Черная дыра, как известно, поглощает свет и не отдает его. Похожие. Следующий слайд. космос гаргантюа / чёрная дыра / Интерстеллар Creative Land.
Ученые: Использовать черные дыры для космических путешествий можно, но только осторожно
Посмотрите идеальное GIF-изображение по теме "Gargantua Black Black Hole", которое украсит любой чат. Находите лучшую анимацию в Tenor и делитесь ею с друзьями. Во многом это благодаря тому, что Гаргантюа – сверхмассивная черная дыра, массой не менее 100 миллионов масс солнца, с радиусом в одну астрономическую единицу. Изучив орбитальное вращение этого «бублика», вы определяете массу черной дыры – 2·109 Mслн, т.е. примерно в тысячу раз меньше, чем масса Гаргантюа, но гораздо больше массы любой черной дыры в Млечном Пути.
Новая ночная схема Москвы, версия Гаргантюа (4.1)
Черная дыра из фильма «Интерстеллар» | Для планеты черная дыра в этом случае может выступать в роли холодного светила. |
Быстро вращающаяся чёрная дыра по имени Гаргантюа | Названия нейтронной звезды и черной дыры, скорее всего, взяты из «Жизни Гаргантюа и Пантагрюэля», пентологии романов, написанных в XVI веке Франсуа Рабле и повествующих о приключениях двух гигантов: Гаргантюа и его сына Пантагрюэля. |
Почему черная дыра называется Гаргантюа – Telegraph | Описанные в голливудском блокбастере внешний вид, размеры и физические свойства черной дыры Гаргантюа, являющейся одним из центральных «персонажей» это фильма — его работа. |
Черная дыра, Гаргантюа, темный Обои 3840x2160 4K Ultra HD | Владелец сайта предпочёл скрыть описание страницы. |
Гаргантюа интерстеллар - 82 фото ★ | Эти уравнения описывали траектории лучей света, исходящих из далекой звезды, проникающих через искривленные пространство и время Гаргантюа, достигающих камеры и учитывающих даже само движение камеры вокруг черной дыры. |
Что не так с «Интерстелларом» — взгляд физика
Здесь уже затрагивается искривление времени. Думать о времени как о чем-то простом и равномерном является такой же ошибкой, как думать, что Земля плоская. Развитие науки позволило разрушить наше представление о времени. Когда главные герои попали на планету Миллер, то получили сведения о том, что час, проведенный там, равен семи годам на Земле. Это связано с тем, что планета вращается вокруг черной дыры на близком расстоянии от нее. В фильме подробно объясняется влияние гравитации на время. Гаргантюа — черная дыра огромной массы, а объекты с большой массой способны создать сильную гравитацию. Гравитация искривляет пространство и время. Чем сильнее гравитационное поле, тем больше будет изменяться пространство и время, а значит, время будет идти медленнее.
Искривление времени также является правдой. В реальном мире время идет быстрее в горах, хоть разница и небольшая. При этом замедляться будут не только часы, но и все процессы, включая старение человека. Почему в фильме показана именно водная планета? Здесь можно рассматривать аналогию с Луной.
Никто не знает, что находится в центре черной дыры, но у ученых есть для этого название — сингулярность.
Вращающиеся черные дыры искажают пространство вокруг себя по-иному в отличие от неподвижных черных дыр. Этот процесс искажения называется "увлечение инерциальных систем отсчёта" или эффект Лензе-Тирринга, и оно влияет на то, как будет выглядеть черная дыра, искажая пространство, и что более важно пространство-время вокруг нее. Черная дыра, которую вы видите в фильме, достаточно сильно приближена к научному понятию. Космический корабль "Эндюранс" направляется к Гаргантюа - вымышленной сверхмассивной черной дыре массой в 100 миллион раз больше Солнца. Она находится на расстоянии 10 миллиардов световых лет от Земли, и вокруг нее вращается несколько планет. Гаргантюа вращается с поразительной скоростью 99,8 процентов от скорости света.
Аккреционный диск Гарагантюа содержит газ и пыль с температурой поверхности Солнца. Диск снабжает планеты Гаргантюа светом и теплом. Сложный вид черной дыры в фильме связан с тем, что изображение аккреционного диска искривлено гравитационным линзированием. На изображении появляется две дуги: одна образуется над черной дырой, а другая под ней. Кротовая нора Кротовая нора или червоточина, которую использует экипаж в "Интерстеллар" — это одно из явлений в фильме, существование которого не доказано. Она гипотетическая, но очень удобная в сюжетах научно-фантастических историй, где нужно преодолеть большое космическое расстояние.
Просто кротовые норы — это своего рода кратчайший путь сквозь пространство. Любой объект с массой создает норку в пространстве, что означает, что пространство можно растягивать, деформировать и даже складывать.
У самого горизонта событий он и вовсе застынет навеки. А Вы смотрели: О правоте Эйнштейна на примере фотографии чёрной дыры Науке неизвестно, что произойдёт со звездолётом после пересечения этой черты. Вероятнее всего, с точки зрения пассажира звездолёта, преодолев световой барьер, он продолжит своё ускорение.
Стоит отметить, что вся масса чёрной дыры должна быть сосредоточена в её центре, бесконечно мелкой сингулярности. Поэтому остальное пространство чёрной дыры является просто областью, ограниченной горизонтом событий. Разный взгляд на пустоту Материалы по теме Можно ли увидеть черную дыру? Другими словами, термин «радиус чёрной дыры» не обозначает радиус материального объекта. Это радиус области, внутри которой не действует известная физика.
Попав в неё, наш звездолёт не только не сможет вырваться назад, но и неизбежно попадёт в её центр. В данном случае интересная особенность горизонта событий заключается в том, что с точки зрения наблюдателя никакой сингулярности не существует. Всё то, что попало в чёрную дыру для нашего внешнего мира навсегда останется у края горизонта событий. То есть, с нашей точки зрения, вся масса чёрной дыры сосредоточена не в центре, а по периферии. Звездолёт не только не достигнет центра, но и не пересечёт границы чёрной дыры.
