Ответ: не куб имеет 5 плоскостей симметрии. 2. Сколько плоскостей симметрии имеет правильная четырехугольная призма? Рассмотрим вариант решения задания из учебника Атанасян, Бутузов 10 класс, Просвещение: 276 Сколько центров симметрии имеет: а) параллелепипед; б) правильная треугольная призма; в) двугранный угол; г) отрезок? Так, правильная треугольная пирамида не имеет оси симметрии второго порядка, но её высота служит для неё осью симметрии третьего порядка. Дождевой червь имеет симметрию. Математика 6 симметрия видеоурок. Рисунок имеющий центр симметрии.
Связанных вопросов не найдено
- Правильная треугольная пирамида
- Симметрия фигур в пространстве
- Сколько центров симметрии имеет правильная треугольная призма
- Зеркальная симметрия в призме - 11487-8
Сколько центров имеет правильная треугольная призма
Симметрия прямой призмы — Студопедия | Найди верный ответ на вопрос«Сколько плоскостей симметрии у правильной треугольной призмы » по предмету Математика, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов. |
Симметрия правильной призмы | б) правильная треугольная призма. |
Ответы СГА. Геометрия (10 кл. БП) | б) правильный треугольник; Сколько плоскостей симметрии имеет. |
Симметрия правильной призмы | Упражнение 6Имеет ли центр симметрии наклонная призма, основанием которой является правильный девятиугольник? |
Симметрия вокруг нас презентация, доклад | В сегодняшнем уроке от Пчела Школа | дистанционное обучение по Математике мы разбираем: Призма (виды призм, элементы призмы, площадь основания, площадь боковой поверхности, площадь полной поверхности) Смотрите видео онлайн «Правильная треугольная призма». |
Симметрия фигур в пространстве
Соответственно, в равностороннем треугольнике три оси симметрии — прямые, проходящие через серединные перпендикуляры к сторонам треугольника. Что и требовалось доказать. Центра симметрии у равностороннего треугольника как и у любого другого треугольника нет. То есть треугольник не является централь-симметричной фигурой.
Что такое симметрия простым языком? Симметрия — это соразмерность, пропорциональность, одинаковость в расположении частей. Воображаемая линия сгиба в симметричных изображениях называется осью симметрии.
Что такое симметрия в пространстве? СИММЕТРИЯ - пропорциональность, соразмерность в расположении частей целого в пространстве, полное соответствие по расположению, величине одной половины целого другой половине. Что такое плоскости симметрии? Обозначается буквой Р или m. Как определить плоскость симметрии? Плоскость симметрии делит кристалл на две зеркально равные части.
Обозначается она буквой Р.... Плоскость симметрии проходит через ребра; лежать перпендикулярно к ребрам в их серединах; проходить через грань перпендикулярно к ней; пересекать гранные углы в их вершинах. Как обозначить ось симметрии? Ось симметрии принято обозначать буквой L, с цифровым индексом, указывающим на порядок оси - Ln. Доказано, что в кристаллах возможны только оси второго, третьего, четвертого и шестого порядков. Сколько центров инверсии в кубе?
Так, в кубе — наиболее симметричной фигуре — одновременно присутствуют 23 элемента симметрии: 9 плоскостей 3 — параллельные граням и 6 — проходящие через их верных, 4 тройных и 6 двойных и центр инверсии который, естественно, может быть в кристалле только один. Сколько Сингоний в кристаллографии? Сколько плоскостей симметрии имеет правильная четырехугольная призма? Почему нет оси симметрии 5 порядка?
Найдите площадь полной поверхности призмы. Agalki1234 21 нояб.
Сколько рёбер у получившегося многогранника невидимые рёбра на рисунке не изображены? Bleze1 20 мая 2021 г. На этой странице вы найдете ответ на вопрос Сколько плоскостей симметрии у правильной треугольной призмы?. Вопрос соответствует категории Математика и уровню подготовки учащихся 1 - 4 классов классов. Если ответ полностью не удовлетворяет критериям поиска, ниже можно ознакомиться с вариантами ответов других посетителей страницы или обсудить с ними интересующую тему. Здесь также можно воспользоваться «умным поиском», который покажет аналогичные вопросы в этой категории.
