При разложении непрерывной звуковой волны на гармоники получается спектр колебаний, который определяет тональный состав звука.
Ударной звуковой волной по бармалеям.
Из курса физики вам всем известно, что звук — это непрерывная волна с изменяющейся амплитудой и частотой. Для того, чтобы компьютер мог обрабатывать непрерывный звуковой сигнал, он должен быть дискретизирован, т. Для этого звуковая волна разбивается на отдельные временные участки. Гладкая кривая заменяется последовательностью «ступенек». Каждой «ступеньке» присваивается значение громкости звука. Чем больше количество уровней громкости, тем больше количество информации будет нести значение каждого уровня и более качественным будет звучание. Причем, чем больше будет количество измерений уровня звукового сигнала в единицу времени, тем качественнее будет звучание.
Эта характеристика называется частотой дискретизации Данная характеристика измеряется в Гц. При этом на каждое измерение выделяется одинаковое количество бит. Такая характеристика называется — глубина кодирования. Таким образом, чтобы подсчитать вес звуковой волны достаточно перемножить частоту дискретизации, глубины кодирования и времени звучания такого звука.
Другими словами, через какие-то промежутки времени мы измеряем уровень аналогового сигнала. Количество таких измерений за одну секунду называется частотой дискретизации. Частота дискретизации — это количество измерений громкости звука за одну секунду. Временная дискретизация звукового сигнала А t — амплитуда, t — время Частота дискретизации измеряется в герцах Гц и килогерцах кГц. Частота дискретизации, равная 100 Гц, означает, что за одну секунду проводилось 100 измерений громкости звука. Качество звукозаписи зависит не только от частоты дискретизации, но также и от глубины кодирования звука.
Глубина кодирования звука или разрешение — это количество информации, которое необходимо для кодирования дискретных уровней громкости цифрового звука. В результате измерений звукового сигнала см. Пусть под запись одного результата измерения громкости в памяти компьютера отведено n бит. Вы знаете, что это позволяет закодировать ровно 2n разных результатов измерений. Поэтому весь диапазон, в котором могут находиться результаты измерений громкости звука, можно разбить на 256 разных поддиапазонов — уровней громкости звука, каждому из которых присвоить свой уникальный код. После этого каждый имеющийся результат измерений громкости звука можно соотнести с некоторым поддиапазоном, в который он попадает, и кодировать его номером кодом соответствующего уровня громкости.
Звуковые файлы WAV, как правило, более просты и имеют только один блок формата и один блок данных. В первом содержится общая информация об оцифрованном звуке число каналов, частота дискретизации, характер зависимости громкости и т. Каждый отсчет занимает целое количество байт например, 2 байта в случае 12-битовых чисел, старшие разряды содержат нули. При стереозаписи числа группируются парами для левого и правого канала соответственно, причем каждая пара образует законченный блок — для нашего примера его длина составит 4 байта. Такая, казалось бы, излишняя структурированность позволяет программному обеспечению оптимизировать процесс передачи данных при воспроизведении, но, как в подобных случаях всегда бывает, выигрыш во времени приводит к существенному увеличению размера файла. Это один из форматов хранения аудиосигнала, позднее утвержденный как часть стандартов сжатого видео. Природа получения данного формата во многом аналогична уже рассмотренному нами ранее сжатию графических данных по технологии JPEG. Это называется адаптивным кодированием и позволяет экономить на наименее значимых с точки зрения восприятия человека деталях звучания. Приемы, применяемые в MP3, непросты для понимания и опираются на достаточно сложную математику, но зато обеспечивают очень значительный эффект сжатия звуковой информации. Успехи технологии MP3 привели к тому, что ее применяют сейчас и во многих бытовых звуковых устройствах, например, плеерах и сотовых телефонах. Формат MIDI. Это довольно старый 1983 г. MIDI базируется на пакетах данных, каждый из которых соответствует некоторому событию, в частности, нажатию клавиши или установке режима звучания. Любое событие может одновременно управлять несколькими каналами, каждый из которых относится к определенному оборудованию. Несмотря на свое изначальное предназначение, формат файла стал стандартным для музыкальных данных, которые при желании можно проигрывать с помощью звуковой карты компьютера безо всякого внешнего MIDI-оборудования. Главным преимуществом файлов MIDI является их очень небольшой размер, поскольку это не детальная запись звука, а фактически некоторый расширенный электронный эквивалент традиционной нотной записи. Но это же свойство одновременно является и недостатком: поскольку звук не детализирован, то разное оборудование будет воспроизводить его по-разному, что в принципе может даже заметно исказить авторский музыкальный замысел.