Для тех же, кто попал в чёрную дыру, пересечение горизонта событий пролетит со скоростью света. Путешествие до сингулярности будет проходить при ещё больших нарастающих скоростях, что также нарушает законы нашей физики. В конечном итоге любое тело, угодившее в чёрную дыру, неизбежно станет частью сингулярности. По её меркам пройдёт сравнительно небольшое время, тогда как за пределами дыры, известная для нас, Вселенная может исчезнуть. Ведь, согласно модели Хоккинга, испарения чёрной дыры происходит за невообразимо короткий срок.
Масштабы горизонта событий Горизонт событий, наряду с сингулярностью, является основным «атрибутом» чёрной дыры. Его радиус, называемый также гравитационным радиусом, или радиусом Шварцшильда, линейно зависит от её массы. Можно практически в уме оценить радиус любой чёрной дыры, умножив три километра на отношение её массы к массе солнца. Так чёрная дыра с земной массой будет размером с вишню. В тоже время размер сверхмассивных чёрных дыр будет исчисляться миллионами и даже миллиардами километров.
Очевидно, что при таких колоссальных размерах, такие объекты не будут обладать столь губительными приливными силами. Поэтому мысль о том, что любое тело разорвёт ещё до подхода к чёрной дыре, является заблуждением. Получается, теоретически можно допустить путешествие человека вглубь чёрной дыры, о чём было рассказано выше.
Огромная черная дыра. Сверх масивная чёрная дыра. Черная дыра изнутри. Гравитационные воронки. Дыра внутри.
Гаргантюа черная дыра Интерстеллар. Черная дыра обои. Красивая черная дыра. Черная дыра фото. Зарождение чёрной дыры. Белая дыра. Черная дыра м57. Притяжение звезд.
Сверхмассивная нейтронная звезда. Рождение черной дыры. Электрическая черная дыра. Звук черной дыры. Микроскопические черные дыры. Квантовые черные дыры. Планковская черная дыра. Черная дыра маслом.
Черная дыра диск аккреции. Аккреционный диск черной дыры. Черная дыра фото с телескопа Хаббл. Излучение Хокинга. Излучение черной дыры. Сингулярность в космосе. Стивен Хокинг черные дыры. Стивен Хокинг фото.
Стивен Хокинг большая Вселенная. Ученый черные дыры Стивен Хокинг. M87 Black hole. Messier 87 Black hole. Messier 87 черная дыра. Темная материя астрономия. Космология темная материя. Тёмная материя Вселенной.
Темная материя космос. Gaia bh1 черная дыра.
Сверхмассивная черная дыра в центре Млечного Пути. Сверхмассивная черная дыра в квазаре OJ 287
В самом деле, у большинства крупных галактик — и наш Млечный путь тут не исключение — в центре имеется сверхмассивная черная дыра. Обычно соблюдается корреляция между размерами центрального балджа галактики и размерами ее черной дыры: она примерно в тысячу раз легче массы этого балджа. У довольно крупного Млечного пути ее масса оценивается в 4 млн солнц. А теперь представьте небольшую галактику NGC 1277 в 230 млн световых лет от нас.
Черная дыра Интерстеллар 4k 53. Черная дыра Интерстеллар 54. Гаргантюа черная дыра Интерстеллар Фото: 3д модель черной дыры 56.
Ничего фундаментального в этом совпадении нет, но оно соответствует наивной точке зрения, что свет не может уйти из-под горизонта событий черной дыры просто потому, что его скорости для этого недостаточно. Настоящий смысл решения Шварцшильда оставался неясным еще лет 50, и никто над ним серьезно не думал». На самом деле, отличие черной дыры от темной звезды, да и любого другого классического объекта, огромно. Чтобы забросить с Земли камень в открытый космос, ему действительно надо придать вторую космическую скорость, но вам лично никто не запретит удаляться в космос — от Земли или от темной звезды Мичелла — с любой скоростью, хоть бы и 5 километров в час. Был бы двигатель да запас топлива. Не таково решение Шварцшильда: пересечь горизонт можно только снаружи внутрь. И не потому, что выбраться силенок не хватит, а просто потому, что после этого момента никакой «наружи» для вас больше нет — она так же недостижима, как прошлое. Мы не знаем, как Шварцшильд представлял себе место во Вселенной, откуда нет возврата. Зато мы знаем, что свою статью он писал зимой 1915—1916 годов во фронтовом госпитале в России, смертельно больной неизлечимой болезнью. По нашему мнению, не многим дано испытать в жизни опыт, более близкий к погружению в черную дыру. Даже на Эйнштейна статья Шварцшильда поначалу не произвела впечатления. Позже он отдавал должное автору за его математический дар, но ставил под сомнение приложимость выводов к практике: «Побудительной причиной его неиссякаемого творчества, по-видимому, в гораздо большей степени можно считать радость художника, открывающего тонкую связь математических понятий, чем стремление к познанию скрытых зависимостей в природе». Черные дыры всем казались лишь игрой ума. Ну в самом деле, откуда возьмется в мире объект такой чудовищной плотности? Читайте также Кто все эти люди: чьи имена носят популярные астрономические термины Загробная жизнь звезд Первый разумный ответ на этот вопрос предложили в 1939 году Роберт Оппенгеймер, Джордж Волков и Хартланд Снайдер. По мысли ученых, черные дыры — это своего рода посмертная стадия существования самых массивных звезд. Гравитация стремится как можно сильнее сжать вещество, превратить небесное тело в точку. Этого не происходит лишь потому, что сжатию противостоит давление, а главный источник давления в звезде — это ее излучение. Но когда в звезде заканчивается термоядерное топливо, заканчивается и излучение. Тогда «огрызок», который к тому времени остается от звезды, уже ничто не может удержать от сжатия. Дальнейшая судьба небесного тела зависит от его массы: самые легкие звезды вроде Солнца превращаются в белые карлики, более тяжелые — в нейтронные звезды, но начиная с некоторого предела массы в природе просто не остается таких сил, которые могли бы противостоять гравитационному сжатию. Именно последний сценарий с некоторыми оговорками и рассмотрели Оппенгеймер, Волков и Снайдер. Сегодня