Например, куб имеет 9 плоскостей симметрии: три плоскости симметрии, проходящие через середины параллельных ребер; шесть плоскостей симметрии, проходящие через противолежащие ребра. Фигура может иметь один центр ось, плоскость симметрии, или несколько центров осей, плоскостей симметрии, либо вообще не иметь центра оси, плоскости симметрии. На примере куба вы уже убедились в существовании у него одного центра симметрии, 9 осей симметрии и 9 плоскостей симметрии. То есть куб обладает центральной, осевой и зеркальной симметрией.
Существуют фигуры , которые имеют бесконечно много центров, осей или плоскостей симметрии. Самой простой такой фигурой являются прямая и плоскость. Существуют фигуры не имеющие центра, оси или плоскости симметрии. К примеру, тетраэдр не имеет ни одного центра симметрии, но имеет три оси симметрии, которые проходят через середины скрещивающихся рёбер и 6 плоскостей симметрии, которые проходят через ребро тетраэдра перпендикулярно скрещивающемуся с ним ребру.
Многие кристаллы, встречающиеся в природе обладают центральной, осевой и зеркальной симметрией.
Сколько центральных симметрий имеет пирамида?
Сколько осей симметрии имеет правильная четырехугольная призма отличная от куба. Сколько центров симметрии имеет правильная треугольная призма? Боковые ребра пирамиды SABC равны между собой. Сколько плоскостей симметрии у правильной треугольной призмы. Сколько плоскостей симметрии у правильной треугольной призмы.
Зеркальная симметрия в призме
Все плоскости, проходящие через эту вершину и перпендикулярные основанию, являются плоскостями симметрии. Таким образом, у треугольной пирамиды есть 3 плоскости симметрии. Выводы Таким образом, правильная четырехугольная призма имеет 1 плоскость симметрии, в то время как правильная треугольная пирамида имеет 3 плоскости симметрии. Наличие плоскостей симметрии позволяет нам легче анализировать и классифицировать эти геометрические фигуры, а также понять их особенности и свойства.
Оси симметрии Куба 9. Фигуры обладающие центром симметрии в пространстве. Симметрия в пространстве задача. Фигуры с осевой симметрией. Симметричные фигуры в пространстве.
Центр симметрии на правильной шестиугольной призме. Сколько плоскостей симметрии. Плоскости симметрии прямоугольного параллелепипеда. Центр симметрии параллелепипеда. Симметрия и сечения параллелепипеда. Симметрия фигуры относительно точки. Симметричные фигуры относительно прямой. Определить ось симметрии. Центр симметрии Куба.
Симметрия в Кубе в параллелепипеде в призме и пирамиде презентация. Симметрия прямой Призмы. Геометрия 10-11 класс Атанасян гдз. Сколько плоскостей симметрии имеет. Сколько плоскостей симметрии имеет правильная. Симметрия в параллелепипеде в призме и пирамиде. Симметрия в Кубе. Правильный шестиугольная Призма оси симметрии. Симметрия правильной шестиугольной Призмы.
Ось симметрии правильной Призмы. Сколько центров симметрии имеет Двугранный угол. Ось симметрии пирамиды. Симметрия в пирамиде. Симметрия в пространстве. Элементы симметрии Призмы. Плоскости симметрии. Задачи на симметрию. Правильная треугольная Призма высота Призмы.
Наклонная треугольная Призма формулы. Высота правильной треугольной Призмы свойства. Sполн правильной треугольной Призмы. Сколько центров симметрии имеет треугольная Призма. Сколько центров симметрии у правильной треугольной Призмы. Правильный гексаэдр центр симметрии. Точка пересечения диагоналей Куба - центр симметрии Куба.. Симметрические плоскости Куба. Плоскости симметрии треугольной пирамиды.
Зеркальная симметрия Призмы. Симметричность Призмы.
Тетраэдр имеет три оси симметрии, которые проходят через середины скрещивающихся рёбер. Тетраэдр имеет 6 плоскостей симметрии, каждая из которых проходит через ребро тетраэдра перпендикулярно скрещивающемуся с ним ребру. Сколько осей симметрии имеет правильный октаэдр? Три из 9 осей симметрии октаэдра проходят через противоположные вершины, шесть - через середины ребер. Центр симметрии октаэдра - точка пересечения его осей симметрии. Три из 9 плоскостей симметрии тетраэдра проходят через каждые 4 вершины октаэдра, лежащие в одной плоскости. Сколько осей симметрии имеет правильный икосаэдр?
