Им Зм Эм Пм Тм Гм Мм км гм дам м дм см мм мкм нм пм фм ам зм им in ft yd mi лига kab. метры.
More information from the unit converter
- Нанометр в метр, калькулятор онлайн, конвертер
- Как считают нанометры, как их на самом деле надо считать, и почему не все с этим согласны
- Нм до Метры - Конвертер -
- 10 сантиметров перевести в миллиметры (87 фото)
- Нанометров в Метров
Как считают нанометры, как их на самом деле надо считать, и почему не все с этим согласны
Весна, пришедшая годы назад, несгибаемый TikTok, и полтора нанометра от TSMC | Чтобы перевести нанометры в метры, необходимо значение в нанометрах умножить на 10-9. |
Конвертер: нм в м | Как перевести микрометры в метры. |
Как перевести нанометры в метры? | Нанометр — дольная единица измерения длины в Международной системе единиц (СИ), равная одной миллиардной части метра (то есть 10−9 метра). |
Онлайн конвертер единиц площади | Для быстрого перевода значений из одной размерности или системы мер в другую (например, ярды в аршины или километры в футы) можно воспользоваться конвертером единиц длины. |
10 сантиметров перевести в миллиметры (87 фото)
Смотрите таблицу перевода из Метров в Нанометры и видео про наномир. Сантиметр (см) — единица измерения длины в Международной системе единиц (СИ), дольная по отношению к метру. 1 метр = 1000000000 нанометров (нм). Изображение с названием Конвертировать нанометры в метры, шаг 02. Перевести нанометры в миллиметры можно с помощью онлайн калькулятора. Нанометр (нм, nm) — единица измерения длины в метрической системе, равная одной миллиардной части метра (т. е. 10−9 метра). Устаревшее название — миллимикрон (10−3 микрона; обозначения: ммк, mμ).
Как перевести нанометры в метры - пример задачи
нанометр (нм) это сколько в метрах (м) онлайн конвертер, калькулятор. | На этой странице мы можете сделать онлайновый перевод величин: нанометр → метр. |
Калькулятор - метры в миллиметры | Им Зм Эм Пм Тм Гм Мм км гм дам м дм см мм мкм нм пм фм ам зм им in ft yd mi лига kab. метры. |
Онлайн конвертер - метры в миллиметры | Используйте этот простой инструмент, чтобы быстро преобразовать Нанометр в единицу Длина. |
Как перевести нанометры в метры?
В этой форме представление числа разделяется на экспоненту, здесь 26, и фактическое число, здесь 1,214 135 297 593 3. В частности, он упрощает просмотр очень больших и очень маленьких чисел. Если в этой ячейке не установлен флажок, то результат отображается с использованием обычного способа записи чисел. В приведенном выше примере он будет выглядеть следующим образом: 121 413 529 759 330 000 000 000 000.
Независимо от представления результата, максимальная точность этого калькулятора равна 14 знакам после запятой.
Таблица ёмкости Фарад в микрофарад. Единицы измерения Фарад таблица. Таблица соотношений единиц давления перевод единиц давления. Болт м6х1 10. Крутящий момент затяжки болтов. Момент затяжки НМ В кг. Таблица миллиампер 1 ампер.
Ампер миллиампер микроампер ьаиюлтца. Сколько в 1 Ампере миллиампер и микроампер. Таблица 1 ампер в микроампер. Момент затяжки болтов единицы измерения. Таблица Ньютон метр на кг метр для динамометрического ключа. Таблица переводов Ньютона метр. Таблица кгс в ньютоны на метр. Унция в граммах таблица.
Таблица oz в граммах. Измерение oz в граммах. Вес oz в граммах. Перевести ньютоны в килограммы. Усилие в ньютонах перевести в кг. Ньютон в кг перевести. Метрический номер пряжи NM ne. Метрический номер пряжи NM.