астрономы уверены, что черная дыра есть в центре практически каждой галактики Впрочем, эта работа содержала множество допущений: например, остаток звезды непременно будет вращаться, а может ли вращаться черная дыра, в то время было непонятно. Вносить уточнения было некогда: двое из трех авторов занялись разработкой ядерной бомбы в рамках «Манхэттенского проекта». Так уж получилось, что познанием в ХХ веке человечество могло заниматься лишь в перерывах между мировыми войнами. Интерес к проблеме вернулся только в 1960-х. Комментарий Алексея Старобинского: «Чтобы понять происхождение черных дыр звездной массы, надо было сперва построить теорию эволюции звезд, а это и сейчас до конца не сделано. Однако в 1960-х появились работы Чандрасекара о звездной эволюции, и из них следовало, что у нейтронных звезд есть предельная масса, около двух масс Солнца, а более массивные звезды должны коллапсировать. С другой стороны, были сделаны важные шаги в релятивистской теории: в 1963 году Рой Керр нашел решение для вращающихся черных дыр, и оно оказалось самым общим. Позже Роджер Пенроуз доказал, что внутри непременно возникает сингулярность. Одним словом, к 1970 году стало ясно, что решения, описывающие черные дыры, есть, и они общие. Это не значит, что эти дыры возникают повсюду — слава богу, как потом выяснилось, ближайшая к нам черная дыра находится на расстоянии нескольких килопарсек, — но, если их поискать, мы их найдем. В 1976 году Яков Зельдович, Игорь Новиков и я написали популярную статью для журнала «Природа», и там были такие слова: «Черные дыры переданы астрофизикам»». Читайте также «Наука существует не только ради открытий»: как стать астрофизиком и почему земляне до сих пор не нашли разумную жизнь во Вселенной Свет из бездны Что ж, раз так, астрофизики взялись за дело. Поскольку единственным возможным механизмом образования черных дыр в середине ХХ века виделся гравитационный коллапс потухших звезд, то именно такие дыры — звездной массы — имело смысл искать. Однако нашли нечто совершенно другое и неожиданное. Парадоксально, но «дыры мироздания», не отпускающие от себя свет, оказались самыми мощными источниками света во Вселенной. В 1963 году Мартин Шмидт открыл квазары, которые в телескоп выглядят как очень слабые звездочки. Вскоре оказалось, что эти скромные огоньки отстоят от нас на расстояния, сравнимые с масштабами видимой Вселенной. А значит, их реальная светимость — десятки и сотни триллионов солнц. И вся эта мощь генерируется в радиусе всего нескольких световых дней. Для сравнения: в нашей Галактике всего несколько сотен миллиардов звезд, а ее диаметр составляет сто тысяч световых лет.
Трое астронавтов отправляют свои сигналы назад на Землю, а потому ученые NASA разрабатывают два плана — «А» и «Б», чтобы спасти все человечество. Первый план заключается в разработке теории гравитационного движения для продвижения человеческих колоний в космосе, тогда как второй план просто подразумевает отправку человеческих эмбрионов для колонизации одной из пригодных для жизни планет. В итоге, главный герой Купер Мэттью Макконахи отправляет на корабле «Эндюрэнс» вместе с остальными членами экипажа на изучение трех сигналов. Стоит отметить, что агентство NASA рассказывает Куперу о том, что именно некие «неизвестные существа» открыли кротовую нору возле Сатурна для людей. Изначально предполагалось, что эти таинственные существа раскрыли тайны управления измерением и по неизвестной причине почему-то решили помочь человечеству. NASA в фильме «Интерстеллар» считало, что эти неизвестные сущности способно существовать в пятимерном пространстве, тогда как знания людей пока ограничиваются лишь трехмерным пространством. По итогу же оказалось, что этими таинственные существами являются сами люди из будущего, освоившие законы вселенной, позволяющие им манипулировать временем и пространством. Эти люди решили помочь человечеству в прошлом и построили массивный тессеракт, находящийся в пятимерном пространстве.
Что с кротовой норой, Купер?
- Внешний Вид Гаргантюа
- Фильм «Интерстеллар» секрет концовки раскрыли спустя 9 лет |
- Линзирование быстровращающейся черной дыры – Гаргантюа
- Гаргантюа черная дыра - 85 фото
- Осторожно, спойлеры!
FAQ по Гаргантюа: реальна ли черная дыра в Интерстеллар?
Важно отметить, что нагрузка сильно возрастет в точке максимального сближения с черной дырой, но не будет расти в бесконечность. Другими словами, аппарат и его экипаж могут пережить такое путешествие Важным моментом здесь является то, что физические эффекты, оказываемые на корабль, не будут растут бесконечно. Они ограничены определенным пределом, даже несмотря на то, что будет казаться, что нагрузка на корабль будет расти бесконечно с приближением к черной дыре. Конечно же, в исследовании Маллари есть несколько важных упущений и допущений, с учетом которых в ином случае конечный результат может быть совсем другим.
Например, в представленной модели предполагается, что черная дыра полностью изолирована от воздействия внешних факторов, таких как постоянные гравитационные и иные возмущения, вызываемые, например, расположенной рядом звездой или же попадающим в черную дыру внешним излучением. Следует понимать, что обычно вокруг настоящих черных дыр скапливается очень много различного материала: пыль, газ, радиация и так далее. Исходя из всего этого, логичным продолжением работы Маллари будет повторное исследование данного контекста, но уже с учетом условий более реалистичных астрофизических черных дыр.
Использование методов компьютерного моделирования для прогнозирования эффектов воздействия на объекты, находящиеся рядом с черными дырами — вполне распространенная практика. Реальной возможности проверить свои теории у современной науки пока нет, поэтому ученым приходится активно полагаться на гипотезы и симуляции, которые помогают понять базовые вещи, делать прогнозы и новые открытия.