Додекаэдр имеет центр симметрии и 15 осей симметрии. Каждая из осей проходит через середины противолежащих параллельных рёбер. Додекаэдр имеет 15 плоскостей симметрии. Любая из плоскостей симметрии проходит в каждой грани через вершину и середину противоположного ребра. Что такое додекаэдр и икосаэдр? Какие правильные многогранники имеют по 15 осей симметрии и 15 плоскостей симметрии? Правильный додекаэдр состоит из двенадцати правильных пятиугольников. Додекаэдр имеет центр симметрии - центр додекаэдра, 15 осей симметрии и 15 плоскостей симметрии: плоскости симметрии проходят через ребро, содержащее вершину, перпендикулярно противоположному ребру. Сколько и каких элементов симметрии имеют правильные многогранники?
Выпуклый многогранник называется правильным, если все его грани — равные правильные многоугольники и в каждой его вершине сходится одно и то же число ребер. Существует только пять правильных многогранников: правильный тетраэдр, правильный гексаэдр или куб, правильный октаэдр, правильный икосаэдр, правильный додекаэдр. Как называется многогранник составленный из 12 правильных пятиугольников?
Сколько плоскостей симметрии имеет правильная четырехугольная призма?
Почему нет оси симметрии 5 порядка? Очевидно, оси симметрии 5-го или 7-го порядков в структуре невозможны, потому что атомные ряды и сетки не заполняют пространство непрерывно, возникнут пустоты, промежутки между положениями равновесия атомов. Атомы окажутся не в самых устойчивых положениях, и кристаллическая структура разрушится. Сколько плоскостей симметрии имеет сфера?
Ответ, проверенный экспертом Тела вращения: шар, цилиндр, конус и т. Сколько плоскостей имеет куб? Элементы симметрии куба Центром симметрии куба является точка пересечения его диагоналей. Через центр симметрии проходят 9 осей симметрии.
Сколько осей симметрии имеет правильная шестиугольная призма? Ответ: По крайней мере, три плоскости симметрии. Описание слайда: Упражнение 19Сколько у правильной шестиугольной призмы: а осей симметрии; б плоскостей симметрии? Ответ: а Семь осей симметрии, одна ось симметрии 2n — 1 -го порядка; б семь плоскостей симметрии.
Сколько осей симметрии имеет правильная пятиугольная призма? Упражнение 17 Какие оси симметрии имеет правильная пятиугольная призма? Ответ: Пять осей симметрии второго порядка и одну ось симметрии пятого порядка. Сколько осей симметрии имеет четырехугольная звезда?
Из каждой вершины звезды - биссектриса является осью. Сколько осей симметрии имеет правильный тетраэдр?
Сколько осей симметрии в правильной треугольной призме?
Подробные ответы на вопрос Сколько центров симметрии имеет параллелепипед правильная треугольная? Упражнение 6Имеет ли центр симметрии наклонная призма, основанием которой является правильный девятиугольник? Элементы симметрии правильных многогранников. Правильный тетраэдр не имеет центра симметрии. Дождевой червь имеет симметрию. Математика 6 симметрия видеоурок. Рисунок имеющий центр симметрии. Правильная треугольная Призма центр симметрии. Центр правильной треугольной Призмы.
Сколько осей симметрии в правильной треугольной призме?
Сколько центров симметрии имеет параллелепипед правильная треугольная | Рассмотрим вариант решения задания из учебника Атанасян, Бутузов 10 класс, Просвещение: 276 Сколько центров симметрии имеет: а) параллелепипед; б) правильная треугольная призма; в) двугранный угол; г) отрезок? |
Сколько плоскостей симметрии имеет правильная четырехугольная призма? - Ответ найден! | О сервисе Прессе Авторские права Связаться с нами Авторам Рекламодателям Разработчикам. |
Сколько плоскостей симметрии имеет правильная четырехугольная призма?
Правильный тетраэдр не имеет центра симметрии. б) правильный треугольник; Сколько плоскостей симметрии имеет. Тип грани – правильный треугольник; Число сторон у грани – 3. Сколько плоскостей симметрии имеет пирамида, в основании которой лежит прямоугольник, ромб?Ответ:4 плоскости.
Симметрия прямой призмы
Между различными видами симметрии в пространстве — осевой, плоскостной и центральной — существует зависимость, выражаемая следующей теоремой. Возьмём какую-нибудь точку А фигуры F черт. Эта прямая ОН будет перпендикулярна и к плоскости Р. То же самое справедливо и для всех других точек фигуры.
Значит, наша теорема доказана. Из этой теоремы непосредственно следует, что две фигуры, симметричные относительно плоскости, не могут быть совмещены так, чтобы совместились их соответственные части. Оси симметрии высших порядков.