Толщина нитки 40 в мм. Денье таблица. Таблица Ньютон на метр. NM перевести в килограммы. Ньютон метр в кг перевести. МПА В си. Таблица перевода единиц си. Кг в си.
Мощность формула единица измерения физика. Как определяется единица мощности. Мощность единица измерения. В чем измеряется мощность. Как перевести ньютоны в килограммы. Кг силы перевести в ньютоны. Килограмм сила метр. Перевести ньютоны в килограммы силы.
Физика 7 класс Ньютон единица измерения. Единицы измерения силы физика 7 класс. Ньютон единица измерения силы. Единицы измерения силы 7 класс.
Мини микро нано величины. Конденсатор Пико микро нано. Единицы измерения длины меньше мм. Единица измерения ниже мм. Величина меньше миллиметра.
Система си приставки к единицам измерения. Таблица приставок единиц измерения физика. Приставки си в физике таблица. Множители и приставки си таблица. Таблица нанометры метры. Нанограмм обозначение. Таблица возведения чисел в степень. Таблица степеней единиц. Таблица степеней по алгебре.
Цифры в степенях таблица. Дольные и кратные приставки таблица. Таблица приставок кратных и дольных единиц. Десятичные приставки в системе си таблица. Приставки к цифрам нано микро. Таблица квадратов двузначных натуральных чисел. Таблица квадратов двузначных натуральных чисел до 10. Таблица квадратов двузначных двузначных чисел. Таблица квадратных двузначных чисел.
Степени двойки таблица. Степени двойки таблица Информатика. Таблица степеней 2. Степени числа 2 Информатика. Таблица кубов натуральных чисел от 1 до 100. Таблица степень числа квадрат и куб числа. Таблица степеней в Кубе от 1 до 100. Таблица степеней в Кубе. Приставки кило мега гига.
Единицы измерения кило мега гига. Мили Санти кило таблица. Кило мега гига тера таблица в физике. Таблица возведения в степень числа 2. Числа во второй степени таблица. Таблица алгебраических степеней. Таблица натуральных степеней от 1 до 10. Таблица квадратов и кубов натуральных чисел от 1 до 100. Таблица нулей в числах.
Таблица миллионов миллиардов триллионов. Названия больших чисел. Числа с нулями названия. Милли микро нано Пико. Приставки нано Пико Милли. Мили микро нано Пико таблица. Таблица кубов натуральных чисел от 10 до 99 и степеней чисел 2 и 3. Таблица степеней Куба. Таблица степеней кубов.
Таблица квадратов и кубов. Таблица возведения в степень 2. Таблица квадратов 2 в степени. Степени чисел от 2 до 10 таблица.
Ответ прост - для нанотехнологий и изучения микромира нанометры попросту необходимы. В масштабах атомов и молекул метры слишком велики, а доли метра громоздки для записи и использования. Гораздо проще оперировать десятичными дробями вроде 0,05 нм или 500 нм.
Нанометры - это мостик между десятичной системой СИ и квантовым микромиром. Кроме того, нанометры позволяют точно описывать наноструктуры в различных областях: Толщину пленок в полупроводниковой электронике Размер зерна материалов Период дифракционных решеток в оптике Диаметр нанотрубок и фуллеренов Без использования нанометрических единиц подобные технологии просто не могли бы развиваться. Таким образом, несмотря на малый размер, роль нанометров для науки и техники трудно переоценить. Как измерить расстояние в нанометрах Для измерения таких крошечных расстояний, как нанометры, требуются специальные приборы и методы. В первую очередь, это различные типы электронных и сканирующих зондовых микроскопов - растровый электронный микроскоп, туннельный микроскоп, атомно-силовой микроскоп и др. Они позволяют визуализировать поверхность образцов с нанометровым разрешением и численно определить размеры нанообъектов. Другие методы включают: Рентгеновскую дифракцию для анализа кристаллических решеток Оптическую интерферометрию с нанометровой точностью Зондовую нанолитографию для создания наноструктур Перед измерением наноразмерных образцов проводится тщательная калибровка приборов с использованием эталонных образцов и структур точно известного размера в нанометрах.