Обе дыры оказались «спящими» или неактивными. Исследователи обнаружили их, тщательно отслеживая движения двух солнцеподобных звезд-компаньонов, вращающихся вокруг космических гигантов. Они немного колебались, когда путешествовали в космосе.
Так ученые поняли, что какой-то объект с большой гравитацией, например, другая звезда, притягивал их к себе. Но, когда исследователи проверили тот регион космоса с помощью телескопов, они не нашли ничего похожего. Согласно известной физике, такое движение звезд имело смысл только в том случае, если речь шла о черных дырах.
Поскольку телескопы создавали огромное количество данных — примерно по 350 терабайт в день, — информацию нельзя было передать по интернету, поэтому ученые хранили их на десятках жестких дисков. И это снимок с невероятным масштабом Галактика M87. Для сравнения: масса сверхмассивной черной дыры в центре Млечного Пути оценивается в 4,3 миллиона масс Солнца. Но также она находится очень далеко от Земли — в 55 миллионах световых лет для сравнения: расстояние до галактики Андромеда оценивается в 2,52 миллиона световых лет. В итоге расстояние на небе, которое занимает черная дыра в M87, составляет всего 20 микросекунд. Чтобы понять, что это значит, представьте 50-копеечную монету, которую наблюдают с расстояния в 3,5 километра: угол между глазом и краями монеты составит 1 угловую секунду. А угловая микросекунда в миллиард раз меньше угловой секунды.
Модель Романа Конопли задействует гиперпространственную математику — целых 26 измерений. Источник: kinorium. Во-первых, как трехмерные объекты могли выйти в гиперпространство? Нужно понимать, что они «бегут» по поверхности с таким же количеством измерений, но никак не ныряют в многомерное пространство. Во-вторых, почему они потеряли управление кораблем? Чем эта ситуация отличается от обычной гравитации? И в-третьих, почему они погружаются будто в тоннель? Ведь до этого нам демонстрировали и доказывали, что это сфера, поэтому и в иллюминаторах они должны были видеть концентрические сферы с переменным радиусом. Нейтронная звезда или черная дыра? Путешествие к планете Миллер При подлете к планете Миллер Купер предлагает совершить гравитационный маневр — пролететь вокруг нейтронной звезды. Это позволит им сбросить скорость, потому что они и так разгонятся рядом с черной дырой из-за сильнейшей гравитации, что может привести к тому, что они просто пролетят мимо планеты. Их цель — остаться на стабильной орбите, где притяжение черной дыры компенсируется действием центробежной силы.
FAQ по Гаргантюа: реальна ли черная дыра в Интерстеллар?
На этом рисунке выделены две отдельные звезды. Одна обведена красным та же звезда обведена на рисунке 8. Другая - внутри желтого маркера. Мы видим два изображения каждой звезды: одно снаружи розовой окружности, другое внутри. Розовая окружность называется "кольцо Эйнштейна".
По мере движения камеры вправо изображения движутся вдоль красной и желтой кривых. Изображения звезд снаружи кольца Эйнштейна давайте назовем их первичными изображениями движутся так, как и можно было бы ожидать: плавно слева направо, но отклоняясь от черной дыры по мере движения. Можете объяснить, почему отклонение происходит от дыры, а не к ней? Изменение звездного узора, видимого камерой по мере ее движения вправо по орбите на рисунке 8.
Это можно понять, вернувшись к верхней картинке на рисунке 8. Правый луч проходит рядом с черной дырой, так что правое изображение звезды находится рядом с ее тенью. В более ранний момент времени, когда камера находилась левее, правому лучу приходилось проходить еще ближе к черной дыре, чтобы изогнуться сильнее и добраться до камеры, так что правое изображение было совсем близко к краю тени. В противоположность этому, в более ранний момент времени левый луч проходил довольно далеко от дыры, так что был почти прямым и создавал изображение довольно далеко от тени.
Теперь, если вы готовы, вдумайтесь в последующее движение изображений, запечатленное на рисунке 8. Линза Быстро Вращающейся Черной Дыры: Гаргантюа Пространственный вихрь, создаваемый быстрым вращением Гаргантюа, меняет гравитационную линзу. Звездные узоры на рисунке 8. В случае Гаргантюа струение рисунок 8.
Снаружи от внешнего кольца звезды струятся вправо например, вдоль двух красных кривых , как и в случае невращающейся черной дыры на рисунке 8. Однако пространственный вихрь сосредоточил струящийся поток в узкие высокоскоростные полосы вдоль заднего края тени дыры, резковато изгибающиеся у экватора. Вихрь также создал турбуленции в струении замкнутые красные кривые. Вторичное изображение каждой звезды видно между двумя кольцами Эйнштейна.
Каждое вторичное изображение обращается по замкнутой кривой например, по двум желтым кривым , и обращается оно в направлении, противоположном красному струящемуся движению снаружи от внешнего кольца. Рисунок звездного струения, каким его видит камера рядом с быстро вращающейся черной дырой вроде Гаргантюа. В этой модели команды по визуальным эффектам Double Negative дыра вращается со скоростью 99,9 процентов от максимально возможной, а камера находится на круговой экваториальной орбите с окружностью вшестеро больше окружности горизонта. Есть две совсем особые звезды в небе Гаргантюа с выключенной гравитационной линзой.
Одна лежит точно над северным полюсом Гаргантюа, другая - точно под ее южным полюсом. Это аналоги Полярной звезды, которая располагается точно над северным полюсом Земли. Я разместил пятиконечные звезды на первичных красные и вторичных желтые изображениях полюсных звезд Гаргантюа. Кажется, что все звезды в небе Земли обращаются вокруг Полярной звезды по мере того, как нас влечет по кругу вращение Земли.
Сходным образом у Гаргантюа все первичные звездные изображения обращаются вокруг красных изображений полюсных звезд по мере движения камеры по орбите дыры, но траектории их обращения например, две красные кривые-турбуленции сильно искажены пространственным вихрем и гравитационной линзой. Аналогично, все вторичные звездные изображения обращаются вокруг желтых изображений полюсных звезд например, вдоль двух искаженных желтых кривых. Почему в случае невращающейся черной дыры рисунок 8. Вообще-то, они таки обращаются по замкнутой кривой в случае невращающейся черной дыры.