Таким образом, если тело сделает полный оборот вокруг этой оси, то в процессе вращения оно несколько раз совместится со своим первоначальным положением. Такая ось вращения называется осью симметрии высшего порядка, причём число положений тела, совпадающих с первоначальным, называется порядком оси симметрии. Эта ось может и не совпадать с осью симметрии второго порядка.
Так, правильная треугольная пирамида не имеет оси симметрии второго порядка, но её высота служит для неё осью симметрии третьего порядка. При вращении пирамиды вокруг высоты она может занимать три положения, совпадающие с исходным, считая и исходное. Легко заметить, что всякая ось симметрии чётного порядка есть в то же время ось симметрии второго порядка.
Примеры осей симметрии высших порядков: 1 Правильная n-угольная пирамида имеет ось симметрии n-го порядка. Этой осью служит высота пирамиды. Этой осью служит прямая, соединяющая центры оснований призмы.
Симметрия куба. Как и для всякого параллелепипеда, точка пересечения диагоналей куба есть центр его симметрии.
Через какую точку основания проходит высота пирамиды, если все боковые ребра пирамиды равны? Какая пирамида называется усеченной? Назовите ее элементы.
Каково соотношение между боковыми ребрами пирамиды, если все боковые ребра пирамиды составляют равные углы с плоскостью основания? Дайте определение правильной усеченной пирамиды. Как найти площадь боковой поверхности усеченной пирамиды? Каково соотношение высот боковых граней, проведенных из вершин пирамиды, если двугранные углы при основании равны? Какие виды симметрии в пространстве вы знаете?
Дайте краткую характеристику каждого вида. По какой формуле находится площадь боковой поверхности пирамиды, если двугранные углы при основании пирамиды равны? Дайте определение правильного выпуклого многогранника. Назовите основное его свойство.
То есть у правильного додекаэдра пятнадцать осей симметрии. Центром симметрии правильного додекаэдра будет точка пересечения всех осей симметрии. Плоскости, проходящие в каждой грани через вершину и середину противолежащего ребра, будут плоскостями симметрии. Таких плоскостей пятнадцать. То есть у правильного додекаэдра пятнадцать плоскостей симметрии Осями симметрии правильного икосаэдра являются прямые, которые проходят через середины противолежащих параллельных ребер. Таких прямых пятнадцать.
То есть у правильного икосаэдра пятнадцать осей симметрии. Центром симметрии правильного икосаэдра является точка пересечения всех осей симметрии. Плоскости симметрии правильного икосаэдра проходят через четыре вершины, которые лежат в одной плоскости, и середины противоположных ребер. То есть у правильного икосаэдра пятнадцать плоскостей симметрии.
Точка D — середина ребра ВС. Треугольник ABC остроугольный прямоугольный недостаточно данных Основание прямого параллелепипеда — ромб с диагоналями 10 и 24 см. Треугольник ABC: прямоугольный.
Сколько плоскостей симметрии имеет правильная четырехугольная призма?
Пользователь настя Гатилова задал вопрос в категории Другие предметы и получил на него 1 ответ. Сколько центров симметрии имеет параллелепипед. Правильная треугольная Призма центр симметрии. Рассмотрим элементы симметрии правильного тетраэдра. Он не имеет центра симметрии. Сколько центров симметрии имеет правильная треугольная Призма. Правильная призма – основаниями являются правильные многоугольники. Симметрия в призме Симметря параллелепипеда Симметрия наклонной призмы Симметря прямой призмы Симметрия относительно точки пересечения диагоналей Симметрия относительно плоскости (KLMN), проходящей через середины боковых ребер Симметрия.
сколько плоскостей симметрии имеет правильная четырехугольная призма
Правильный тетраэдр не имеет центра симметрии. 2. Правильный тетраэдр (правильная треугольная пирамида, все ребра которой равны между собой). Сколько плоскостей симметрии имеет правильная четырехугольная призма? Дождевой червь имеет симметрию. Математика 6 симметрия видеоурок. Рисунок имеющий центр симметрии. Симметрия в призме Симметря параллелепипеда Симметрия наклонной призмы Симметря прямой призмы Симметрия относительно точки пересечения диагоналей Симметрия относительно плоскости (KLMN), проходящей через середины боковых ребер Симметрия. Найди верный ответ на вопрос«Сколько плоскостей симметрии у правильной треугольной призмы » по предмету Математика, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Геометрия 11 класс
- Урок «Многогранники. Симметрия в пространстве»
- Симметрия вокруг нас
- Ответы СГА. Геометрия (10 кл. БП)
- Симметрия вокруг нас презентация, доклад
- Математические характеристики икосаэдра
- Из Википедии — свободной энциклопедии
Геометрия (10 кл. БП)
Cubinos 26 мар. Найдите площадь сечения , если сторона основания равна 4 см. Vilkin22 13 апр. Сторона основания равна а. Определите площадь боковой поверхности призмы. Exxxo 8 апр. Найдите площадь полной поверхности призмы. Agalki1234 21 нояб.