Погрешности нанометрических измерений Несмотря на высокую точность современного измерительного оборудования, при работе в наномасштабе существуют определенные погрешности измерения. Например, при измерении размера 10 нм реальное значение может лежать в диапазоне от 9,5 до 10,5 нм. Применение нанометров на практике Нанометр - это сколько?
Нм - это нанометр. Перевод нанометров в метры
Нано это 10^-9 метра. Похожие вопросы. Для быстрого перевода значений из одной размерности или системы мер в другую (например, ярды в аршины или километры в футы) можно воспользоваться конвертером единиц длины. Им Зм Эм Пм Тм Гм Мм км гм дам м дм см мм мкм нм пм фм ам зм им in ft yd mi лига kab. метры. Таблица перевода: nm в m. Чтобы правильно перевести одни единицы измерения в другие, воспользуйтесь онлайн-конвертером единиц измерения длины и расстояния. Таблица перевода: nm в m.
Преобразовать нанометр в Метр (нм в м):
Транзистор Fairchild FI-100, 1964 год. Самые первые серийные МОП-транзисторы вышли на рынок в 1964 году и, как могут увидеть из рисунка искушенные читатели, они почти ничем не отличались от более-менее современных — кроме размера посмотрите на проволоку для масштаба. Зачем уменьшать размер транзисторов? Самый очевидный ответ на этот вопрос носит название закона Мура и гласит, что каждые два года количество транзисторов на кристалле должно увеличиваться вдвое, а значит линейные размеры транзисторов должны уменьшаться в корень из двух раз. Наиболее простая и грубая формулировка методов реализации закона Мура также известная как закон миниатюризации Деннарда — рост числа транзисторов на чипе не должен приводить к росту плотности потребляемой мощности, то есть с уменьшением размеров транзисторов должны пропорционально уменьшаться напряжение питания и рабочий ток.
Ток через МОП-транзистор пропорционален отношению его ширины к длине, а значит мы можем сохранять один и тот же ток, пропорционально уменьшая оба этих параметра. Более того, уменьшая размеры транзистора, мы уменьшаем еще и емкость затвора пропорциональную произведению длины и ширины канала , делая схему еще быстрее. В общем, в цифровой схеме нет практически никаких причин делать транзисторы больше, чем минимально допустимый размер. Дальше начинаются нюансы насчет того, что в логике p-канальные транзисторы обычно несколько шире n-канальных, чтобы скомпенсировать разницу в подвижности носителей заряда, а в памяти наоборот, n-канальные транзисторы шире, чтобы память нормально записывалась через некомплементарный ключ, но это действительно нюансы, а глобально — чем меньше размеры транзистора — тем лучше для цифровых схем.
Именно поэтому длина канала всегда была самым маленьким размером в топологии микросхемы, и самым логичным обозначением проектных норм. Здесь надо заметить, что вышеописанные рассуждения про размер не справедливы для аналоговых схем. Так делается для того, чтобы обеспечить идентичность этих двух транзисторов, несмотря на технологический разброс параметров. Площадь при этом имеет второстепенное значение.
У технологов и топологов существует так называемая лямбда-система типовых размеров топологии. Она очень удобна для изучения проектирования и была придумана в университете Беркли, если я не ошибаюсь и переноса дизайнов с фабрики на фабрику. Фактически, это обобщение типичных размеров и технологических ограничений, но немного загрубленное, чтобы на любой фабрике точно получилось. На ее примере удобно посмотреть на типовые размеры элементов в микросхеме.