Однако, внутренний край этой замкнутой кривой так близко к краю тени, что его невозможно увидеть. Вращение Гаргантюа создает пространственный вихрь, и этот вихрь отодвигает внутреннее кольцо Эйнштейна наружу, вскрывая рисунок полного обращения вторичных изображений желтые кривые на рисунке 8. Внутри внутреннего кольца Эйнштейна рисунок струения более запутан. Звезды в этой области - это третичные и еще более высокоразрядные изображения всех звезд во Вселенной - тех же, что видны в виде первичных изображений снаружи от внешнего кольца Эйнштейна и в виде вторичных изображений между кольцами Эйнштейна.
Лингвист, в принципе, может не уметь объясняться ни на одном иностранном языке, он изучает их внутреннее устройство. Такие вот неожиданные тонкости. На Земле большие проблемы: многие сельскохозяйственные растения болеют и перестают расти. Еще как-то держится кукуруза, но и она скоро начнет исчезать. Человечеству грозит голод, а пылевые бури делают жизнь невыносимой. Однажды он узнает о том, что есть секретное подразделение NASA, которое готовит важную миссию — поиски подходящей для переселения людей планеты. Купер оставляет семью и соглашается на опасное космическое путешествие, скорее всего, в один конец. Научно-фантастическая драма «Интерстеллар» создана режиссером Кристофером Ноланом в тесном сотрудничестве с видным американским астрофизиком, впоследствии лауреатом Нобелевской премии Кипом Торном.
Сейчас ее называют одним из самых научно достоверных фантастических фильмов в истории кинематографа. Но, поскольку это все-таки художественное произведение, оно содержит некоторые допущения, двигающие сюжет. По словам Кипа Торна: «Часть из показанного в фильме — чистая правда, другая часть основана на научных предположениях, а еще часть — чистой воды спекуляция». Правда Поскольку действие космической части картины плотно связано с черными дырами, требовалось как-то визуализировать их на экране. Кип Торн взялся за эту задачу вместе со своими учениками, потом подключились мастера компьютерных спецэффектов, и результатом их работы стала восхитительная не только с кинематографической, но и с научной точки зрения черная дыра Гаргантюа. Черная дыра, как известно, поглощает свет и не отдает его. По идее, выглядит это не очень интересно, но хитроумный Торн с коллегами сообразил, что ее должны окружать притягиваемые газ и вещество разрушающихся звезд. Всё это кружится вокруг дыры по сложной траектории, которую вполне можно просчитать.
Что они и сделали. Шесть лет спустя астрофизики из проекта EHT получили первое изображение реальной черной дыры в центре нашей галактики. И вот сюрприз: она действительно похожа на визуализацию из «Интерстеллара». На планете Миллер герои сталкиваются с приливной волной высотой в километр, и это не художественное преувеличение. Дело в том, что планета вращается вокруг гигантской черной дыры Гаргантюа и испытывает на себе гравитационные эффекты от такого соседства. Мифы По сюжету путешественники для перемещения в другую галактику использовали червоточину или «кротовую нору» , один конец которой обнаружился в окрестностях Сатурна. По сути, это такой скоростной тоннель между отдаленными точками пространства, который на данный момент существует только в виде математических расчетов. При этом сам Кип Торн считает, что самостоятельное зарождение их в пространстве и времени маловероятно, и в сценарии «Интерстеллара» прибегли к помощи некой сверхразвитой цивилизации из пятого измерения, которая и создала червоточину.
Под конец путешествия главный герой падает в черную дыру, получает данные, необходимые ученым для спасения человечества, и передает их на Землю очень изощренным способом. По идее, уже у границы черной дыры Купер должен был превратиться в спагеттину из-за действия приливных сил, но, по словам Кипа Торна, для сверхмассивных черных дыр, вращающихся с огромной скоростью, удалось рассчитать более оптимистичные сценарии — «мягкую сингулярность». В этих условиях герой тоже, скорее всего, погибнет, но в научно-фантастическом фильме, даже очень строго выстроенном, имеет шанс выжить. Марсианин В не столь отдаленном будущем земляне отправляют на Марс экспедицию Ares III, которая должна выполнить некоторые задания по сбору научных данных. Ученые уже несколько дней работают на поверхности планеты, когда на лагерь надвигается жестокая песчаная буря. Команда вынуждена срочно эвакуироваться, но во время посадки на взлетный модуль теряет биолога Марка Уотни. Сочтя коллегу погибшим, опечаленные астронавты покидают планету и отправляются домой. Раненый Марк остается один в чужих и абсолютно неподходящих для человека условиях.
К счастью, он обладает природным оптимизмом и большими знаниями.
Подчеркнем, что реализовать такую систему отсчета на самом горизонте и внутри него невозможно. Поэтому никаких нарушений принципа причинности, конечно, не происходит. После многочасового изучения данных, полученных от робота, и продолжительного сна, необходимого для восстановления сил, вы приступаете к следующему этапу исследований. На этот раз вы решаете самостоятельно обследовать окрестности горизонта событий, правда, рассчитываете сделать это с большей предосторожностью, чем ваш посланник: вместо свободного падения к горизонту, вы собираетесь снижаться постепенно. Попрощавшись с командой, вы влезаете в спускаемый аппарат и покидаете корабль, оставаясь сначала на той же круговой орбите.
Затем, включая ракетный двигатель, слегка тормозите, чтобы замедлить свое орбитальное движение. При этом вы начинаете по спирали приближаться к горизонту, переходя с одной круговой орбиты на другую. Ваша цель — выйти на круговую орбиту с периметром, слегка превышающим длину горизонта. Поскольку вы движетесь по спирали, длина вашей орбиты постепенно сокращается: от 1 млн км до 500 тыс. Находясь в состоянии невесомости, вы подвешены в своем аппарате, предположим, ногами — к черной дыре, а головой — к орбите вашего корабля и звездам. Но постепенно вы начинаете ощущать, что кто-то тянет вас за ноги вниз и вверх — за голову.