Для записи аналогового звука и его преобразования в цифровую форму используется микрофон, подключенный к звуковой плате. Качество полученного цифрового звука зависит от количества измерений уровня громкости звука в единицу времени, то есть частоты дискретизации. Чем большее количество измерений производится за 1 секунду чем больше частота дискретизации , тем точнее "лесенка" цифрового звукового сигнала повторяет кривую аналогового сигнала. Частота дискретизации звука - это количество измерений громкости звука за одну секунду, измеряется в герцах Гц. Обозначим частоту дискретизации буквой f. Частота дискретизации звука может лежать в диапазоне от 8000 до 48 000 измерений громкости звука за одну секунду. Глубина кодирования звука. Каждой "ступеньке" присваивается определенное значение уровня громкости звука. Уровни громкости звука можно рассматривать как набор возможных состояний N, для кодирования которых необходимо определенное количество информации b, которое называется глубиной кодирования звука Глубина кодирования звука - это количество информации, которое необходимо для кодирования дискретных уровней громкости цифрового звука. В процессе кодирования каждому уровню громкости звука присваивается свой 16-битовый двоичный код, наименьшему уровню звука будет соответствовать код 0000000000000000, а наибольшему - 1111111111111111.
Звук. Звуковая информация презентация
Непрерывная звуковая волна разбивается на отдельные маленькие.". Непрерывная звуковая волна может быть разбита на несколько основных компонентов. Непрерывная звуковая волна разбивается на на отдельные маленькие участки, и для каждого такого участка устанавливается своя амплитуда. Временная дискретизация звука • Непрерывная звуковая волна разбивается на. Непрерывная звуковая волна может быть разбита на несколько основных компонентов. На что разбивается непрерывная звуковая волна.
Звук - теория, часть 1
Процесс преобразования непрерывного аналогового сигнала в дискретный прерывистый называется временной дискретизацей. Зависимость качества звука от глубины кодирования Глубина кодирования Соответствие звуков различных характеристик некоторым источникам звука Audio. CD Радиотрансляция 8 к. Гц 16 бит DVD-Audio 192 к. Гц и глубине кодирования 16 бит. Они позволяют изменять качество звука и объем звукового файла.