Принципы в основе лямбда-системы очень просты: если сдвиг элементов на двух разных фотолитографических масках имеет катастрофические последствия например, короткое замыкание , то запас размеров для предотвращения несостыковок должен быть не менее двух лямбд; если сдвиг элементов имеет нежелательные, но не катастрофические последствия, запас размеров должен быть не менее одной лямбды; минимально допустимый размер окон фотошаблона — две лямбды. Из третьего пункта следует, в частности, то, что лямбда в старых технологиях — половина проектной нормы точнее, что длина канала транзистора и проектные нормы — две лямбды. Рисунок 2. Пример топологии, выполненной по лямбда-системе.
Лямбда-система отлично работала на старых проектных нормах, позволяя удобно переносить производство с фабрики на фабрику, организовывать вторых поставщиков микросхем и делать много еще чего полезного. Но с ростом конкуренции и количества транзисторов на чипе фабрики стали стремиться сделать топологию немного компактнее, поэтому сейчас правила проектирования, соответствующие «чистой» лямбда-системе, уже не встретить, разве что в ситуациях, когда разработчики самостоятельно их загрубляют, имея в виду вероятность производства чипа на разных фабриках. Рисунок 3. Схематичный разрез транзистора.
На этом рисунке приведен ОЧЕНЬ сильно упрощенный разрез обычного планарного плоского транзистора, демонстрирующий разницу между топологической длиной канала Ldrawn и эффективной длиной канала Leff. Откуда берется разница? Говоря о микроэлектронной технологии, почти всегда упоминают фотолитографию, но гораздо реже — другие, ничуть не менее важные технологические операции: травление, ионную имплантацию, диффузию и т. Для нашего с вами разговора будет не лишним напоминание о том, как работают диффузия и ионная имплантация.
Рисунок 4. Сравнение диффузии и ионной имплантации. С диффузией все просто. Вы берете кремниевую пластину, на которой заранее с помощью фотолитографии нанесен рисунок, закрывающий оксидом кремния те места, где примесь не нужна, и открывающий те, где она нужна.
Дальше нужно поместить газообразную примесь в одну камеру с кристаллом и нагреть до температуры, при которой примесь начнет проникать в кремний. Регулируя температуру и длительность процесса, можно добиться требуемого количества и глубины примеси. Очевидный минус диффузии — то, что примесь проникает в кремний во всех направлениях одинаково, что вниз, что вбок, таким образом сокращая эффективную длину канала. И мы говорим сейчас о сотнях нанометров!
Используется в нанотехнологиях, биологии, физике и других областях для измерения молекулярных и атомарных размеров. Миллиметр - это единица измерения длины, равная одной тысячной части метра. Используется в строительстве, медицине, технике и других областях для измерения расстояний.
Чтобы получить расстояние в миллиметрах, просто умножьте расстояние в нанометрах на 10-6.
Источник — Intel. Нам показывают, как поменялись характерные размеры в ячейке памяти. Многие параметры, но о длине и ширине канала транзистора тут ни слова! Как решали проблему невозможности уменьшения длины канала и контроля за утечками технологи? Они нашли два пути. Первый — в лоб: если причина утечек — большая глубина имплантации, давайте ее уменьшим, желательно радикально. Технология «кремний на изоляторе» КНИ известна уже очень давно и активно применялась все эти годы, например в 130-32 нм процессорах AMD, 90 нм процессоре приставки Sony Playstation 3, а также в радиочастотной, силовой или космической электронике , но с уменьшением проектных норм она получила второе дыхание. Рисунок 12.
Источник — ST Microelectronics. Как видите, идея более чем элегантная — под очень тонким активным слоем располагается оксид, убирающий вредный ток утечки на корню! Заодно, за счет уменьшения емкости pn-переходов убрали четыре из пяти сторон куба стока увеличивается быстродействие и еще уменьшается энергопотребление. Именно поэтому сейчас технологии FDSOI 28-22-20 нм активно рекламируются как платформы для микросхем интернета вещей — потребление действительно сокращается в разы, если не на порядок. И еще такой подход позволяет в перспективе поскейлить обычный плоский транзистор до уровня 14-16 нм, чего объемная технология уже не позволит. Тем не менее, ниже 14 нм на FDSOI особенно не опуститься, да и другие проблемы у технологии тоже есть например, страшная дороговизна подложек КНИ , в связи с чем индустрия пришла к другому решению — FinFET транзисторам. Идея FinFET транзистора тоже весьма элегантна. Мы хотим, чтобы бОльшая часть пространства между стоком и истоком управлялась затвором? Так давайте окружим это пространство затвором со всех сторон!