Вы соображаете, что причина — притяжение черной дыры: ноги ближе к дыре, чем голова, поэтому они притягиваются сильнее. То же самое справедливо, конечно, и на Земле, но разница в притяжении ног и головы там ничтожна — меньше 10—6, так что никто этого не замечает. Двигаясь же по орбите длиной 80 тыс. Несколько озадаченный вы продолжаете движение по закручивающейся спирали, но удивление быстро сменяется беспокойством: по мере уменьшения размеров орбиты, силы, растягивающие вас, будут нарастать все стремительнее. При длине орбиты 64 тыс. Скрипя зубами от натуги, вы продолжаете движение по спирали.
При длине орбиты 25 тыс. Больше вы не в состоянии выдержать в вертикальном положении. Пытаетесь решить эту проблему, свернувшись калачиком и подтянув ноги к голове, уменьшив тем самым разность сил. Но они уже настолько велики, что не дадут вам согнуться — снова вытянут вертикально вдоль радиального по отношению к черной дыре направления. Что бы вы ни предпринимали, ничто не поможет. И если движение по спирали будет продолжаться, ваше тело не выдержит — его разорвет на части.
Итак, достичь окрестности горизонта нет никакой надежды... Разбитый, преодолевая чудовищную боль, вы прекращаете свой спуск и переводите аппарат сначала на круговую орбиту, а затем начинаете осторожно и медленно двигаться по расширяющейся спирали, переходя на круговые орбиты все большего размера, пока не доберетесь до звездолета. В изнеможении добравшись до капитанской рубки, вы изливаете свои беды бортовому компьютеру. Вам рассказывали о растяжении в направлении от головы к ногам в процессе подготовки к полету. Это ведь те же самые силы, что вызывают океанские приливы на Земле». Но почему же робот R3D3 оказался столь стойким к действию приливных сил?
Вы догадываетесь, что это произошло по двум причинам: он был изготовлен из сверхпрочного титанового сплава и имел размеры, значительно меньшие, чем ваши. Его высота, помнится, равнялась 10 см и, стало быть, приливная сила, действующая на него, была, соответственно, гораздо слабее. Но затем вы приходите к неутешительному выводу: даже проткнув горизонт, R3D3 должен был продолжать падать в область со все возрастающими приливными силами. Вы вспоминаете, что еще в 1965 г. Пенроуз использовал законы ОТО Эйнштейна для доказательства того, что такая сингулярность «проживает» внутри любой черной дыры, а в 1969 г. Лившицем, И.
Халатниковым и В. Это были «золотые годы» теоретических исследований черных дыр. Но одна ключевая особенность их поведения ускользнула тогда от физиков, они лишь догадывались о ней. И только гораздо позже, в 2013 г. Чтобы изучить сингулярность, наблюдатель не только вынужден погибнуть — ему даже не удастся накопленный столь дорогой ценой опыт передать обратно, во внешнюю часть Вселенной. Не желая платить столь высокую цену за личное знакомство с сингулярностью, вы решаете ограничиться исследованием окрестностей черных дыр.
К счастью, вы припоминаете что большое разнообразие явлений может наблюдаться и снаружи от черной дыры, в непосредственной близости от ее горизонта. Вы решаете изучить эти явления в первую очередь и сообщить о результатах своих исследований на Землю, во Всемирное географическое общество. Черная дыра Гадес обладает слишком большими приливными силами, которые не позволяют приблизиться к ее горизонту, но, согласно законам Эйнштейна, величина приливных сил вблизи горизонта обратно пропорциональна квадрату массы черной дыры. Для черной дыры с массой в 100 тыс. Иными словами, такая дыра должна быть весьма «комфортабельной» — никаких болевых ощущений. Достижим ли горизонт?
Итак, вы начинаете строить планы следующего этапа путешествия: визит к ближайшей черной дыре с массой 100 тыс. Mслн из атласа черных дыр Уиткомба,— к черной дыре, расположенной в центре нашей Галактики — Млечного Пути. Ваш план полета предполагает создание такой тяги ракетных двигателей, которая обеспечивала бы ускорение всего в 1 g, так что вы и ваша команда будете ощущать внутри звездолета силу притяжения, равную земной. Вы разгонитесь по направлению к центру Галактики в течение половины пути, а вторую половину будете замедлять движение с отрицательным ускорением —1 g. Все путешествие длиной 30 100 св. Вы предупреждаете Всемирное географическое общество, что следующее сообщение от вас прийдет из окрестностей галактического центра, после того как вы исследуете находящуюся там черную дыру с массой в 100 тыс.
Члены общества должны пребывать в анабиозе около 60 211 лет, если они хотят дождаться повторного сообщения 30 103 года, пока вы доберетесь до центра Галактики, и 30 108 лет, пока сообщение достигнет Земли. К сожалению, это так. Гораздо приятнее Вселенная в фантастических фильмах, где звездолеты переносят путешественников через галактики за времена, непродолжительные с любой точки зрения. Действительно, в 60-е годы XX в. Но более пристальное изучение физических законов привело к заключению, что ни одно из таких путешествий не реализуемо. Самое большее, на что вы можете рассчитывать,— это путешествовать сравнительно недолго по своим часам, но чрезвычайно долго с точки зрения землян.
Через 20 лет 7 месяцев ваш звездолет тормозит в центральной части Млечного Пути. Именно здесь, как подтверждают ваши датчики, находится чудовищная черная дыра, всасывающая под свой горизонт смесь газа и звездной пыли. Вы переводите звездолет на тщательно выбранную круговую орбиту над горизонтом черной дыры. Измеряя длину и период своей орбиты и подставляя результаты в формулы Ньютона — Кеплера, вы определяете массу черной дыры. Mслн в точном соответствии с характеристиками, приведенными в атласе черных дыр Уиткомба. Основываясь на безвихревом характере падения газа и пыли, вы заключаете, что у дыры отсутствует заметный момент количества движения.