При попытках преодоления скорости звука на обычных поршневых самолетах было немало трагических случаев. Сильная вибрация порой приводила к разрушениям конструкции. Самолетам не хватало мощности для требуемого разгона. В горизонтальном полете он был невозможен из-за эффекта запирания воздушного винта, имеющего ту же природу, что и волновой кризис. Поэтому для разгона применяли пикирование. Но оно вполне могло стать фатальным. Появляющийся при волновом кризисе пикирующий момент делал пике затяжным, и из него, иной раз, не было выхода. Ведь для восстановления управления и ликвидации волнового кризиса необходимо было погасить скорость. Но сделать это в пикировании крайне трудно если вообще возможно. Затягивание в пикирование из горизонтального полета считается одной из главных причин катастрофы в СССР 27 мая 1943 года известного экспериментального истребителя БИ-1 с жидкостным ракетным двигателем. После чего произошло затягивание в пике, из которого самолет не вышел. Экспериментальный истребитель БИ-1. В наше время волновой кризис уже достаточно хорошо изучен и преодоление звукового барьера если это требуется :- особого труда не составляет. На самолетах, которые предназначены для полетов с достаточно большими скоростями применены определенные конструктивные решения и ограничения, облегчающие их летную эксплуатацию. Как известно, волновой кризис начинается при числах М, близких к единице. Поэтому практически все реактивные дозвуковые лайнеры пассажирские, в частности имеют полетное ограничение по числу М. Обычно оно находится в районе 0,8-0,9М. Летчику предписывается следить за этим. Кроме того на многих самолетах при достижении уровня ограничения срабатывает сигнализация, после чего скорость полета должна быть снижена. Стреловидное крыло. Принципиальное действие. Причину такого эффекта можно объяснить достаточно просто. А он заведомо меньше по величине общего потока V. Поэтому на стреловидном крыле наступление волнового кризиса и рост волнового сопротивления происходит ощутимо позже, чем на прямом крыле при той же скорости набегающего потока. Типичное стреловидное крыло. Одной из модификаций стреловидного крыла стало крыло со сверхкритическим профилем упоминал о нем здесь. Оно тоже позволяет сдвинуть начало волнового кризиса на большие скорости, кроме того позволяет повысить экономичность, что немаловажно для пассажирских лайнеров. SuperJet 100. Стреловидное крыло со сверхкритическим профилем. Если же самолет предназначен для перехода звукового барьера проходя и волновой кризис тоже и полета на сверхзвуке, то он обычно всегда отличается определенными конструктивными особенностями. В частности, обычно имеет тонкий профиль крыла и оперения с острыми кромками в том числе ромбовидный или треугольный и определенную форму крыла в плане например, треугольную или трапециевидную с наплывом и т. Сверхзвуковой МИГ-21. Послелователь Е-2А. Типичное треугольное в плане крыло. Пример типичного самолета, созданного для полета на сверхзвуке. Тонкие профили крыла и оперения, острые кромки. Трапециевидное крыло. И сам момент этого перехода чаще всего никак не ощущается повторяюсь :- ни летчиком у него разве что может снизиться уровень звукового давления в кабине , ни сторонним наблюдателем, если бы, конечно, он мог за этим наблюдать :-. Однако, здесь стоит сказать еще об одном заблуждении, со сторонними наблюдателями связанным. Наверняка многие видели такого рода фотографии, подписи под которыми гласят, что это есть момент преодоления самолетом звукового барьера, так сказать, визуально. Эффект Прандтля-Глоэрта. Не связан с прохождением звукового барьера. Во-первых, мы уже знаем, что звукового барьера, как такового-то и нет, и сам переход на сверхзвук ничем таким сверхординарным в том числе и хлопком или взрывом не сопровождается. То, что мы видели на фото — это так называемый эффект Прандтля-Глоэрта. Я о нем уже писал здесь. Он никак напрямую не связан с переходом на сверхзвук. Просто на больших скоростях дозвуковых, кстати :- самолет, двигая перед собой определенную массу воздуха создает сзади некоторую область разрежения. Сразу после пролета эта область начинает заполняться воздухом из близлежащего пространства с естественным увеличением объема и резким падением температуры. Если влажность воздуха достаточна и температура падает ниже точки росы окружающего воздуха, то происходит конденсация влаги из водяных паров в виде тумана, который мы и видим. Как только условия восстанавливаются до исходных, этот туман сразу исчезает.