Хорошо, не со всех, трех будет вполне достаточно. Рисунок 13. Структура FinFET. Источник — A. Tahrim et. Сравнение энергопотребления разных вариантов сумматора, выполненных на планарных транзисторах и на FinFET. Таким образом, все пространство между стоком и истоком контролируется затвором, и статические утечки очень сильно уменьшаются. Вертикальность канала в FinFET, кроме всего прочего, позволяет экономить на площади ячейки, потому что FinFET c широким каналом довольно узкий в проекции, и это, в свою очередь, опять помогло маркетологам с их рассказами про площадь ячейки памяти и ее двухкратное уменьшение с каждым новым шагом «проектных норм», уже никак не привязанных к физическим размерам транзистора. Рисунок 15.
Источник — M. Ansari et. Вот примеры разных вариантов ячеек памяти в технологии с FinFET. Видите, как геометрическая ширина канала намного меньше длины? Также можно видеть, что, несмотря на все пертурбации, лямбда-система у топологов все еще в ходу для количественных оценок. А что с абсолютными цифрами? Рисунок 16. Некоторые размеры транзисторов в 14-16 нм технологиях. Источник — the ConFab 2016 conference proceedings.
Как видно из рисунка, топологическая длина канала в 16 нм FinFET технологиях все еще больше, чем 20-25 нм, о которых говорилось выше. И это логично, ведь физику не обманешь.
Численно 1 кв.
Акр сокращённо ac — единица измерения площади в британской и американской системах единиц измерения. Численно 1 акр равен 4046.
Преобразовать нанометр в Метр (нм в м):
Политика конфиденциальности Если Вы являетесь автором материалов или обладателем авторских прав, и Вы возражаете против его использования на моем интернет-ресурсе - пожалуйста, свяжитесь со мной. Информация будет удалена в максимально короткие сроки. Спасибо тем авторам и правообладателям, которые согласны на размещение своих материалов на моем сайте!
Ведь цифры теперь мало что значат… Как сказал Паоло Гарджини Paolo Gargini — ветеран Intel и пожизненный член IEEE : число нанометров промышленной технормы «к этому времени уже не имеет совершенно никакого значения, так как не обозначает размер чего-либо, что можно найти на кристалле и что относится к вашей работе». Скажем, в новейших техпроцессах «7 нм» Samsung и TSMC на кристалле нет ничего, что было бы настолько малым. Например, длина затворов там — 15 нм. Другая проблема, возникающая в этой связи — стоимость каждого транзистора.
Все предыдущие 60 лет развития микроэлектроники основывались на уверенности в том, что даже несмотря на постоянное увеличение цены заводов и разработки техпроцессов и чипов цена самих чипов в пересчете на транзистор будет все время уменьшаться. Так и происходило — примерно до 32 нм, после которых наступил раскол: микросхемы памяти продолжили дешеветь на единицу объема особенно это коснулось флэш-памяти, которая массово перешла на объемное хранение данных на десятках уровней — технология 3D-NAND , а вот логика сильно затормозилась. Да, последние версии техпроцессов 14 нм предлагают транзисторы все же чуть дешевле, чем у 22 нм — но именно что «чуть», и это после стольких лет возни. Да и производительность при том же потреблении энергии хоть и растет, но всё медленнее… Простейшим решением была бы перепривязка технормы к размеру не затвора, а чего-то другого, более представительного для современного транзистора. Одним числом тут не обойдешься, поэтому предложено использовать две меры длины: CPP, contacted poly gate pitch — шаг поликремниевого затвора с контактом то есть между затворами соседних транзисторов ; и MMP, metal-to-metal pitch — шаг первого уровня металлических дорожек, проходящих перпендикулярно поликремниевым линиям, нарезаемым на затворы. Причем теперь нет смысла делить оба шага на два, так как эта половина теперь менее важна.