Сколько осей симметрии имеет равносторонний треугольник? Есть ли у равностороннего треугольника центр симметрии? Утверждение Равносторонний треугольник имеет три оси симметрии. Осями симметрии равностороннего треугольника являются прямые, содержащие серединные перпендикуляры к его сторонам.
Каждая точка прямой а считается симметричной самой себе. Точка прямая, плоскость называются центром осью, плоскостью симметрии фигуры, если каждая точка фигуры симметрична относительно неё некоторой точке той же фигуры. Если фигура имеет центр ось, плоскость симметрии, то говорят, что она обладает центральной осевой, зеркальной симметрией. Центр, ось и плоскости симметрии многогранника называются элементами симметрии этого многогранника.
В древности сфера была в большом почёте. Преподаватель Шмелёва О. Компланарные векторы. Площадь ледового покрытия - 1000м2, объём - 300м3. Условие: Проверила Чернявская И. Выполнила ученица 11 В класса Кагальницкая А. Постановка домашнего задания. План урока: Площадь поверхности цилиндра. Объяснение нового материала.
§ 3. Правильные многогранники. Симметрия в пространстве.
Сколько центров имеет правильная треугольная призма | Сколько центров симметрии имеет правильная треугольная призма? |
Задание МЭШ | Усечённая прямая треугольная призма имеет одну усечённую треугольную грань[1]. |
Сколько центров симметрии имеет призма | Сколько центров имеет правильная треугольная призма Правильная треугольная Призма боковые грани. |
Правильная треугольная призма
Сколько плоскостей симметрии имеет. Задачи на симметрию. Задачи на симметрию в пространстве. Сколько центров симметрии имеет прямая. Сколько центров симметрии имеет пара параллельных прямых. Осевая симметрия параллельных прямых. Центры симметрии двух параллельных прямых. Диагонали параллелепипеда пересекаются в одной точке. Диагонали параллелепипеда пересекаются в одной точке и делятся. Диагонали пересекаются в одной точке и делятся этой точкой пополам. Диагонали параллелепипеда пересекаются и точкой пересечения.
Отметь фигуры у которых имеется центр симметрии. Фигуры обладающие центровой симметрией. Геометрические фигуры обладающие центральной симметрией. Центрально симметричные фигуры. Осевая симметрия прямоугольного параллелепипеда. Симметрия в пространстве. Элементы симметрии правильных многогранников. Элементы симметрии правильного гексаэдра. Элементы симметрии правильного Куба. Элементы симметрии в Кубе.
Плоскость симметрии правильного тетраэдра. Оси и плоскости симметрии тетраэдра. Элементы симметрии правильного тетраэдра. Оси симметрии правильного тетраэдра. Плоскость симметрии. Оси симметрии Призмы. Сторона основания правильной треугольной Призмы. Сторона основания правильной Призмы. Сечение правильной треугольной Призмы. Основание правильной треугольной Призмы.
Элементы симметрии правильного октаэдра. Центр симметрии правильного октаэдра. Элементы симметрии правильных многогранников 10 класс. Правильный октаэдр оси симметрии. Центр симметрии октаэдра. Октаэдр имеет 9 плоскостей симметрии. Элементы симметрии октаэдра. Плоскости симметрии октаэдра. Параллелепипед грани вершины ребра. Грани вершины ребра параллелепипеда и тетраэдра.
Параллелипед вершина грани ребра. Тетраэдр грани вершины ребра. Прямоугольный параллелепипед пирамида 5 класс. Параллелепипед вершины ребра и грани 5 класс. Пирамида грани ребра вершины.
Тригональная Призма формула симметрии.
Тригональная Призма элементы симметрии. Симметрия относительно точки. Фигуры симметричные относительно точки. Центральная симметрия относительно точки. Определение точек симметричных относительно точки. Треугольная Призма основания боковые ребра боковые грани.