В целом, принято считать, что низкие частоты «ответственны» за разборчивость, ясность аудио информации, а высокие частоты — за субъективное качество звука. Слуховой аппарат человека способен различать частотные составляющие звука в пределах от 20-30 Гц до приблизительно 20 КГц. Указанная верхняя граница может колебаться в зависимости от возраста слушателя и других факторов. В спектре звука большинства музыкальных инструментов наблюдается наиболее выделяющаяся по амплитуде частотная составляющая. Ее называют основной частотой или основным тоном. Основная частота является очень важным параметром звучания, и вот почему. Для периодических сигналов, слуховая система человека способна различать высоту звука. В соответствии с определением международной организации стандартов, высота звука - это субъективная характеристика, распределяющая звуки по некоторой шкале от низких к высоким. На воспринимаемую высоту звука влияет, главным образом, частота основного тона период колебаний , при этом общая форма звуковой волны и ее сложность форма периода также могут оказывать влияние на нее. Высота звука может определяться слуховой системой для сложных сигналов, но только в том случае, если основной тон сигнала является периодическим например, в звуке хлопка или выстрела тон не является периодическим и по сему слух не способен оценить его высоту. Вообще, в зависимости от амплитуд составляющих спектра, звук может приобретать различную окраску и восприниматься как тон или как шум. В случае если спектр дискретен то есть, на графике спектра присутствуют явно выраженные пики , то звук воспринимается как тон, если имеет место один пик, или как созвучие, в случае присутствия нескольких явно выраженных пиков. Если же звук имеет сплошной спектр, то есть амплитуды частотных составляющих спектра примерно равны, то на слух такой звук воспринимается как шум. Для демонстрации наглядного примера можно попытаться экспериментально «изготовить» различные музыкальные тона и созвучия. Для этого необходимо к громкоговорителю через сумматор подключить несколько генераторов чистых тонов осцилляторов. Причем, сделать это таким образом, чтобы была возможность регулировки амплитуды и частоты каждого генерируемого чистого тона. В результате проделанной работы будет получена возможность смешивать сигналы от всех осцилляторов в желаемой пропорции, и тем самым создавать совершенно различные звуки. Поученный прибор явит собой простейший синтезатор звука. Очень важной характеристикой слуховой системы человека является способность различать два тона с разными частотами. Опытные проверки показали, что в полосе от 0 до 16 кГц человеческий слух способен различать до 620 градаций частот в зависимости от интенсивности звука , при этом примерно 140 градаций находятся в промежутке от 0 до 500 Гц. На восприятии высоты звука для чистых тонов сказываются также интенсивность и длительность звучания. В частности, низкий чистый тон покажется еще более низким, если увеличить интенсивность его звучания. Обратная ситуация наблюдается с высокочастотным чистым тоном — увеличение интенсивности звучания сделает субъективно воспринимаемую высоту тона еще более высокой. Длительность звучания сказывается на воспринимаемой высоте тона критическим образом. Так, очень кратковременное звучание менее 15 мс любой частоты покажется на слух просто резким щелчком — слух будет неспособен различить высоту тона для такого сигнала. Высота тона начинает восприниматься лишь спустя 15 мс для частот в полосе 1000 — 2000 Гц и лишь спустя 60 мс — для частот ниже 500 Гц. Это явление называется инерционностью слуха. Инерционность слуха связана с устройством базилярной мембраны. Кратковременные звуковые всплески не способны заставить мембрану резонировать на нужной частоте, а значит мозг не получает информацию о высоте тона очень коротких звуков. Минимальное время, требуемое для распознавания высоты тона, зависит от частоты звукового сигнала, а, точнее, от длины волны. Чем выше частота звука, тем меньше длина звуковой волны, а значит тем быстрее «устанавливаются» колебания базилярной мембраны. В природе мы почти не сталкиваемся с чистыми тонами. Звучание любого музыкального инструмента является сложным и состоит из множества частотных составляющих. Тем не