Эта пара значений на некоторое время стала «наименьшим общим знаменателем» в описании логического техпроцесса, а их произведение дает неплохую оценку возможной площади транзистора. Любой фактический транзистор на кристалле будет немного или много больше, но никак не меньше этого минимума, и к этому идеалу вполне можно приблизиться при тщательном проектировании и следовании правилам техпроцесса. Ситуация второй половины 2010-х годов получилась весьма похожей на то, что переживали в кризис производители продуктов питания: чтобы не увеличивать цены на привычные товары, их просто стали недоливать и недосыпать. Нет-нет, в каждом килобайте кэша все еще ровно 1024 байта, а не 970 как написано число миллилитров на некоторых «литровых» бутылках молока. Но чиподелы просто окончательно отвязали свои рекламируемые нанометры от физических размеров чего-либо в изготавливаемых микросхемах. А Intel пошла еще дальше и вспомнила принцип «не можешь отменить — возглавь»: в 2017 г.
Однако после техпроцесса 22 нм «другие компании» по мнению Intel отказались от этого, продолжив уменьшать число нанометров у технормы, но при минимальном, а то и совсем отсутствующем повышении плотности. По мнению Бора, это связано с ростом сложности дальнейшего уменьшения размеров. В результате декларируемые значения не дают представления о реальных возможностях техпроцесса и его положении на графике, который должен демонстрировать сохранение применимости закона Мура. Вместо этого Intel предложила определять возможности техпроцесса по новой формуле, в которую входят площади типовых блоков — простейшего вентиля 2-NAND двухвходовый логический элемент «и-не» и более сложного синхронного триггера — и число транзисторов в них; их отношения умножены на «правильные» коэффициенты, отражающие относительную распространенность простых 0,6 и сложных 0,4 элементов. Сразу можно заподозрить, что все цифры подобраны для еще более наглядной демонстрации лидерства Intel в сравнении с «другими производителями». Но чуть позже всё стало выглядеть так, будто компания движется вспять, очередной оптимизацией техпроцесса добиваясь худшей плотности: исходный 14-нанометровый процесс вышедший аж в 2014 г.
На самом деле это размен с потреблением энергии, которое в «двухплюсовой» версии процесса уполовинилось опять же — со слов Intel. Тем не менее, общая идея этого перехода перепривязка технормы от размера «чего-то там» на кристалле — к оценке среднеожидаемой плотности транзисторов для типичной схемы имеет не только рекламный смысл, но и практический: если каждый чиподел будет публиковать значение, полученное по новой формуле, для каждого своего техпроцесса, то можно будет сравнивать разные техпроцессы и у одного производителя, и у разных.
Полностью наши правила и условия пользования можно найти здесь Несмотря на все усилия, приложенные для обеспечения точности метрических калькуляторов и таблиц на данном сайте, мы не можем дать полную гарантию точности или нести ответственность за любые ошибки, которые были сделаны. Если вы заметили ошибку на сайте, то мы будем благодарны, если вы сообщите нам, используя контактную ссылку в верхней части страницы, и мы постараемся исправить ее в кратчайшие сроки.
Давайте разберемся!
Что такое нанометр Итак, нм нанометр - это единица измерения длины, равная одной миллиардной части метра. В численном выражении нанометр равен 0,000000001 м или 10-9 м. Термин "нанометр" стал активно использоваться во второй половине XX века с началом бурного развития нанотехнологий и исследований на молекулярном и атомарном уровне. Ранее для обозначения таких малых расстояний применялись такие неконкретные определения, как "очень маленький", "микроскопический" и т. Введение строгой численной меры - нанометра - позволило значительно продвинуться в изучении нанометра.