Правильная треугольная Призма сторона основания Призмы. Грань Призмы ребра и основания треугольной. Треугольная Призма высота грани. Треугольная Призма задачи. Правильная треугольная Призма в системе координат. Расстояние от точки до плоскости в треугольной призме.
Середина ребра. Сечение треугольной Призмы. Ребро основания правильной треугольной Призмы. Треугольная Призма abca1b1c1. Abca1b1c1 прямая Призма треугольник ABC правильный ab 1 bb1 корень из 2. Abca1b1c1 прямая Призма ABC правильный.
Прямая Призма abca1b1c1. В правильной треугольной призме аа1 4 см. Abca1b1c1 правильная треугольная Призма ab 19 aa1 корень из 23. Правильная Призма треугольная. Плоскости симметрии треугольной пирамиды. В правильной треугольной призме abca1b1c1 все ребра равны 2.
В прямой призме abca1b1c1 все рёбра равны 46 t a1b1,a1t. Расстояние от точки м до каждой из вершин правильного треугольника. Точка s удалена от каждой из вершин правильного треугольника. Треугольная Призма в ортогональной проекции. Правильная Наклонная треугольная Призма. Авса1в1с1 правильная Призма АВ А сс1 2мк.
Треугольная Призма авса1в1с1. В правильной треугольной призме авса1в1с1 все ребра которой равны 1. Призма ab-aa1. Угол между прямыми a1c bb1. Правильной треугольной призме abca1в1с1. Элементы симметрии тетрагональной Призмы.
Тетрагональная Призма оси симметрии. Тетрагональная Призма формула симметрии. Дитетрагональная Призма плоскости. Правильная Призма abca1b1c1. В прямой призме abca1b1c1 все ребра 32. Формула вычисления диагонали параллелепипеда.
Диагональ основания прямоугольного параллелепипеда. Прямоугольный параллелепипед диа. Диагональ основания прямоугольного параллелепипеда равна. Треугольная Призма. Сечения Призмы задачи. Центр симметрии внутри треугольника.
Симметрия относительно произвольной линии. Построение треугольника на графике с 3 точками. Правильная треугольная Призма вершины. Грани правильной треугольной Призмы. Треугольная Призма углы. Оси симметрии гексагональной Призмы.
Симметрия в равностороннем треугольнике Jul. Сколько осей симметрии имеет равносторонний треугольник? Есть ли у равностороннего треугольника центр симметрии? Утверждение Равносторонний треугольник имеет три оси симметрии.
Из этого определения непосредственно следует, что если два геометрических тела, симметричных относительно какой-либо оси, пересечь плоскостью, перпендикулярной к этой оси, то в сечении получатся две плоские фигуры, симметричные относительно точки пересечения плоскости с осью симметрии тел.
В самом деле, вообразим все возможные плоскости, перпендикулярные к оси симметрии. Каждая такая плоскость, пересекающая оба тела, содержит фигуры, симметричные относительно точки встречи плоскости с осью симметрии тел. Это справедливо для любой секущей плоскости. Отсюда и вытекает справедливость нашего утверждения. Название "ось симметрии второго порядка "объясняется тем, что при полном обороте вокруг этой оси тело будет в процессе вращения дважды принимать положение, совпадающее с исходным считая и исходное.
Примерами геометрических тел, имеющих ось симметрии второго порядка, могут служить: 1 правильная пирамида с чётным числом боковых граней; осью её симметрии служит её высота; 2 прямоугольный параллелепипед; он имеет три оси симметрии: прямые, соединяющие центры его противоположных граней; 3 правильная призма с чётным числом боковых граней. Осью её симметрии служит каждая прямая, соединяющая центры любой пары её противоположных граней боковых граней и двух оснований призмы. Кроме того, осью симметрии для такой призмы служит каждая прямая, соединяющая середины её противоположных боковых рёбер. Таких осей симметрии призма имеет А. Зависимость между различными видами симметрии в пространстве.
Между различными видами симметрии в пространстве — осевой, плоскостной и центральной — существует зависимость, выражаемая следующей теоремой. Возьмём какую-нибудь точку А фигуры F черт. Эта прямая ОН будет перпендикулярна и к плоскости Р. То же самое справедливо и для всех других точек фигуры. Значит, наша теорема доказана.
Из этой теоремы непосредственно следует, что две фигуры, симметричные относительно плоскости, не могут быть совмещены так, чтобы совместились их соответственные части. Оси симметрии высших порядков.