Это подсказывает вам, что ее горизонт имеет форму сферы с длиной большой окружности 1 млн 850 тыс. Детально изучив с помощью приборов падение газа в дыру, вы готовитесь к спуску в окрестности ее горизонта: организуете лазерную связь между спускаемыми аппаратами и компьютером звездолета, после чего выводите спускаемый аппарат из отсека звездолета и постепенно замедляете его, переводя на спиральную орбиту, приближающуюся к горизонту. Все происходит в соответствии с вашими ожиданиями, до тех пор пока вы не достигли орбиты длиной 5 млн 500 тыс. Здесь возникают пугающие перемены! Плавное управление двигателями вместо плавного изменения вашей орбиты приводит к губительному падению по направлению к горизонту. В панике вы разворачиваете аппарат и, резко форсируя двигатели, вновь поднимаетесь на орбиту длиной больше 5 млн 500 тыс.
Но этот закон нарушается вблизи горизонта черной дыры и должен быть заменен законами ОТО Эйнштейна. А законы Эйнштейна предсказывают внезапное изменение круговых орбит там, где вы это испытали,— на орбите, длина которой втрое больше длины горизонта. Ниже все орбиты неустойчивы, как карандаш, поставленный на острие. Ничтожный импульс, переданный падающим газом или вызванный неправильным направлением тяги ракетных двигателей, приведет к падению спускаемого аппарата к горизонту; аналогично, такой же импульс, направленный не к дыре, а от нее, приведет к временному нырку назад, к орбите длиной, втрое превышающей длину горизонта, а затем — снова к стремительному падению к горизонту. Любой другой путь невозможен, пока вы не добьетесь тщательнейшей коррекции на случай таких нырков, детально проработав программу управления ракетными двигателями спускаемого аппарата. Вам, человеку, вручную немыслимо столь аккуратно управлять двигателями, но это могу проделать я.
Если хотите, я сохраню устойчивость орбиты спускаемого аппарата с помощью коррекции тяги, в то время как вы будете управлять спуском, меняя режим двигателей более грубо». Тем не менее вы принимаете предложение бортового компьютера, который затем объясняет, что неустойчивость — вовсе не единственная особенность вашей орбиты, появляющаяся при длине, втрое превышающей длину горизонта. Возникает также необходимость изменить направление тяги ваших ракетных двигателей. До сих пор, желая приблизиться по спирали к горизонту, вы были вынуждены, включая двигатели, разворачивать аппарат носом назад. Теперь, внутри сферы с длиной большой окружности, втрое превышающей длину горизонта, вы сможете приближаться к горизонту, лишь если при включении двигателей развернете аппарат носом вперед. Последовательно уменьшающиеся орбиты будут требовать все больших моментов количества движения и больших значений орбитальной скорости.
Итак, с помощью компьютера вы по спирали приближаетесь к горизонту, переходя от орбиты с длиной, превышающей длину горизонта в 3 раза, к орбите, длиннее горизонта в 2,5 раза, затем в 2; 1,6; 1,55; 1,51; 1,505; 1,501 раза... О, разочарование! По мере того как ваша скорость приближается к скорости света, длина вашей орбиты приближается к величине, в 1,5 раза превышающей длину горизонта. Добраться до самого горизонта этим методом нет никаких надежд. Снова вы обращаетесь за помощью к компьютеру и снова он утешает вас, объясняя, что внутри сферы с длиной большой окружности, превышающей длину горизонта в 1,5 раза, вообще не может быть круговой орбиты. Силы притяжения там настолько сильны, что не могут компенсироваться центростремительными силами, даже если скорость движения по орбите равна скорости света.
Если вы хотите еще приблизиться к горизонту, вы вынуждены компенсировать силу притяжения силой тяги ваших ракетных двигателей. Получив это предостережении вы советуетесь с компьютером, как реализовать подобную компенсацию. Объясняете, что хотели бы приблизиться к горизонту настолько, чтобы длина вашей орбиты составляла 1,0001 длины горизонта, где рассчитываете исследовать большинство эффектов, связанных с его влиянием, и откуда вы еще в состоянии выбраться.
Почему мы начали рассказ с этого странного факта? Потому что это один из немногих ответов на вопрос «Какая нам польза от этих дыр?! До ближайшей к нам дыры не меньше тысячи световых лет, и в ближайшее время человечество вряд ли сможет ставить над ними подобные опыты.
Однако при этом черные дыры завораживают воображение, как, наверное, ни один объект на Земле или в космосе. Область пространства, откуда нет возврата. Место, где пространственные координаты превращаются во временные причем после этого времени остается не так уж много: внутри дыры солнечной массы от пересечения горизонта событий до встречи с сингулярностью у вас будет в запасе одна миллионная секунды, и любые ваши телодвижения лишь ускорят эту встречу. Сгустки энтропии. Дыры в реальности. Впрочем, из современной физики следует немало подобных завораживающих воображение конструкций.
Кротовые норы в пространстве-времени, белые дыры, машины времени на основе космических струн, телепортация макрообъектов — все это, судя по всему, не противоречит уравнениям, выведенным теоретиками. Однако тут есть тонкость: одно дело не противоречить уравнениям, совсем другое — быть реальной частью истории Вселенной. На рубеже ХХ-XXI веков черные дыры прошли этот главный экзамен: дыры в мироздании не просто «могут быть» — они реальны. Читайте также Быстрее не бывает: как скорость света связана с течением времени и почему ее невозможно превысить Нет возврата Термин «черная дыра» появился только в 1969 году с легкой руки физика Джона Уилера. К тому времени физики уже измерили скорость света, массу Земли и Солнца. Знакомо им было и понятие второй космической скорости — с такой скоростью надо стартовать, чтобы улететь от небесного тела и не стать его спутником.