Нанометры нм - это наиболее часто используются для описания: Длин волн видимого или инфракрасного света 400-800 нм Размеров отдельных молекул и вирусов 5-50 нм Толщины мембран и оболочек клеток 10-100 нм Размера зерен в поликристаллических материалах 10-100 нм Элементов интегральных схем менее 100 нм и продолжают уменьшаться Таким образом, область применения нанометров очень широка - от оптики до микроэлектроники, от физики твердого тела до биологических структур. Соотношение нанометра и метра Как уже упоминалось, один нанометр численно равен 0,000000001 м. Это крайне малая величина по сравнению с привычными нам метрами. Например, толщина человеческого волоса составляет примерно 100 000 нанометров. Радиус атома водорода - всего около 0,05 нм.
При этом использование нанометров не меняет общепринятой десятичной системы СИ. Зачем нужны нанометры Нанометр - это сколько?
How Many Meter in a Nanometer?
- Оглавление:
- Конвертер нанометров (нм) в метры (м) и обратно онлайн
- Степень метра
- Перевести Нанометры в Метры (nm в m)
Нанометры в метры
Онлайн калькулятор. Конвертер величин. Нанометр | нанометра до метры (nm до m) преобразования калькулятор измерения: measurement, 1 нанометра = 1.0E-9 метры. |
Как перевести нанометры в метры - пример задачи - Наука Технология Математика 2024 | Таблица перевода различных единиц измерения длины в метры. |
Онлайн конвертер - метры в миллиметры | Перевод: квадратных метров в квадратные миллиметры, сантиметры, дециметры, километры, микрометры, нанометры, гектары, ары, футы, ярды, дюймы, мили, акры, руды, десятины, версты, аршины и обратно. |
Нанометры в метры - 87 фото
Например чтобы перевести сантиметры в метры надо умножить количество сантиметров на 100, метры в сантиметры поделить количество метров на 100. Таблица перевода различных единиц измерения длины в метры. это единица измерения длины, равная одной миллиардной части метра. Если вы записываете число, переместите десятичную запятую на девять позиций влево, чтобы преобразовать нанометры в метры, или вправо, чтобы преобразовать метры в нанометры.
Перевод нанометров в метры - фото сборник
Чипы просто перегреют себя наиболее горячими местами, расположенными слишком близко друг к другу при высокоплотном дизайне. И это еще без учета аналоговых элементов, которые в такие формулы не вписываются в принципе… Уменьшение транзисторов типа FinFET позволило весьма эффективно уменьшать управляющий ток подаваемый на затвор для переключения ростом высоты плавников и уменьшением их шага. С какого-то момента много затворов для высоких частот уже оказываются не столь нужны, и их число тоже можно уменьшить — вместе с числом подходящих к ним дорожек, причем без просадки скорости. Однако не все дальнейшие оптимизации могут быть отображены даже в новой версии формулы.
Например, расположение контакта непосредственно над затвором а не сбоку от него снижает высоту ячейки, а использование одного бокового ложного затвора вместо двух для смежных вентилей уменьшает ее ширину. Ни то, ни другое в формуле не учитывается, что и было формальной причиной для перехода на подсчет мегатранзисторов логики на квадратный миллиметр. Самая свежая из нынешних технологий литографии — ЭУФ экстремальный ультрафиолет.
Она использует длину волны 13,5 нм, ниже которой пока коммерчески пригодной дороги нет. А это значит, что размеры чего-либо на кристалле скоро совсем перестанут уменьшаться. Чиподелам, производящим логику особенно процессоры и контроллеры , придется подсмотреть у своих «пекущих» память коллег технологии монолитной объемной компоновки, располагающие транзисторы а не только связывающие их дорожки слоями.