менее, даже при одинаковой высоте звучания, звук, например, скрипки отличается на слух от звука рояля. Это связано с тем, что помимо высоты звучания слух способен оценить также общий характер, окрас звучания, его тембр. Тембром звука называется такое качество восприятия звука, которое, в не зависимости от частоты и амплитуды, позволяет отличить одно звучание от другого. Тембр звука зависит от общего спектрального состава звучания и интенсивности спектральных составляющих, то есть от общего вида звуковой волны, и фактически не зависит от высоты основного тона. Немалое влияние на тембр звучания оказывает явление инерционности слуховой системы. Это выражается, например, в том, что на распознавание тембра слуху требуется около 200 мс. Громкость звука — это одно из тех понятий, которые мы употребляем ежедневно, не задумываясь при этом над тем, какой физический смысл оно несет. Громкость звука — это психологическая характеристика восприятия звука, определяющая ощущение силы звука. Громкость звука, хотя и жестко связана с интенсивностью, но нарастает непропорционально увеличению интенсивности звукового сигнала. На громкость влияет частота и длительность звукового сигнала. Чтобы правильно судить о связи ощущения звука его громкости с раздражением уровнем силы звука , нужно учитывать, что изменение чувствительности слухового аппарата человека не точно подчиняется логарифмическому закону. Существуют несколько единиц измерения громкости звука. Первая единица — «фон» в англ. Говорят, «уровень громкости звука составляет n фон», если средний слушатель оценивает сигнал как равный по громкости тону с частотой 1000 Гц и уровнем давления в n дБ. Фон, как и децибел , по сути не является единицей измерения, а представляет собой относительную субъективную характеристику интенсивности звука. Каждая кривая на графике показывает уровень равной громкости с начальной точкой отсчета на частоте 1000 Гц. Иначе говоря, каждая линия соответствует некоторому значению громкости, измеренной в фонах. Например, линия «10 фон» показывает уровни сигнала в дБ на разных частотах, воспринимаемых слушателем как равные по громкости сигналу с частотой 1000 Гц и уровнем 10 дБ. Важно заметить, что приведенные кривые не являются эталонными, а приведены в качестве примера. Современные исследования ясно свидетельствуют, что вид кривых в достаточной степени зависит от условий проведения измерений, акустических характеристик помещения, а также от типа источников звука громкоговорители, наушники. Таким образом, эталонного графика кривых равных громкостей не существует. Важной деталью восприятия звука слуховым аппаратом человека является так называемый порог слышимости - минимальная интенсивность звука, с которой начинается восприятие сигнала. Как мы видели, уровни равной громкости звука для человека не остаются постоянным с изменением частоты. Иными словами, чувствительность слуховой системы сильно зависит как от громкости звука, так и от его частоты. В частности, и порог слышимости также не одинаков на разных частотах. Например, порог слышимости сигнала на частоте около 3 кГц составляет чуть менее 0 дБ, а на частоте 200 Гц — около 15 дБ. Напротив, болевой порог слышимости мало зависит от частоты и колеблется в пределах 100 — 130 дБ. График порога слышимости представлен на рис. Обратим внимание, что поскольку, острота слуха с возрастом меняется, график порога слышимости в верхней полосе частот различен для разных возрастов. Частотные составляющие с амплитудой ниже порога слышимости то есть находящиеся под графиком порога слышимости оказываются незаметными на слух. Интересным и исключительно важным является тот факт, что порог слышимости слуховой системы, также как и кривые равных громкостей, является непостоянным в разных условиях. Представленные выше графики порога слышимости справедливы для тишины. В случае проведения опытов по измерению порога слышимости не в полной тишине, а, например, в зашумленной комнате или при наличии какого-то постоянного фонового звука, графики окажутся другими. Это, в общем, совсем не удивительно. Ведь идя по улице и разговаривая с собеседником, мы вынуждены прерывать свою беседу, когда мимо нас проезжает какой-нибудь грузовик, поскольку шум грузовика не дает нам слышать собеседника.