Чем небесное тело массивнее и компактнее, тем сложнее от него улететь и тем больше вторая космическая. Мичелл и Лаплас решили занимательную задачу: каким должен быть радиус Земли или Солнца при их настоящей массе , чтобы скорость освобождения для них превысила скорость света. Тогда, резонно считали классики, частицы света смогут лишь летать по замкнутым орбитам, не покидая их. Для удаленного наблюдателя такая звезда будет невидимой, почему Мичелл и назвал ее темной звездой. Карл Шварцшильд получил решение уравнений Эйнштейна, когда служил артиллерийским офицером на Восточном фронте в годы Первой мировой войны Источник: Wikimedia Commons Вряд ли теоретикам XVIII века могло присниться в страшном сне, что скорость света нельзя складывать со скоростью его источника или что тяготение влияет на геометрию пространства и на течение времени. Но даже не зная всего этого, они получили верную формулу.
Чтобы Солнце стало гравитационной могилой, не отпускающей от себя свет, его требуется сжать до радиуса в три километра, а Землю — до сантиметра. Это казалось шуткой. Какая сила может сжать планету до размеров коробка спичек? Ученые мужи с достоинством поправили парики и забыли о своих темных звездах более чем на столетие. Вторым рождением черные дыры обязаны общей теории относительности ОТО Альберта Эйнштейна, которая, в сущности, упразднила те предпосылки, на которых строили свои рассуждения Лаплас и Мичелл. Однако в 1915 году Карл Шварцшильд, решая уравнения ОТО, выяснил любопытную вещь: массивное и компактное тело сворачивает вокруг себя пространство-время в компактный кокон.
Шварцшильд вычислил радиус этого кокона сейчас его называют гравитационным радиусом : по удивительному совпадению он оказался равным предельному радиусу темной звезды. Поясняет Алексей Старобинский: «По существу, Шварцшильд нашел центрально-симметричное решение уравнений ОТО, и оказалось, что оно протягивается от бесконечности не до нуля, а до гравитационного радиуса. Из-за случайного совпадения коэффициентов этот радиус оказался таким, на котором вторая космическая скорость равна скорости света. Ничего фундаментального в этом совпадении нет, но оно соответствует наивной точке зрения, что свет не может уйти из-под горизонта событий черной дыры просто потому, что его скорости для этого недостаточно. Настоящий смысл решения Шварцшильда оставался неясным еще лет 50, и никто над ним серьезно не думал». На самом деле, отличие черной дыры от темной звезды, да и любого другого классического объекта, огромно.
Чтобы забросить с Земли камень в открытый космос, ему действительно надо придать вторую космическую скорость, но вам лично никто не запретит удаляться в космос — от Земли или от темной звезды Мичелла — с любой скоростью, хоть бы и 5 километров в час. Был бы двигатель да запас топлива. Не таково решение Шварцшильда: пересечь горизонт можно только снаружи внутрь. И не потому, что выбраться силенок не хватит, а просто потому, что после этого момента никакой «наружи» для вас больше нет — она так же недостижима, как прошлое. Мы не знаем, как Шварцшильд представлял себе место во Вселенной, откуда нет возврата. Зато мы знаем, что свою статью он писал зимой 1915—1916 годов во фронтовом госпитале в России, смертельно больной неизлечимой болезнью.
По нашему мнению, не многим дано испытать в жизни опыт, более близкий к погружению в черную дыру. Даже на Эйнштейна статья Шварцшильда поначалу не произвела впечатления. Позже он отдавал должное автору за его математический дар, но ставил под сомнение приложимость выводов к практике: «Побудительной причиной его неиссякаемого творчества, по-видимому, в гораздо большей степени можно считать радость художника, открывающего тонкую связь математических понятий, чем стремление к познанию скрытых зависимостей в природе».
«Интерстеллар» с точки зрения науки
Черная дыра, которая была названа Гаргантюа, является одной из самых массивных известных нам черных дыр во Вселенной. Её название происходит от персонажа французской литературы — Гаргантюа, которого описывали как огромного человека с необычайно большими размерами. «Первичная черная дыра субсолнечной массы, проходящая через нейтронную звезду, может потерять достаточно энергии из-за взаимодействия с плотной звездной средой, чтобы стать гравитационно связанной со звездой. Эти уравнения описывали траектории лучей света, исходящих из далекой звезды, проникающих через искривленные пространство и время Гаргантюа, достигающих камеры и учитывающих даже само движение камеры вокруг черной дыры. Да, вокруг сверхмассивной черной дыры по имени Гаргантюа обращается диск — это останки разорванных приливными силами звезд и планет, захваченных полем тяжести космического монстра. Часть светящегося диска черной дыры Гаргантюа вблизи и пролетающий над ним космолет «Эндюранс». Светится не черная дыра, а диск вокруг нее, состоящий из раскаленного газа, который дыра «забирает» у звезд при помощи сил гравитации, когда разрывает их на части.
Путешествие среди чёрных дыр
- Гаргантюа интерстеллар - 82 фото ★
- Даже прическу не помнет?
- Terra Almost Incognita: Глава 8. Внешний Вид Гаргантюа
- Гаргантюа черная дыра обои - 65 фото
Что же такое квазар
- Горизонт событий
- Что не так с «Интерстелларом» — взгляд физика
- Око Саурона или пончик? В интернете обсуждают фото чёрной дыры — Wylsacom
- Око Саурона или пончик? В интернете обсуждают фото чёрной дыры
- Гаргантюа черная дыра - 85 фото
Существует ли чёрная дыра Гаргантюа | Астрономия для начинающих | Федор Бережков
В заключение отметим, что система Гаргантюа — поистине впечатляющее открытие, и нетрудно понять, почему ученые решили назвать ее в честь вымышленной черной дыры в «Интерстеллар». С массивной звездой, меньшей звездой-компаньоном и двумя. Кадр из фильма «Интерстеллар» (2014 г.) – черная дыра Гаргантюа Черные дыры поглощают космические объекты и излучают колоссальное количество энергии. Казалось бы, вон он, идеальный источник чистой. Кадр из фильма «Интерстеллар» (2014 г.) – черная дыра Гаргантюа Черные дыры поглощают космические объекты и излучают колоссальное количество энергии.