В результате удельная плотность транзисторов на единицу площади будет расти уже с числом их слоев. Потому новой идеей было переопределение буквы T в формуле с «Tracks» на «Tiers», на которую надо не умножать, а делить. Кстати, предложил это тот же Паоло Гарджини, ныне ставший главой IRDS IEEE International Roadmap for Devices and Systems — организации «международного плана для приборов и систем» и преемницы почившей в бозе ITRS, собрания которой стали бессмысленными вследствие кризиса общего целеполагания мировой полупроводниковой отрасли и ввиду предсказания остановки уменьшения размеров транзисторов уже в 2028 г.
С момента предложения формулы Бора прошло три года, и без труда можно заметить на примере Intel и AMD — двух крупнейших производителей процессоров, сообщающих о своих новинках хоть сколько-нибудь подробно , что компании не перестали расхваливать свои чипы с упоминанием пресловутых нанометров. Зато Intel и AMD за это время поменялись местами: Intel, кажется, уже отчаялась доделать свой техпроцесс 10 нм и раздумывает над переходом сразу на что-то еще меньшее неважно, с какой цифрой ; зато AMD рекламирует свои новые процессоры архитектуры Zen2 как носящие 7-нанометровые транзисторы, подчеркивая преимущество над конкурентом. Свежайший пример нелинейного улучшения плотности — параметры процессоров точнее — SoC, однокристальных систем для игровых приставок Microsoft серии XBox.
А следующий переход к 7 нм должен был дать аж 5-кратное уплотнение, но выдал только 2,3 раза. Цена процессора при этом не забывала расти. Год назад, видя такие дела, в университете Беркли Калифорния, США собрались видные теоретики микроэлектроники в том числе все три изобретателя «финфетов»: Chenming Hu, Tsu-Jae King Liu и Jeffrey Bokor и… Да-да, нетрудно догадаться: они предложили новую, очереднадцатую метрику.
Назад к нанометрам возвращаться никто не призывает. Последний параметр знаменует наибольшее отклонение от стандартных мерил техпроцессов, так как не имеет никакого отношения к транзисторам. Тем не менее, в последние годы стало ясно, что подвод питания и обеспечение всё большей пропускной способности и меньших задержек при доступе к памяти требуют от чиподелов показывать заметный прогресс и в этой величине.
Как и версия Intel, новая метрика LMC названая по индексам плотностей использует интуитивное правило «больше — лучше» для всех трех своих цифр и не имеет верхних границ, обусловленных какими-то физическими пределами. Это дает определенную психологическую уверенность, что прогресс всё еще неостановим — что весьма важно в свете наблюдаемого в западных вузах падения популярности кафедр микроэлектроники, физики полупроводников, материаловедения и смежных прикладных наук.
The nanometre is also commonly used to specify the wavelength of electromagnetic radiation near the visible part of the spectrum : visible light ranges from around 400 to 700 nm.
Since the late 1980s, in usages such as the 32 nm and the 22 nm semiconductor node , it has also been used to describe typical feature sizes in successive generations of the ITRS Roadmap for miniaturized semiconductor device fabrication in the semiconductor industry.
Mathematical expressions Furthermore, the calculator makes it possible to use mathematical expressions. But different units of measurement can also be coupled with one another directly in the conversion. The units of measure combined in this way naturally have to fit together and make sense in the combination in question. Mathematical functions The mathematical functions sin, cos, tan and sqrt can also be used. For example, 1. For this form of presentation, the number will be segmented into an exponent, here 26, and the actual number, here 1.
For devices on which the possibilities for displaying numbers are limited, such as for example, pocket calculators, one also finds the way of writing numbers as 1.
Полностью наши правила и условия пользования можно найти здесь Несмотря на все усилия, приложенные для обеспечения точности метрических калькуляторов и таблиц на данном сайте, мы не можем дать полную гарантию точности или нести ответственность за любые ошибки, которые были сделаны. Если вы заметили ошибку на сайте, то мы будем благодарны, если вы сообщите нам, используя контактную ссылку в верхней части страницы, и мы постараемся исправить ее в кратчайшие сроки.