Разложение звуковой волны на составляющие частоты Каждая непрерывная звуковая волна может быть разложена на составляющие частоты при помощи математической процедуры, называемой преобразованием Фурье. Этот процесс позволяет нам разделить сложную звуковую волну на отдельные частоты, которые составляют ее спектр. Преобразование Фурье основывается на идее, что сложная волна может быть представлена как сумма более простых синусоидальных волн с разными частотами, амплитудами и фазами. Используя этот подход, мы можем анализировать звуковую волну и определить, какие конкретные частоты присутствуют в ней и с какой амплитудой. Разложение звуковой волны на спектр частот позволяет нам лучше понять ее структуру и характеристики. Например, мы можем определить основные и гармонические компоненты в звуке, их амплитуды и относительные частоты. Это полезно для анализа и синтеза звуковых сигналов, а также для исследования и понимания работы слуховой системы. Преобразование Фурье является одним из основных инструментов в области цифровой обработки сигналов и акустики. Оно находит широкое применение во многих областях, включая аудиоинженерию, музыкальное производство, компьютерную графику и науку о звуке. Амплитуда и длина волны как ключевые характеристики Амплитуда звуковой волны отображает ее мощность или интенсивность. Она определяется величиной колебаний частиц среды, через которую проходит волна. Чем выше амплитуда, тем громче звук воспринимается человеком. Амплитуда измеряется в децибелах дБ и может варьироваться от нуля до максимально возможного уровня.
Дискретизация звука
Звуковая волна Амплитуду звуковых колебаний называют звуковым давлением или силой звука. На что разбивается непрерывная звуковая волна? На что разбивается непрерывная звуковая волна? Временная дискретизация звука • Непрерывная звуковая волна разбивается на. Звуковая волна. Амплитуду звуковых колебаний называют звуковым давлением или силой звука.
Дискретизация звука
это чередование уплотнений и разряжений воздуха, т. е. волна, отделяющаяся от непрерывно от самолета. На что разбивается непрерывная звуковая волна? Все эти звуковые волны распространяются в воздушной среде с уже известной нам скоростью звука. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, причем для каждого такого участка устанавливается определенная величина интенсивности звука. Если звуковая волна может раскачать препятствие – она его раскачивает, и вся энергия колебаний передаётся препятствию. Мы постоянно обновляем базу тестов, чтобы вы могли получить наиболее актуальную информацию и проверить свои знания.
Акція для всіх передплатників кейс-уроків 7W!
Волны является когерентными, если разность их фаз постоянна во времени, а при сложении получается волна той же частоты. Звуковая волна. Амплитуду звуковых колебаний называют звуковым давлением или силой звука. На что разбивается непрерывная звуковая волна.
Звук - теория, часть 1
Что включает в себя процесс оцифровки звука? | Непрерывная звуковая волна разбивается на отдельные участки по времени, для каждого устанавливается своя величина амплитуды. |
Что препятствует распространению звука? Распространение звука в среде | Звуковая волна. Амплитуду звуковых колебаний называют звуковым давлением или силой звука. |
Дифракция и дисперсия света. Не путать! | Звуковой барьер в аэродинамике — название ряда технических трудностей, вызванных явлениями, сопровождающими движение летательного аппарата (например, сверхзвукового самолёта, ракеты) на скоростях, близких к скорости звука или превышающих её. |
Кодирование звуковой и видеоинформации - ZNZN📗 | Непрерывная звуковая волна разбивается на отдельные участки по времени, для каждого устанавливается своя величина амплитуды. |
Звук - теория, часть 1 | При разложении непрерывной звуковой волны на гармоники получается спектр колебаний, который определяет тональный состав звука. |
Презентация, доклад на тему Кодирование звука для 10 класса
Всё, что Вам нужно знать о звуке: bdsmn — LiveJournal | Слайд 9Временная дискретизация звука Непрерывная звуковая волна разбивается на отдельные маленькие временные участки Частота. |
4 2 Панорамирование | Звук – это звуковая волна с непрерывно меняющийся амплитудой и частотой. непрерывную звуковая волна разбивается на отдельные маленькие временные. |
Что препятствует распространению звука? Распространение звука в среде | Непрерывная звуковая волна разбивается на отдельные участки по времени. |
Акція для всіх передплатників кейс-уроків 7W! | Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, причем для каждого такого участка устанавливается определенная величина интенсивности звука. |
Проекты по теме:
- Физика 9 класс. §33 Отражение звука. Звуковой резонанс
- Преимущества и недостатки аналогового сигнала
- Навигация по записям
- Кодирование звуковой информации дискретизация
- Непрерывная волна
- На что разбивается непрерывная звуковая волна