков: эпоха средневековья.
XX век. Знаки времени
Обозначение римскими цифрами: I век, II век, III век, IV век, V век. События, которые произошли в очень далёком прошлом, нужно указывать с обозначением века и года Причём года пишутся арабскими цифрами, а века — римскими. В 18 веке Эйлер активно пользовался обозначениями. день, месяц, тысячелетие; еще реже – час, минута. XVII – десятка одна, пятерка одна и две единички в конце записи, т.е. 10 + 5 + 1 + 1 = 17 – обозначение семнадцатого века.
Когда началось 21 столетие
- 7.2. Форма написания дат и периодов
- Современный счёт лет
- История. 5 класс
- Значение слова «век»
XX век. Знаки времени
все века как пишутся | Например, если событие произошло в XVI–XVII веках, прибавлять 10 дней, если в XVIII веке – 11, в XIX веке – 12, наконец, в XX и XXI веках – 13 дней. |
Как менялось название российского государства - ТАСС | Официальное распространение метода деления времени на нашу эру и до нашей эры произошло в 8 веке. |
Различные календари. Старый и новый стили | Последние крупные дебаты относительно перехода на новый стиль проходили в 90-е годы XIX века. |
Как правильно определить век по году: таблица соотношения веков по годам
Даты в средние века по «ЮЛИАНСКОМУ» и «ГРИГОРИАНСКОМУ» календарям, ведущих летоисчисление от «РОЖДЕСТВА ХРИСТОВА», записывались буквами и цифрами. Обозначения веков простыми словами. Если историческое событие произошло в XVI–XVII веках, нужно прибавить 10 дней, если в XVIII веке – 11 дн., в XIX в. – 12, в XX и XXI – 13 д. Простая путаница с обозначением дат в силу их схожести, разных языков и протяжённости во времени. Система обозначения веков состоит из двух цифр — первая цифра указывает на номер века, а вторая цифра — на его десятилетия.